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We carry out a detailed numerical study of the Cahn-Hilliard equation in two dimensions for phase
separation in very large systems and for different values of the area fraction ¢. We present results for the
scaling function obtained from the pair-correlation function, the structure factor, and the droplet distri-
bution function. We find that dynamical scaling is satisfied at late times for all of the above functions
and for different area fractions. We study how the shape of these scaling functions changes with the area
fractions and compare these results with available theoretical predictions. We have also analyzed the
growth law for the characteristic domain size for various area fractions. Our analysis of the time depen-
dence of various measures for the characteristic length supports a modified Lifshitz-Slyozov law in
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which the asymptotic-growth-law exponent is % for all area fractions.

PACS number(s): 64.60.My, 64.60.Cn, 64.75.+g

I. INTRODUCTION

When a binary mixture, initially prepared in a homo-
geneous, high-temperature phase, is suddenly quenched
below the coexistence curve, the mixture begins to evolve
toward its new energetically favorable segregated phase.
In the theoretical approach to the kinetics of these first-
order phase transitions [1], a distinction is usually made
between two very different mechanisms of evolution fol-
lowing such a quench. The spinodal curve roughly
divides the region in the phase diagram where droplets of
the minority phase form by nucleation and where the
domains form by spinodal decomposition. If the system
is quenched between the spinodal curve and the coex-
istence curve, nuclei of the minority phase are formed
and these nuclei subsequently coarsen with time. Inside
the spinodal curve the system is unstable against long-
wavelength instabilities and evolves by spinodal decom-
position. It is, however, well accepted [2—6] that for sys-
tems with short-range interactions the spinodal curve
does not divide the two regions sharply but merely serves
to suggest where each process dominates.

Despite extensive studies, the theoretical understand-
ing of this phase-separation process for quenches to vari-
ous locations of the phase diagram is still incomplete.
However, several important results have been obtained in
recent years both by analytical calculations and by large-
scale computer simulations. The classical result of
Lifshitz and Slyozov (LS) [7] is applicable when the
volume fraction of one of the components of the mixture
is vanishingly small. In this limit the kinetics of the
growth process can be solved analytically and the growth
law for the average domain size, R(t¢) is given by
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R (2)~t!73. Although the Lifshitz-Slyozov theory is only
applicable for very dilute systems, it has been argued
theoretically [8—12] that a similar ¢!/ growth law should
hold asymptotically at late times for larger values of the
volume fraction as well. Another important development
in the past several years is the understanding that the late
stages of the phase-separation process in various binary
mixtures are characterized by one dominant length scale,
proportional to the average size of the domains, R (¢).
Due to the existence of only one length scale, the late-
stage evolution of the system can be described in terms of
scaling [1,13,14] with R (¢). One important question in
the area of growth kinetics is, then, whether the growth
law and the scaling functions change as one varies the
volume fraction ¢ (area fraction in two dimensions) of the
minority constituent of the binary mixture.

In this paper we address the above issue by carrying
out large-scale computer simulations on the Cahn-
Hilliard model [15] of phase separation in two dimen-
sions. In particular, we study how the scaling functions
for the scattering intensity and the pair-correlation func-
tions change when the area fraction ¢ of the minority
phase is varied. We also study the scaling behavior of the
droplet-distribution function, which determines the num-
ber of droplets of a given size as a function of time. Most
of the theoretical calculations of these quantities are lim-
ited to small volume (or area) fractions, since the theories
seem to break down for large volume fractions. Numeri-
cally, however, studying small volume or area fractions is
very difficult due to finite-size limitations. Thus previous-
ly it has not been possible to compare the scaling func-
tions found in the analytical studies with those computed
in numerical simulations [16]. The small area fractions

3025



3026

accessed in this study allows us to systematically compare
the results with various approximate theories in two di-
mensions. Some of these results have recently been re-
ported by us [17-19]. Here we present the details of this
work, including more extensive analysis of the data than
presented previously. The outline of the paper is as fol-
lows. In Sec. II we introduce the model and discuss the
numerical methods used in the study. In Sec. III we
present the results for the various scaling functions and
compare them with analytical theories whenever possible.
In Sec. IV we present the time dependence of the charac-
teristic length, and finally conclude in Sec. V with a brief
summary.

II. MODEL AND NUMERICAL METHODS

In the Cahn-Hilliard-Cook theory [15] of the dynamics
of first-order phase transitions, one considers a conserved
concentration field ¥(r,?) which represents the difference
in the local concentration of the two components of the
mixture. It is assumed that the time variation of this
conserved field is governed by the functional derivative of
a free-energy functional given in terms of a Ginzburg-
Landau expression plus a thermal noise term as

: z(a?t—) =MV [ —by+u’ —KVYl+arn, (1)

where M is the mobility, b, u, and K are the parameters
of the model, and the noise variable 7(r,?) is a Gaussian
random variable of mean zero and obeying the correla-
tions

(q(r,t)n(r',t")) = —2Mk, TV?8(r—1')8(t —1t') . 2)

In the above equation kj is the Boltzmann constant and
T is the temperature. Equation (2) ensures, via the
fluctuation-dissipation theorem, that the stationary solu-
tion of Eq. (1) is distributed according to the Boltzmann
distribution at a temperature 7. After suitable rescaling
of distance, time, and concentration field [20], the result-
ing equation of motion is

WD — 12—yt g -V Ve, 3)
where the rescaled noise term now obeys
(E(r,)E(r',t")) =—V(r—r1")8(t —1t’) (4)

and e is the strength of the noise term.

