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The question of pattern selection in the presence of noise is addressed in the context of the one-dimensional 
Swift-Hohenberg equation, a model for the onset of convection. We show how noise destroys long-range order in the 
long-time patterns, so that characterization of the selected pattern in terms of the Fourier mode with the maximum spectral 
power is not always suitable. The number of zeros of the configurations turns out to be a better quantity. We consider also 
the decay process after an Eckhaus instability. It is shown that the selected pattern is close to the one of fastest growth 
during the linear regime, and not to the variationally preferred. This mechanism is robust to small noise. 

1. Introduction 

The issue of pattern selection has been studied 
in a wide variety of physical systems and mathe- 
matical models [1]. The basic question is to 
identify the mechanisms by which a system pre- 
pared in some initial condition evolves towards a 
final stationary state which is only a particular 
one among a set of possible steady states. Typi- 
cal examples include fingering instabilities in 
Hele-Shaw-type experiments, dendritic or direc- 
tional solidification, Rayleigh-Brnard convec- 
tion in simple or binary fluids, Taylor-Couette 
flow or a host of convective instabilities in 
nematic liquid crystals. 

It is common to model the occurrence and 
evolution of this type of instabilities with "am- 
plitude equations". Amplitude equations are 
simplified mathematical models that describe the 
slow variations in time and in space of the origi- 
nal variables that characterize the system of in- 
terest near the instability. Such equations have 
been derived and used in a variety of cases to 
obtain, for example, bifurcation diagrams, small 
amplitude stationary solutions, etc. In addition, 
some mathematical models have been introduced 

such that their associated amplitude equation 
coincides with the amplitude equation of the 
process under study. For example, the Swift- 
Hohenberg (SH) model [2] leads to the same 
amplitude equation than the hydrodynamic 
equations (in the Boussinesq approximation) 
that describe Rayleigh-Bdnard convection in a 
simple fluid. We note that the equivalence be- 
tween both descriptions has been only estab- 
lished near the onset of the convective instabili- 
ty. Far from threshold, the SH equation is expec- 
ted to mimic some of the short wavelength as- 
pects of the full hydrodynamic equations, absent 
in the simpler amplitude equation. 

Our study concerns the effect of random fluc- 
tuations on the issue of pattern selection. Such 
fluctuations, usually of thermal origin, have been 
commonly neglected in the study of fluid systems 
because of its smallness [3]. The recent work by 
Rehberg et al. [4] shows that such fluctuations 
are directly observable in nematic liquid crystals 
close to the electrohydrodynamic instability. The 
consideration of noise is essential to identify time 
scales in transient processes [5]. In addition, the 
discussion of fundamental questions such as the 
existence of a real symmetry breaking associated 
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with pattern formation requires the considera- 
tion of fluctuations. We restrict in the present 
work to the one-dimensional situation, which can 
only model the appearance of straight and paral- 
lel rolls in the convective problem. The dynamics 
in the two-dimensional case is greatly affected by 
the presence of topological defects, so that our 
results cannot be directly applied to that case. 
However, there is experimental evidence of 
some aspects common both one and two dimen- 
sions [6]. 

It is known that in the absence of fluctuations 
the nature of the stationary solutions and its 
selection strongly depends on the choice of 
boundary conditions. This is obvious in small 
aspect ratio systems (analogous to small aspect 
Rayleigh-B6nard convection cells), but even in 
large aspect ratio systems the election of rigid 
boundary conditions greatly reduce the number 
of available steady states [7]. As will be shown 
below, the presence of noise destroys spatial 
coherence in the states of the system. Then, the 
selection process in the bulk is expected to be 
independent of boundary conditions. 

In section 2 we show that the mode with 
maximum amplitude in the power spectrum of 
the pattern is not a good characterization of the 
asymptotic stationary states. The reason is that 
many neighbouring modes are excited by noise, 
corresponding to the absence of truly long range 
order in the system. We estimate a correlation 
length from a correlation function which gives a 
quantitative measure of the absence of long- 
range order. However, the number or zeros of 
the pattern (corresponding to the number of rolls 
in the convective problem) is nearly constant at 
long times, so that it is a good characterization of 
the finally selected fluctuating pattern. 

In section 3 we analyze the decay of an Eck- 
haus unstable periodic pattern in the presence of 
noise. Since the SH equation derives from a 
potential, it can be thought that a variational 
principle will determine the final pattern. It is 
shown that the selected pattern is close to the 
mode of fastest growth after the instability, and 

not to the one that minimizes the potential, even 
in presence of fluctuations. This result illustrates 
that, even in this model with variational struc- 
ture, variational properties do not completely 
describe the dynamics. 