A detailed numerical study of the preceding equation is
very demanding in terms of computer time and memory,
even for two-dimensional systems. First, the system has
to evolve long enough time in order to reach the scaling
regime. On the other hand, as time increases, the number
of droplets decreases. Since we are interested in the scal-
ing behavior of the droplet-distribution function at late
times, we need to consider a very large system in order
for the system to have a reasonable number of droplets at
the late stages so that finite-size effects can be avoided
and the results are statistically meaningful. Since the
available computer time gets limited very quickly if one
considers the above conditions, we are forced to make
some more approximations. As a result we have not in-
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cluded the noise term in our studies. We note that at low
temperatures, the noise term does not seem to affect some
important features of the late stages of evolution (such as
the growth law for the characteristic domain size and the
scaling functions) for critical quenches [11]. Therefore
we expect that this approximation would work reason-
ably well for deep off-critical quenches.

It is known that numerical integration of the discre-
tized version of Eq. (3) develops a subharmonic
bifurcation-type instability for large time steps. A linear
stability analysis [11] shows that this bifurcation can be
avoided by choosing the time step 6¢ and mesh size &x
such that the following inequality is satisfied in two di-
mensions:

<___51‘4__ .
16—28x2

This simple criterion turns out to be a necessary but not a
sufficient condition for the stability of the numerical in-
tegration. Usually the integration is carried out by using
a first-order Euler scheme. In this paper we use a more
accurate method in the numerical integration of Eq. (3),
namely, we use the Heun method [21], which in the ab-
sence of the noise term is a second-order Runge-Kutta
scheme. We have chosen a mesh size §x =1.0 for the La-
placian discretization on a square lattice of size 540% for
area fraction $=0.05 and 256% for $=0.21. With this
choice for 8x we have found that droplets are circular in
shape, that the radius of gyration R; of a given droplet is
proportional to the geometrical radius, and that the mass
of the droplet (total number of particles of the minority
phase in it) is given by 27R2 to a great accuracy (better
than 1%). On the other hand, larger choices for 6x pro-
duce anisotropic growth of droplets that reflects the un-
derlying symmetry of the square lattice used in the nu-
merical discretization. In Fig. 1 we show a typical mor-
phology of the system at ¢t =20000 for ¢=0.21. Note
that the droplets are circular in s}‘?pe as indicated by
drawing circles with radii equal to V2R ;, where R are
the corresponding radii of gyration of the clusters. Simi-
lar circular droplets are seen for ¢ =0.05.

As mentioned above, we have considered two area
fractions in our study: ¢=0.05 and ¢=0.21. One needs
to be careful with the initial condition, particularly for
the smaller area fraction considered. Since the system is
in the metastable region of the phase diagram, a strong
fluctuation is needed in the initial distribution of the or-
der parameter in order to allow for the growth of the ini-
tial random nuclei. This is even more important in the
absence of thermal noise, the case considered here. We
chose the initial configuration to be a Gaussian distribu-
tion centered at 1,=0.9 with variance of magnitude 5.
For this particular choice of the initial configuration the
magnitude of the order parameter is very large initially at
random points on the lattice and one needs a very small
time step for the stability of the numerical integration in
the initial stage. However, the order parameter settles
down to (absolute) values smaller than unity very soon
and the time step can be increased safely. We have car-
ried out the numerical integration up to ¢ =20000 [in the
dimensionless units of Eq. (3)]. From ¢ =0 to ¢ =100 the

5t (5)
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FIG. 1. A typical configuration at t =20000 during the evo-
lution of the system for $=0.21. Note that the droplets are cir-
cular in shape as indicated by drawing circles with radii equal
V2R, where R are the corresponding radii of gyration of the
clusters. The parts of the circles outside the inner frame indi-
cate images from the periodic boundary conditions.

time step is chosen to be 6¢=0.001, from =100 to
t =1000 the time step is 8¢ =0.025, and for ¢ > 1000 8¢ is
fixed at 0.05. In order to average over the initial random
configurations, we have performed 60 runs with different
initial conditions. The same parameters have been used
for the case of area fraction ¢=0.21 except that the
Gaussian distribution for the initial field is centered at
1o=0.58, since ¢,=1—2¢.

The structure formation in the system during the
phase-separation process is measured by the time-
dependent structure factor S(k,?). We define the struc-
ture factor to be

S(k,t)=<—]lv s 2e"ik"[¢(r’+r,t)¢(r’,t)—(¢)2]> ,

(6)

where both sums run over the lattice of linear size L and
N =L? is the total number of points in the lattice. We
expect the evolution process to be isotropic and compute
the circularly averaged structure factor S (k,¢).

We also compute the pair-correlation function defined
by

G(r,)=1 e*S(k,1) . )
k

Similar to the circularly averaged structure factor, we
also consider a circularly averaged pair-correlation func-
tion G(r,t). The correlation function is finally normal-
ized so that its magnitude is unity at » =0, i.e., we define
a normalized correlation function

g(r,t)y=G(r,t)/G(0,¢) , (8)
or equivalently

g(rt)= G(r,t)
’ (P2 — ()~

A similar normalization is used for the circularly aver-
aged structure factor S (k,¢). By noting that

S Sk, = (1)) —{($)*=G (0,1) , (10
k

9)

we define a normalized structure factor s (k,¢) as
s(k,t)=S(k,t)/G(0,¢) . (11)

The above normalization procedure allows us to make a
more reasonable comparison of the shape of the scaling
functions for different area fractions, since the magnitude
is normalized even though () is different for different
area fractions.

Usually the location of the structure factor’s max-
imum, k,, is used experimentally as a measure of the
characteristic domain size at some time t. However, the
discrete nature of the lattice in numerical studies makes it
difficult to determine k,, precisely. Previous work
demonstrates that R (z), the location of the first zero of
the real-space correlation function, is a good measure for
the average domain size. This length is computed by
fitting a cubic polynomial to the four points closest to the
first sign change in g(7,¢) and finding the polynomial’s
root. Another reliable measure of the characteristic
length is the average radius of gyration R;(z) of the
droplets since the droplets are found to be circular in the
simulation.

III. SCALING FUNCTIONS

It is well established now that the late stages of the
phase-separation process can be described in terms of
scaling with a time-dependent length. The fundamental
assumption of scaling is that, in the late stages of the evo-
lution process, only one length, R (¢), is relevant. This
characteristic length represents a measure of the typical
domain size and increases with time. A main feature em-
erging from this picture is that the pair-correlation func-
tion g (r,¢) and the structure factor s (k,¢) depend on time
through R (t) only, namely,

g(r,t)=8(r/R (1)) (12)
and
s(k,t)=R (t)*F kR (1)) , (13)

where d is the dimensionality of the system and the func-
tions 9(p) and F(x) are the time-independent scaling
functions of the system.

We first study the scaling behavior of the circularly
averaged pair-correlation function for different area frac-
tions. Figure 2 shows the scaling behavior of the normal-
ized correlation function g (r,t) with R, (1) as the scaling
length for ¢=0.21. The scaling hypothesis seems to be
well satisfied for ¢>4000. The corresponding scaling
function for ¢$=0.05 is shown in Fig. 3. Here also we
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FIG. 2. Plot of the normalized pair-correlation function
g(r,t) vs r/R,(t) to check the scaling ansatz [Eq. (12), see text]
for $=0.21.

find that dynamical scaling is obeyed at late times, al-
though one finds that the scaling function obtained in this
case is quite different from the one obtained in Fig. 2 for
¢=0.21. We will discuss this point below.

Next, we test the dynamical scaling hypothesis [Eq.
(13)] for the circularly averaged and normalized structure
factor s(k,t) for $=0.21. In Fig. 4 we use R, () as the
scaling length. Within the accuracy of the data scaling is
well satisfied after # =4000 in this case. The correspond-
ing scaling function for ¢=0.05 is shown in Fig. 5 now
using R(t) as the scaling length. Here also, dynamical
scaling is found to be obeyed at late times (z>8000).
Since lattice discretization does not leave us with many
points for small wave vectors, the quality of the scaling is
not as good for very small values of the scaling variable x.

As mentioned earlier, an important question in the
study of phase separation processes is the effect of vary-
ing the volume or area fraction ¢ of the minority constit-
uent of the binary mixture on the scaling functions.
Several analytical studies have been carried out to obtain
the volume fraction dependence of the scaling functions
for the structure factor [22-27]. In one approach, vari-
ous attempts have been made to incorporate effects of
correlations among droplets in the Lifshitz-Slyozov
mean-field theory which is valid in the limit of
infinitesimally small volume fraction. These calculations
show that the scaling functions depend on volume frac-
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FIG. 3. Same as in Fig. 2 except ¢=0.05.

FIG. 4. Scaling plot for the normalized structure factor
s (k,t) with R,(¢) as the scaling length for $=0.21.

tions, although the growth-law exponent does not
change. Among these calculations, the theory of
Tokuyama, Enomoto, and Kawasaki [22] considers both
initial thermal fluctuations and nonthermal fluctuations
generated by soft collisions among droplets. This theory
predicts a strong dependence of the shape of the scaling
functions for the structure factor on the volume fraction
¢ in three dimensions. The theory, however, is applicable
only in the limit of small volume fraction ¢ (typically
¢ <10%) and unfortunately cannot be extended for the
case of larger volume fractions due to the perturbative
nature of the calculations.

Mazenko [28,29] has taken a different approach. In
this theory, the order-parameter field is separated into
the sum of an ordering field and a fluctuation field. When
the coupling between these two fields is taken into proper
account the classical LS growth law is recovered. For
off-critical quenches in three dimensions [29], the above
theory predicts that the scaling function computed from
the pair-correlation function is an insensitive function of
the volume fraction for near-critical concentration. For
such concentrations, the scaling functions show a
damped oscillatory behavior. However, for intermediate
values of the volume fraction, the oscillatory behavior of
the pair-correlation function is suppressed as the interac-
tions between the droplets become effectively screened.
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FIG. 5. Same as in Fig. 4 except R;(¢) is the scaling length
and ¢=0.05.



47 LATE-STAGE COARSENING FOR OFF-CRITICAL ... 3029

Very near the coexistence curve, the scaling function re-
gains an oscillatory form but the intensity of scattering is
sharply decreased.

We now compare the numerical results for the scaling
functions for both the pair-correlation function and the
structure factor with various theoretical predictions. The
comparison with the theory of Mazenko and Tokuyama,
Enomoto, and Kawasaki will be qualitative since the
above theoretical calculations are valid in three dimen-
sions. On the other hand, the explicit expressions given
by a semiempirical model calculation of Fratzl and co-
workers [27,30,31] permits a more detailed comparison,
which we carry out later in the paper.

Let us first present the results for the scaling functions
computed from the pair-correlation function. The scal-
ing function obtained in Figs. 2 and 3 are shown in Fig. 6
along with the scaling function obtained for the critical
quench by Gawlinski, Vifials, and Gunton [12]. When we
compare the scaling functions for the critical quench
(¢=0.50) with that for $=0.21 we find that despite the
radical difference in morphology (an interconnected
structure for the critical quench versus droplet morphol-
ogy for this off-critical case) the scaling functions are
quite similar. It is, however, difficult to conclude on the
basis of numerical results whether the scaling functions
are actually independent of the area fraction in this range
since numerical accuracy in g(r) is lost quickly for large
values of . We should also note that the scaling func-
tions for the pair-correlation function are not accurately
known for very small values of »/R,, since the quantity
(4*(t)), used in the normalization of the correlation
function [see Eq. (9)], is slowly changing with time even
at the very late times. This might explain the observation
that the correlation function for small values of the scal-
ing variable is not strictly linear, a form expected if
Porod’s law [32] is satisfied for the structure factor for
large values of the wave vector. Even with these limita-
tions on the numerically obtained correlation functions, it
is still possible to realize that the scaling function for
¢=0.05 is distinctly different from that of either ¢ =0.21
or $=0.50. The interesting feature of the scaling func-
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FIG. 6. Comparison of the scaling function obtained from
the pair-correlation function for various values of the area frac-
tion ¢. The result for $=0.50 is taken from Ref. [12]. Note
that the scaling function is very similar for =0.50 and ¢=0.21
whereas it differs significantly from the above ones for ¢ =0.05.

tion for $=0.05 is that the oscillations seen in the scaling
function for larger volume fractions are almost absent
here and the magnitude of the pair-correlation function is
very small for r>R,. This suggests that the spatial
correlations among the droplets are much weaker in this
case. These results support the theoretical predictions of
Mazenko. Although Mazenko’s results are valid in three
dimensions it is reasonable to expect that this theory
would also yield similar qualitative results in two dimen-
sions.