2. Characterization of the selected pattern in 
the presence of noise 

The SH equation describing the temporal evo- 
lution of a dynamic variable y(x, t), function of a 
space variable x and time t, is [2] 

. 71 Ot -~x2 / jy(x,  t) 

- y ( x ,  t) 3 + ~(x, t) .  (1) 

3' plays the role of a control parameter and 
~(x, t) is a Gaussian random process that satisfies 

(£) =0, 
( ~(x ,  t) £(x' ,  t ' ) )  = 2 e S ( x  - x ' )  8(t  - t ' ) .  (2) 

The parameter e describes the intensity of the 
fluctuating contribution to eq. (1). 

In the absence of noise (e = 0), eq. (1) admits 
stationary solutions of spatial periodicity 2~r/q, 
where q ~ [ q - L ,  qL] and q+-L ~ / 1  +- 3'. They 
have the form 

c~ 

yq(X) = ~ Ai(q) sin((2i + 1)qx). (3) 
i = 0  

The coefficients A~(q) can be approximately 
found for small 3, [8]. For 3' arbitrary, they can 
be found numerically. 

Only a subset of those stationary solutions is 
stable against small perturbations, namely those 
with q ~ [ q-E, qE], ( q-L < q-E < qE < qL)" 
Solutions with q outside this range are unstable 
against a modulational instability known as the 
Eckhaus instability [9-11]. The value of q-+E(3') 
is known as the Eckhaus boundary and can be 
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numerically computed. For y small it can be 
shown that q-~E ~-" 1 + ( q ~ L  -- 1 ) / V ~ .  

In addition to the periodic solutions in (3), eq. 
(1) admits as stationary solutions the trivial 
y(x) = 0, which is unstable if y 2 ~. 0,  and a family 
of aperiodic solutions as the one shown in fig. 1. 
They can be numerically found by solving the 
stationary version of (1). They turn out to be 
always dynamically unstable and are expected to 
be related to the secondary bifurcating solutions 
presented in [10] and in [12] for different equa- 
tions. 

The question of pattern selection can be for- 
mulated as follows: starting with the unstable 
configuration y(x)= 0, what is the state of the 
system for t---~o~? To answer this question, a 
possible approach is to take advantage of the fact 
that the SH equation admits a potential form: 

Oy(x, t) ~F[y I 
Ot ~y(x, t) - -  + sO(x, t ) .  ( 4 )  

The Lyapunov functional F[y] is given by 

1( 02y] 2] 
+ j 

+~y4--(OY] 2 
\ 3x /  

(5) 

and 8~By(x, t) stands for the functional deriva- 
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Fig. 1. A non-periodic, stationary but unstable solution of 
the deterministic SH equation for y = 0.5. 

tive with respect to y(x, t). The stationary solu- 
tions (3) corresponds to local minima of F[y]. 

According to (4) for • = 0, the value of F[y] 
can only decrease during dynamical evolution. 
Then the system will evolve trying to minimize 
F[y] until a local minimum is reached. One 
might expect that in the presence of noise the 
system will be able to cross the barriers between 
the basins of attraction of the different minima 
and, for long times, will settle down into the 
absolute minimum of F[y]. This absolute mini- 
mum corresponds to the solution in (3) with a 
value of q = qM which is very close but smaller 
than q = 1. For small 3' it is [8] 

q M  ~ 1 - 1 - ~ 2 4 ' Y  4 • (6) 

What  is missing in the above reasoning is that, 
in the presence of noise, there are no truly 
stationary solutions to (1). What we have at long 
times is a sequence of configurations with 
stationary statistical properties. Then, the ques- 
tion of pattern selection is ill-posed in its usual 
formulation. To make this point clear, we have 
performed simulations for system size L ranging 
from L/2~r = 16 to 256. This corresponds, for 
our discretization Ax = 2"rr/32, to the considera- 
tion of 512 to 8192 Fourier modes. More compu- 
tational details can be found in [13]. Fig. 2 shows 
a typical time evolution of the power spectrum 
P(k, t) = ]y(k, 012 at long times ()3(k, t) denotes 
the Fourier transform of y(x, t)). We see that a 
set of neighbouring modes are permanently ex- 
cited by noise. None of them is really selected. 
The width of the range of excited modes turns 
out to be independent of system size. In [13] we 
showed that this range of modes is related to a 
finite correlation length: noise destroys long- 
range order in this one-dimensional system and 
the patterns are only coherent over a distance r 0. 

The meaning of this correlation length is illus- 
trated in fig. 3. It displays the normalized corre- 
lation function 

G(r) =- lira ( y(x + r, t) y(x, t)) 
'--'~ (y(x, 02) (7) 
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Fig.  2. T i m e  e v o l u t i o n  of the  p o w e r  s p e c t r u m  in a sys t em of 
s ize  L = 64~r, y = 0.5 and  noise  in tens i ty  32~/~r = 0.2. The  
d i s t a n c e  b e t w e e n  d i sc re te  m o d e s  is Aq = 0.03125. 
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Fig.  3. Sol id  l ine: s t a t i ona ry  co r r e l a t i on  func t ion  G(r) for 
7 = 0.5,  L = 5121r and  3 2 e / : r  = 0.1, a v e r a g e d  ove r  20 runs.  
D a s h e d  l ine:  fit to eq.  (8) ,  w i th  q0 = 1.0 and  r0 = 32.0. 

The  averages are over 20 realizations of noise 
histories, and we consider that the limit t---> oo is 
achieved when the averages do not show any 
appreciable time evolution. The function 

e -(r/'°)2 cos( qo r) (8) 

provides a good fit to the data, giving an estima- 
tion for r 0. The Fourier transform of (8) is also a 
good fit of the average power spectrum, except 
in the tail region, q0 is a characterization of the 
wavenumber  selected in average but it does not 
describe single configurations. By fitting G(r) 
to (8) it is found [13] that q0 = 1 .00_  0.01 and 
that r o e  e -~/2. For  the parameters of fig. 3, 
L/r  o ~- 50. 

Despite the absence of long-range order in the 
long-time configurations for single runs we can 
still identify a selected pattern in the following 
sense: the number  of zeros N of y(x, t), corre- 
sponding to the number of rolls in the system, is 
a remarkably stable quantity. Even when differ- 
ent modes alternate in importance as in fig. 2, N 
behaves nearly as a constant in time. This is 
shown in fig. 4 for the same run as in fig. 2. 
Noise is quite inefficient in creating or destroying 
rolls in the pattern. In addition, if noise is set 
equal to zero when the pattern is in such a 
fluctuating state, the system immediately relaxes 
to the stationary solution in (3) which has the 
same number  of zeros as the initial fluctuating 
pattern.  Thus we conclude that at long times the 
system evolves inside the basin of attraction of 
one of the deterministic solutions yq in (3), with 
q=(2~r/L)(N/2) .  Such fluctuating evolution 
prevents coherence of the pattern at long dis- 
tances, but is unable to significantly affect the 
value of N. 

The observation of the approximate conserva- 
tion of N is consistent with previous results 
obtained in the absence of noise [14]. Our data 
supports that such approximate conservation law 
is robust to fluctuations after a very early regime 
in which the amplitude of the pattern is small 
everywhere.  Of course, a value of e too big 
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Fig. 4. T ime evolution of (a) the number  of  zeros N, and (b) 
the  mode  with m a x i m u m  power in the spect rum KMA x, for 
the  same simulat ion as in fig. 2. 

induces changes in N even at long times, but 
then the correlation length r o is no more than a 
few rolls, so that we can not talk of an ordered 
pattern. 

Simulations [13] starting from y ( x ) =  0 give a 
value to the selected N consistent with the corre- 
sponding to the most stable pattern (6). How- 
ever,  as seen in fig. 4 for a particular run, this 
value of N is already selected at relatively early 
times, when linear processes are still important.  
By linearizing eq. (1) around the unstable 
homogeneous  state y(x) = 0, it can be seen that 
the mode  of fastest growth after the instability is 

q = 1. Our  system sizes are not enough to dif- 
ferentiate qM in (6) from q = 1. For  example, if 
y = 0.5, qu  ~ 0.99994. With our discretization 
procedure,  a simulation considering 106 modes, 
far from our  capabilities, would be needed to 
discriminate q = 1 from qM" A possible interpre- 
tation of our results is that the selection process 
is not due to the variational structure of the SH 
equation,  but to the fast creation in the linear 
regime of a number  of zeros corresponding to 
q = 1. In this regime, when the amplitude of the 
pat tern is small, noise along the evolution path is 
efficient in creating and destroying rolls, so that 
the initial condition is rapidly forgotten. This 
contrasts with the results in [14], where the 
absence of noise along the path allowed depen- 
dence of the selected number  of zeros on the 
initial condition. After  the linear regime, when 
the pat tern is well developed everywhere,  noise 
is unable to change N. Results in the next section 
support  this view of the selection process. 