Let us now compare the qualitative features of the scal-
ing functions for the structure factor computed here with
those found in the theoretical calculations of Tokuyama,
Enomoto, and Kawasaki for three-dimensional systems.
In Figs. 7 and 8 we plot the scaling functions for the un-
normalized structure factors for different values of ¢ and
with R (z) and Rg(#) as the corresponding scaling
lengths. Note that for ¢=0.50 only R,(¢) is used as the
scaling length since in this case the domain morphology
is interconnected and one cannot define a droplet radius
of gyration. Comparing these unnormalized scaling func-
tions for various area fractions, one finds that the scaling
function depends strongly on the area fraction and the
scattering intensity, as given by the maximum value of
the structure factor, decreases monotonically with the
area fraction. These features are in good qualitative
agreement with the above theory. In order to compare
the shapes of the scaling functions, however, one should
use the normalized structure factor s (k,t) defined above.
In Figs. 9 and 10 we plot the normalized scaling func-
tions for various area fractions with R,(¢) and Rg(¢) as
the corresponding scaling lengths. Comparing the scal-
ing functions for ¢ =0.05 and ¢=0.21 in Fig. 9, we find
that as the area fraction is decreased, the half widths of
the scaling functions increase, the location of the peak of
the scaling function shifts towards smaller reduced wave
vectors and the peak height decreases. In Fig. 10 also, we
find similar qualitative features [33] when we compare
the scaling functions for 7=0.05 and ¢=0.21. However,
when we compare the normalized scaling functions for
¢=0.21 and ¢=0.50 in Fig. 9, we find that despite the
different morphologies of the domain structure, the scal-
ing functions are very similar. Both scaling functions
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FIG. 7. Comparison of the scaling function obtained from
the unnormalized structure factor S(k,t) with R (t) as the scal-
ing length for various values of the area fraction.
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FIG. 8. Same as in Fig. 7 except Rs(¢) is the scaling length.

have a similar shape and the peak is located at almost the
same position. It is difficult again to assert whether the
scaling function is strictly independent of the area frac-
tion at this range but it is apparent that the change in the
two scaling functions is very small given the fact that the
area fraction changes by a factor of about 2.5 between the
two cases. Since the theory of Tokuyama, Enomoto, and
Kawasaki breaks down for these large volume fractions it
is not possible to compare the qualitative features with
that theory. As mentioned earlier, Mazenko’s theory
agrees well with our general findings for the pair-
correlation function.

Fratzl and Lebowitz [30] have proposed a semiempiri-
cal model expression for the scaling functions based on a
mathematical model and some general features of the
structure function [27], in particular the fact that the
structure function s (k,t) for small value of the wave vec-
tor k should be proportional to k* [34,35]. The approach
of Fratzl and Lebowitz allows an explicit expression for
the scaling functions and it has been rather successful in
describing data coming from computer simulations
[27-30] or experimental data on binary alloys [31]. The
scaling functions are constructed in two stages: (1) The
pair-correlation scaling function is, in principle, modeled
by an oscillatory decreasing function
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FIG. 9. Comparison of the scaling function obtained from
the normalized structure factor s(k,t) with R,(¢) as the scaling
length for various values of the area fraction. The solid and the
dotted lines are guides to the eye for ¢=0.05 and 0.50, respec-
tively.

8 — -
Eﬁ%&%ﬁ'-: u $=0.21
o F - ¢=0.05
« % ] a B
= |8
o B
LI |
< < H
o~ .
[72]
2+ L ]
'I
]
| |
0 _.ﬂ

FIG. 10. Same as in Fig. 9 except Rs(?) is the scaling length.

e_Apsxn(Zﬂg/A) , (14)
2mp/A

where A is a constant proportional to the amount of the
total interface present per unit area and A is another con-
stant related to the typical domain size. (2) The second
stage consists of incorporating the small-k behavior men-
tioned above by multiplying the Fourier transform of the
above expression by the function a,x*/(x*+c,), a, and
c, being two constants. The final expression for the scal-
ing function F(x) is then (in two dimensions)

4
a»x
Fx)=——(B+pIy +B P2 (1)
x“+c,
where
2__
y=%"1_14a, (16)
b,

and d, and b, are constants depending on A and A. The
corresponding pair-correlation scaling function is ob-
tained by the inverse two-dimensional Fourier transform
of the above expression, namely,

S(p)= [dxe ®PH(x)
=2 [ “dx xJo(xp)F(x) , (17)

where J(z) is the zeroth-order Bessel function.
When comparing the scaling functions F(x) and $(p)