3 .  P a t t e r n  s e l e c t i o n  f r o m  a n  E c k h a u s  u n s t a b l e  
c o n f i g u r a t i o n  

The arguments in the previous section make it 
interesting to study a situation in which varia- 
tional effects could be distinguished from those 
of  fast transients. One such situation is the SH 
dynamics starting from one of the solutions in 
(3) with q in the Eckhaus unstable band. By 
linearizing around this unstable initial state, the 
evolution of perturbations can be analyzed. For 
small y, results from the lower order  amplitude 
equation [11, 15] imply that the fastest growing 
perturbat ion is a modulation of the unstable 
pattern which appears in the power spectrum as 
two sidebands of wavenumber q --- K 0 around the 
initial fundamental  wavenumber q. K 0 is given 
for small y by 

K2o ~ (q  - 1) 2 - [3(qE - 1) 2 - (q  - 1)2] 2 
4(q  - 1) 2 (9) 
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For  3' arbitrary, a detailed numerical analysis can 
be performed to identify K 0. It will be presented 10 z 
elsewhere. The result is that, in contrast with the 
decay from y(x )  = 0, here q +- K o can be clearly 1° 6 
distinguished from the variationally preferred 
wavenumber,  QM" 

Fig. 5 shows the time evolution of the spec- ~ 105 
trum averaged over 20 runs. 3' is 0.75 and the ~_ 
initial pat tern is the solution in (3), numerically 1° 4 
computed,  with fundamental  wavenumber q = 
1.23, in the Eckhaus unstable band. It has 630 
rolls. Eq. (1) is discretized in 8192 lattice points, lo 3 
a distance Ax = 2~/32 apart. Noise intensity was 
set to 2 ~ / A x = 0 . 1 .  It is seen how a broad 
sideband grows and replaces the initial configura- 
tion. As in the previous section, the final spec- 
t rum is not characterized by a single wavenum- 
ber,  but  it is clear that the region of excited 
modes (note that the scale is logarithmic) does t05 
not  include qM "~ 1 and that it is centered around 
the fastest growing mode in the initial regime. 
Typical final configurations have around 536 ~ 104 
zeros, which are to be compared with the 512 ~- 
zeros associated with the variationally preferred 
wavenumber  qM ~ 1. Quantitative comparison of 10 3 
the finally selected pattern,  defined from the 
number  of zeros of y(x ,  t), and q - K 0 numeri- 
cally calculated is good when the initial condition 
is far from the Eckhaus boundary. Close to qE 
fluctuations become more important and de- 
terministic theory neglects important effects. A 

106 
detailed study for several values of the initial 
condition will be presented elsewhere. 

Previous theoretical analysis of the selection 105 
process neglected fluctuations during the tran- 
sient. The simulations presented in [11] for the 

@ 
amplitude equation found that the final E l°4 
wavenumber  was systematically in between the 
initial state and the one predicted by linear 
theory.  These authors interpret their results in 
terms of a stabilization of the pattern after the 
firsts changes in N (phase slips in their model) 
have occurred, so that the driving force for 
further  changes in N disappears. The evolution 
stops in a minimum of the Lyapunov functional 
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Fig. 5. Decay  of  an Eckhaus  unstable  state. (a) t = 10, (b) 
t = 30, and (c) t = 100. 
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different from the associated to q - K 0. We see 
from our simulations that noise along the trajec- 
tory is still inefficient in driving the system to- 
wards the more stable states, as the one charac- 
terized by qM. 

In the experiments by Lowe and Gollub [15] in 
an electrohydrodynamic system, it was found 
that, although a mode near q - K 0 dominated at 
intermediate times, a mode near q~ was finally 
selected. These observations might be a con- 
sequence of the two-dimensional nature of the 
experimental system, where dislocation motion 
plays an important role and fluctuations are 
more efficient. It is interesting to note that simu- 
lations of the SH model in two dimensions and in 
the absence of noise [16] end up in the state 
q -  K0, in contrast with the one-dimensional 
case [11]. 

The state we find to be selected, the one 
whose N corresponds to the mode of fastest 
growth, is probably only a very long-lived meta- 
stable state, and strong enough fluctuations will 
induce the system to abandon it in accessible 
time scales. But it should be stressed that such 
big noise will greatly reduce the correlation 
length r 0 and induce frequent changes in N, so 
that the concept of "pattern selection" will loose 
its meaning. In such a situation, probabilistic 
arguments based on the entropy of the different 
configurations will be probably more relevant 
than variational ones. 
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