~with Egs. (15) and (17), respectively, one has to consider

the fact that the axes have to be rescaled in order to take
into account that the scaling lengths might be different.
The easiest way to achieve this is to rescale the axes for
the function F(x) in such a way that this function has its
maximum located at x_,, =1 and the value of the func-
tion is unity there, i.e., F(x,,)=1. In theoretical ex-
pression Eq. (15) the above two requirements fix two of
the parameters, for instance, a, and c,, in terms of the
other two, b, and d,. This leaves us with two free pa-
rameters to fit the data. The fitting is not free of prob-
lems, though, because, as mentioned above, it is difficult
to accurately determine the maximum of the numerically
determined scaling function F(x). Once this axes rescal-
ing has been performed, a least-squares fitting of expres-
sion (15) to the simulation data yields the following
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values for the parameters: b,=0.391, d,=0.644 for
¢=0.50; b,=0.383, d,=0.932 for ¢$=0.21; and
b,=2.196, d,=0.528 for ¢=0.05 (in this latter case of
¢=0.05 only values satisfying x =1 have been included
in the fit). Following Fratzl and Lebowitz, and consider-
ing that the value for d, is not very critical for the fit, we
can also fix the value of d, to be a constant (d,=0.6) in-
dependent of the area fraction, and consider b, to be the
only adjustable parameter. A least-squares fit in this case
yields b,=0.387,0.371,2.377 for ¢=0.50,0.21,0.05, re-
spectively. These values again confirm that the variation
between the scaling functions for ¢ =0.50 and ¢=0.21 is
very small. The fact that the scaling function does not
vary much between ¢=0.5 and ¢=0.21 but then
broadens strongly for small ¢ is in good agreement with
general considerations about the surface-to-volume ratio
in these two-phase systems [27,30,31]. Indeed, one finds
in Fig. 2 of Ref. [31] that the width of the scaling func-
tion (normalized so that the maximum is located at x =1)
hardly changes between ¢=0.5 and ¢=0.2. It starts to
increase strongly only below ¢=0.1. Although this
figure in Ref. [31] is for the three-dimensional case, a
similar qualitative behavior is expected in two dimen-
sions.

Figures 11-13 compare the scaling function F(x) with
rescaled axes with the theoretical prediction for the
different values of the parameters mentioned above. The
general agreement is rather good except, perhaps, for in-
termediate values of the scaling variables where the
theoretical prediction is systematically larger than the
simulation data and, in the case of ¢ =0.05, also for small
values of the scaling variable x. Figures 14—16 show the
comparison of Eq. (17) for the scaling function $(p) using
the same parameters obtained above and after a rescaling
of the axes in such a way that $(0)=1 and $(1)=0. As
mentioned above, the scaling functions for the pair-

F(x)

FIG. 11. Comparison of the scaling function with the sem-
iempirical model calculation of Fratzl and co-workers
[27,30,31]. Here we compare the scaling function for the struc-
ture factor obtained for ¢=0.50. The solid line is the fit treat-
ing both b, and d, as free parameters [see Egs. (15) and (16); the
other two constants are obtained by rescaling the location of the
maximum and the peak of the structure function; see text] and
the best fit corresponds to b,=0.391 and d,=0.644. The
dashed line is the best fit when d, is kept fixed at 0.6. The cor-
responding value of b, is 0.387.
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F(x)

FIG. 12. Same as in Fig. 11 except for ¢=0.21. The solid
line is the fit treating both b, and d, as free parameters, yielding
b,=0.383 and d,=0.932. The dashed line is the best fit when
d, is kept fixed at 0.6. The corresponding value of b, is 0.371.
Note that the value of b, in each case is very similar to the ones
obtained for ¢ =0.50.

correlation function is not accurately known for very
small values of p, since the quantity (¢*(z)) is slowly
changing with time. One could then possibly improve
these fits of 9(p) slightly by using a different rescaling for
the vertical axis, but we have preferred to maintain the
condition §(0)=1.

In Figs. 17 and 18 we show the scaling functions for
the normalized structure factors in log-log plots. It is
easy to determine the small and large (reduced) wave-
vector behavior of the scaling function if plotted in this
fashion. Several important features are evident from
these figures. First of all, a secondary maxima shows up
in all of the scaling functions around a wave vector k
which is about twice the wave vector k,, where the major
peak of the scaling function is located. This shoulder has
been seen in previous numerical [36] and theoretical [37]
studies of critical quenches as well as in experiments [38].
It is well known that Porod’s law [32] gives the leading-
order term for the structure factor for large values of k:
S(k,t)~k 3 in two dimensions. However, there could

16 —
08 -

0.6 \

F(x)
2

04 \3
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00 L I ! 1

FIG. 13. Same as in Fig. 11 except for $=0.05. The solid
line is the fit treating both b, and d, as free parameters, yielding
b,=2.196 and d,=0.528. The dashed line is the best fit when
d, is kept fixed at 0.6. The corresponding value of b, is 2.377.
Note that the value of b, in this case is quite different from the
ones obtained for $=0.50 and ¢=0.21.
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G(p)

FIG. 14. Comparison of the scaling function with the sem-
iempirical model calculation of Fratzl and co-workers
[27,30,31]. Here we compare the scaling function for the pair-
correlation function obtained for ¢=0.50. The solid line and
dashed lines are obtained by using the fitting parameters in Fig.
11 and using Eq. (17).

G(p)

FIG. 15. Same as in Fig. 14 except for ¢=0.21. The solid
line and dashed lines are obtained by using the fitting parame-
ters in Fig. 12 and using Eq. (17).

G(p)

FIG. 16. Same as in Fig. 14 except for $=0.05. The solid
line and dashed lines are obtained by using the fitting parame-
ters in Fig. 13 and using Eq. (17).
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“ In [kRg(t)ﬁ

FIG. 17. Log-log plot of the scaling functions in Fig. 9. The
lines are guides to the eye.

be oscillations about this leading-order term which can
arise, for example, from a monodisperse distribution of
spheres [39,40]. The magnitude of the oscillations de-
pends on the width of the size distribution of these
“monodisperse” regular objects [27]. We should also
note here that an oscillatory behavior in the scaling func-
tion for the structure factor is also obtained in a
simplified model calculation by Rikvold and Gunton [23]
where the model describes the morphology of the late-
time growth process in terms of a gas of spherical drop-
lets of the minority phase, surrounded by depletion zones.

Another important feature is that although all the scal-
ing functions are essentially parallel to each other for
large k values, the functional form for ¢=0.05 seems to
be different from the other two scaling functions for small
values of k. For small k the scaling function increases
approximately as k* for $=0.21 and ¢=0.50, in accor-
dance with recent theories [34,35]. Although these
theories would predict a similar k dependence for the
scaling function for ¢=0.05 as well, we find the scaling
function to be quite flat for small wave vectors. We note,
however, that the scaling function contains only a few
points for small values of k and we are therefore probably
unable to access sufficiently small wave vectors where the
theoretical results would be applicable. Since it is
difficult to access small wave vectors in a numerical study
due to lattice discretizations, one needs to study a much
larger system to resolve this important issue. However,

In [s(O/R (0]

16 I I I | I I
3 2 -1 0 1 2 3
In [kR ()]
FIG. 18. Log-log plot of the scaling functions in Fig. 10.
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there is no physical argument that we know of that would
suggest the behavior should be different from k* for very
small k, so we would speculate that this is indeed the
behavior that one would find in studies of much larger
systems.

IV. DROPLET-DISTRIBUTION FUNCTION

Many theoretical studies of the final stages of the nu-
cleation and growth process (also known as Ostwald
ripening) have been carried out for both two- and three-
dimensional systems. The main feature shared by all
these analytical calculations is that they involve some sys-
tematic or approximate expansion in terms of the volume
fraction and are supposed to be valid only for small
values of ¢. As mentioned above, the classical Lifshitz-
Slyozov theory ignores spatial interaction among droplets
and thus is only valid in the limit of zero volume fraction.
Many attempts have been made to systematically include
the correlation among droplets in some approximate way
in the theoretical calculations. It has been found that
these improvements do not change the growth-law ex-
ponent but can substantially change the shape of the
droplet-distribution function, depending on the assump-
tions made. Since we have been able to access quite small
area fractions in our two-dimensional simulations where
different theoretical calculations are assumed to be
correct, we will compare the numerically obtained
droplet-distribution functions with various approximate
theories to find out their validity and applicability.

The theoretical studies predict that the droplet-
distribution function should have a scaling form valid at
late times. The scaling assumption is that there is only
one relevant length. This can be defined, for instance, as
the mean value of the radius,

(R(t))=fo°°RfR(R,t)dR , (18)

where fr(R,?) is the probability density function for the
droplet radius at time ¢. It is then natural to define the
new scaling variable xo=R /(R (¢)). It is obvious that
the mean value of x, is {x,)=1. The probability density
function for the variable x is

Fexotr=R feRO=(ROVfrRD . (19)
dx,

Scaling affirms that, at late enough times, the function
fx,(%0,) is  independent of  time 1 ie,
fxo(x0’t):fx0(‘x0)'

In this numerical study we have computed, among oth-
er quantities, the probability distribution function
fr(R,t), such that fR(R,?)8R is the probability of
finding a droplet of radius between R —8R /2 and
R +8R /2. Strictly speaking, we have computed the
probability distribution function f;(/,z) for the droplet
size / (number of particles of the minority phase belong-
ing to the cluster). However, as mentioned above, drop-
lets are circular in shape and the relation between two
magnitudes is ! =7R?2, which allows the calculation of
fi(L,2) from fg(R,t) and vice versa. Even for a 5407 lat-
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tice the number of droplets at late times is not very large
(around 30-40 for the smallest area fraction ¢=0.05)
and the values of 8R necessary to get smooth data need
to be increased with time. Similarly, for ¢=0.21 the
number of droplets at the latest time was about 25-30 for
a 2562 lattice. In order to improve statistics we have cal-
culated fz(R,?) by counting the number of droplets with
radii between R —8R /2 and R +8R /2. The necessary
values of 8R to get smooth data need to be increased with
time, e.g., 8R =0.15,0.25,0.35 for ¢ =1000,10000,
20000 for ¢=0.05 and &R =0.16,0.20,0.26 for
t =1000, 10 000,20 000 for ¢ =0.21.

In Figs. 19 and 20 we study the scaling for the
droplet-distribution function for area fractions ¢=0.21
and ¢ =0.05, respectively. We find that scaling is reason-
ably satisfied in both cases at late times, although the
quality of the scaling is much better for ¢=0.05. Al-
though our data is taken from simulations in quite large
systems, the numerical data has some scatter for ¢ =0.21
and we believe that simulations in much larger systems
are necessary for definitive comparisons with theoretical
predictions. This, however, seems to be beyond the reach
of current supercomputers.

The various theories differ in their prediction for the
scaling function fxo(xo). In order to compare with

theoretical predictions, one needs to note that the scaling
variable used in different theories varies from one to
another. In general, the scaling variable x is defined as
x =R /R *(t) where R *(¢) is some time-dependent length
that might or might not coincide with (R (¢)). However,
due to the scaling hypothesis, one can assume that R *(¢)
will be proportional to {R (¢)), and so the scaling vari-
able x used in our study and the general scaling variable
x introduced in the theory will be proportional to each
other, i.e., x,=x /a, with a some time-independent con-
stant. By using the relation {(x,)=1 we can conclude
that «=(x ) and then x,=x /{x ). The probability den-
sity function of x, f,(x), will be related to the probability
density function of x, by the relation

dx
fxo(x0)=9—x—fx(x)=(x Yoex)={x)fr(xo{x)) .
0
(20)
20 ¢=0.21
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FIG. 19. Simulation data for droplet-distribution function
for different times and for ¢=0.21.
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FIG. 20. Same as in Fig. 19 except for ¢=0.05.

This relation allows us to compare the simulation data
with the theoretical predictions.

Let us now briefly review the different theoretical pre-
dictions. Rogers and Desai [16] carried out a simple ex-
tension of Lifshitz-Slyozov theory in two dimensions.
However, in two dimensions, there seems to be no con-
sistent steady-state result in the limit of $—0. In the
non-steady-state calculation for —0, Rogers and Desai
found a scaling form for the droplet-distribution function
which we will loosely call the ‘“Lifshitz-Slyozov (LS)”
scaling function in two dimensions. This scaling function
fE8(x) is given by
—28/9 —17/9

X
1+
3

9—6x

Xexp 21

This distribution is cut off for values of x 2 1.5. For this
distribution one obtains (x ) =1.0665. We should also
note here that for this non-steady-state calculation in the
limit ¢—0, Rogers and Desai found that the average
droplet radius (R (¢)) grows as (R (¢)) ~(¢/Int)'/3.

The next theoretical prediction we consider is that of
Ardell [41]. The author has recently extended his earlier
theory [42] for two-dimensional systems. This theory in-
cludes the effect of diffusive correlations among nearest-
neighbor clusters by introducing an ad hoc cutoff limit in
the diffusion geometry. In the limit of ¢ —0, Ardell [41]
also finds the same scaling form [Eq. (21)] as obtained by
Rogers and Desai in two dimensions. The distribution
function needs to be evaluated numerically for each finite
area fraction in the following way. In Ardell’s theory the
expression for the scaling function f,4(x) is

Ay — S
fix) g(x)exp[ fog(u)du], (22)
where the function g (x) is given by
—2x?
= . 23
g =T e . 23)
In |1+
nx

The parameter 7 is related to the area fraction ¢ by

1/2
. 24)

T e%I(L,49)

and I'(x,y) is the incomplete gamma function [43]. This
distribution is cut off for values x > x,,, where x,, is given
by the solution of the equation

1

m

o x,—1 25)
B 2x,,—3

(1+nx,,)n |1+

and

X
&= (2x,, —3)(1+7x,,) 26)

In Marqusee’s theory [44], the surrounding droplets
are considered as an “effective medium” and the distribu-
tion function is derived in a self-consistent fashion.
Again, no closed form for the distribution is found and it
needs to be evaluated numerically for each area fraction.
We briefly describe the numerical evaluation process
below. In Marqusee’s theory, the droplet distribution
function fM(x) is given by

Fy(x)
fH0= @7
fo Fo(x)dx
where the function F(x) is defined as
__ const X iy '
Fo(x)—mexpfow (x',0)dx (28)

and the function w(x,0 ) is

( : 3 1 K (x/&)
olx,o))=—"——F"—
: 2 & Ko(x/8)
where K(z) and K(z) are modified Bessel functions [43]
and the constant in Eq. (28) is determined by the normali-
zation condition

J X Fox)dx =1 (30)

lo,—1/x]—x/2, (29)

The distribution is cut off for values of x =x, where x,
and the parameter o, are obtained as the solution of the
next two equations:

w(x,al)x=x0=0 , (31)
d
g;a)(x,ol)x :XOZO . (32)

Finally, the parameter £, has to satisfy the consistency
relation

K, (x /&)
1 780) b x| (33)

_1= ©
s'=2] TKo(x /7€) °

Marqusee’s theory has recently been extended and gen-
eralized by Zheng and Gunton [45]. They use a new ex-
pansion parameter (instead of ¢!/ used by Marqusse) and
show that there is no finite cutoff for the scaled distribu-
tion function. However, the authors expect that this
scheme breaks down for ¢ >0.01. Marsh and Glicksman
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[46] have also developed a theory of two-dimensional
coarsening of collections of flat disks. This theory is an
extension of the mean-field approach of the authors in
three dimensions [47]. In this theory, the statistical
correlation between particles is determined through glo-
bal constraints over the size distribution.

Recently, Yao et al. [48] have used a mean-field ap-
proach for both two- and three-dimensional systems. In
their theory, many droplet correlation effects are approxi-
mated in the same manner as the Thomas-Fermi ap-
proach for a Coulombic system. In this mean-field calcu-
lation it is assumed that the growth rate for each droplet
is only proportional to the difference between the bound-
ary concentration and the average bulk concentration.
Also, an equation of motion for the local concentration
field is written in an approximate form such that local
diffusion is modified by the effective diffusion field from
other droplets, giving rise to a screening length £. Final-
ly, the curvature-dependent rate coefficient for the
growth law is determined self-consistently. However,
this theory is inapplicable when the screening length is
close to the average radius of droplets and the authors
found that the calculations break down for ¢>0.085 in
two dimensions. These authors also find that there is no
consistent steady-state limit in two dimensions, as mani-
fested in a logarithmic singularity in the growth-law rate
for $—0. In this limit, however, the authors are able to
calculate the droplet-distribution function reproducing
the result [Eq. (21)] found by Rogers and Desai [16] and
also by Ardell [41].

In Figs. 21 and 22 we compare the predictions of
different theories with the numerical data for area frac-
tions ¢=0.21 and ¢=0.05, respectively. For an easier
comparison with different theories, we show the result for
the distribution functions only for the latest time
(£ =20000) in the above figures. In the above figures we
do not show the results of Zheng and Gunton or of
Marsh and Glicksman, since these distribution functions
differ significantly from the simulation results. For exam-
ple, the calculations of Zheng and Gunton yield a distri-
bution function that is much too short near the peak (for
¢=0.05 the maximum height of the Zheng and Gunton

$=0.21
25 -

= 1=20000
LS

20

Marqusee

f(xO)

FIG. 21. Simulation data for droplet-distribution function at
the latest time (¢ =20000) for ¢=0.21 compared with various
theories.

3035

f(xg)

2.0

FIG. 22. Same as in Fig. 21 except for ¢=0.05.

distribution function is about 1.0). It seems that this
theory does not work well for these area fractions. In
this context we note here that the above authors them-
selves also acknowledge the fact that their approxima-
tions are likely to break down when ¢ ~0.01.

From both Figs. 21 and 22 we find that the LS scaling
function is sharper and much higher in the peak than the
corresponding numerical data. These discrepancies are
expected since, as mentioned earlier, the LS results are
only valid in the limit of zero volume fraction. For
¢=0.05 we find that the data agree reasonably well (Fig.
22) with the predictions of Yao et al. (YEGG) and Ardell
(actually, the difference between these two theories is
very small except near the peak). We note that there are
small differences between the theoretical predictions and
the numerical data both near the peak and the tail of the
distribution. It seems that the location of the maximum
is slightly different in the numerical distribution function.
Since the uncertainties in the numerical results are larger
near the tail of the distribution, it is difficult to judge
whether the discrepancy near the tail is real or not. For
¢=0.21, the theory of Yao et al. breaks down and does
not yield any result. Ardell’s result also does not com-
pare well with the simulation data (Fig. 21). It seems
that, for this area fraction, Marquesee’s theoretical result
comes close to the simulation results. However, there ap-
pears to be some systematic differences between the data
and the theory. It seems then that a complete theoretical
description of the late-stage growth process in two di-
mensions is still incomplete, and we hope that our numer-
ical work would direct attention to this direction.

V. GROWTH LAW

At sufficiently late times, the characteristic length scale
R (1) [given by any of the measures R (?) or R;(¢)] is ex-
pected to grow as t”. The classical theory of Lifshitz and
Slyozov, valid only in the limit where the volume fraction
occupied by droplets goes to zero, i.e., near the coex-
istence curve in the nucleation regime, predicts n =1 in
three dimensions. As mentioned above, Yao et al. find
that there is no consistent steady-state limit in two di-
mensions, as there is a logarithmic singularity in the
growth-law rate for —0. However, for small but finite
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FIG. 23. Log-log plot of the characteristic domain size R, (?)
vs time ¢ for various area fractions ¢. The solid lines are best fit
to the data. The result for ¢ =0.50 is taken from Ref. [12].

area fractions these authors find that the asymptotic
growth law for the characteristic domain size can be writ-
ten as R3(¢)= A + Bt, where 4 and B are constants. In
the limit of #— o this growth law can be written in an
equivalent form: R (t)~t'/3. It is also interesting to note
here again that for the non-steady-state calculation in the
limit ¢—0, Rogers and Desai found that the average
droplet radius (R (¢)) grows as (R (¢)) ~ (¢ /Inz)!/3.

The Lifshitz-Slyozov theory, based on a mechanism of
evolution governed by bulk diffusion across the inter-
faces, has been qualitatively extended by Huse [8] to the
case of equal volume fraction of the two phases. Since
then, it has been well established in the literature both by
analytical calculations [9] and by large-scale computer
simulations [10-12,49] that the asymptotic growth-law
exponent is 1 even for critical quenches. Thus the
growth exponent remains the same when the volume
fraction (or the area fraction) is changed from a small
value to the critical concentration. In this study we
would like to confirm these predictions for various area
fractions. Moreover, our objective is to find out how the
magnitude of the characteristic domain size varies with
the area fraction as well.

In Fig. 23 we show a log-log plot for the measure of the
domain size R,(z) vs time for three different area frac-

30 —
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FIG. 24. The characteristic domain size R,(¢) plotted against
173 for various area fractions ¢. The solid lines are best fit to
the data. The result for ¢ =0.50 is taken from Ref. [12].
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FIG. 25. Same as in Fig. 23 except R(?) is the characteristic
length.

tions. Again, the results for =0.50 are taken from Ref.
[12] for comparison. This log-log plot yield an effective
exponent of 0.33+0.01, 0.28+0.02, and 0.23+0.02 for
¢=0.50, 0.21, and 0.05, respectively. It is interesting to
note that the magnitudes of the length scale R, are simi-
lar for $=0.50 and ¢=0.05 at the late times accessed in
this simulation, although the effective exponent in these
two cases are different. For ¢=0.21, however, the mag-
nitude is smaller than the above two cases.

In Fig. 24 we plot the same data for R, () vs for
three different area fractions. We find that the data can
be fitted by straight lines in each case, confirming that the
asymptotic growth law exponent is 1 in all these cases.

In Fig. 25 we show a log-log plot for the other measure
of the domain size considered in this study, namely, the
average radius of gyration R;(¢). As mentioned above,
this length scale can only be defined for off-critical con-
centrations and thus the results are shown only for
¢=0.21 and ¢=0.05. At the latest time accessed in the
simulation, we find that the magnitude of this measure is
slightly larger for ¢=0.21 than for $=0.05. The log-log
plot yields effective exponents of 0.28+0.02 and
0.2740.02 for ¢=0.21 and 0.05, respectively. The fact
that these are actually effective exponents can be realized
by plotting the same data for Rg(2) vs ¢!/3 for the above
two area fractions in Fig. 26. We find again that the data

t1/3
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4 L \
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FIG. 26. Same as in Fig. 24 except R (?) is the characteristic
length.
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can be fitted by straight lines in each case, confirming
that the asymptotic growth law exponent is 1.

VI. CONCLUSIONS

In this paper we have numerically studied the dynam-
ics of the phase-separation process in the context of the
Cahn-Hilliard model in two-dimensional systems. In our
study we have considered various values of the area frac-
tion of the minority component of a binary mixture and
investigated the effect of this area fraction on experimen-
tally accessible quantities such as the scaling function for
the structure factors and the characteristic size of the
growing domains. We have focused on the late-time
behavior for reasonably large system sizes. We find that,
at sufficiently late times, the scattering intensity and
pair-correlation functions are well represented in terms of
scaling with a time-dependent length. We have analyzed
how the shape of the scaling functions obtained both
from the pair-correlation function and the structure fac-
tor changes as one varies the area fraction. Whenever
possible we have compared the numerical results with
theoretical predictions. Since some of the theoretical pre-
dictions are valid in three dimensions, in many cases this
comparison is only qualitative.

We have also considered the scaling behavior for the
droplet-distribution functions and found that dynamical
scaling is obeyed by this function as well. There are

several theoretical predictions about the shape of the
droplet-distribution function in two dimensions. We
have compared the numerical results with different
theoretical predictions in order to understand the validity
and applicability of these approximate calculations.

Finally, we have also analyzed the growth law for the
characteristic domain size for various area fractions. Our
analysis of the time dependence of various measures for
the characteristic length supports a modified Lifshitz-
Slyozov law in which the asymptotic growth-law ex-
ponent is + for all area fractions.
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