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Reversible aggregation in an off-lattice particle-coalescence model:
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We have performed numerical simulations in an off-lattice version of the reversible particle-
coalescence model. We have analyzed both two- and three-dimensional systems for several values of
the coagulation and fragmentation rate constants. The numerical data support recent conjectures
by Sorensen, Zhang, and Taylor [Phys. Rev. Lett. 59, 363 (1987)] on dynamical scaling behavior
except at very early times, when we see crossover effects coming from the aggregation-dominated

regime.
PACS number(s): 82.20.Wt, 05.40.+j

I. INTRODUCTION

A considerable amount of work has recently been de-
voted to understanding the intrinsic mechanism of the
irreversible aggregation process of small particles to form
large clusters. The mechanism is of interest in many ar-
eas of physics, chemistry, biology, and astronomy [1-3].
Besides, the structures generated in this way, because of
their unique properties, are of considerable importance
in many basic and applied problems in polymerization,
gelation, and colloidal science [4-8]. A general feature is
that, despite the broad origin of these phenomena, the
resulting structures appear in many cases to be scale in-
variant and can be generally treated as fractals [9-12].
As a consequence, the mean cluster size S(t) is found
to increase with time algebraically as S(t) ~ t* and the
cluster-size distribution n,(t), defined as the number of
clusters of size s per unit volume at time ¢, obeys a scal-
ing form in the following way:

ns(t) = 3_2¢0(u)v (1)

where u = s/5(t). The above results are well established
in experimental [13], computer [14], and theoretical [15]
studies.

A more general and realistic description of the aggre-
gation process should include the possibility that aggre-
gates can break into small pieces, the so-called reversible
aggregation process [16-22]. The global process can be
schematically represented by the following reaction mech-
anism:

K(i,3)
Ai+A; == Aij,
F(4,7)

where A; denotes a cluster containing i elementary units,
and K (%,j) and F(i,5) are the forward and reverse rate
coefficients representing the coagulation and fragmenta-
tion processes, respectively.
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The mean-field rate equation, which describes the evo-
lution of the cluster-size distribution under the assump-
tion of binary collisions, is given by the generalized
Smoluchowski equation (to be referred as GS) [23-25]:

dng 1

=3 > K (i, 5)ning — F(i, j)n,)
i+j=s
=Y [K(s,5)nen; — F(s,5)na4]- )
j=1

This equation gives the time variation of the s-mer
concentration, n,(t), in terms of gains and losses due to
different reactions in the sample. K(%,7) is the coagu-
lation kernel, describing the aggregation reaction rate of
an ¢-mer with a j-mer. This kernel contains the i and j
dependence of the meeting probability of an i-mer and
a j-mer, including effects such as the mass dependence
of the collision cross section and the diffusion constant.
F(i, j) is the fragmentation kernel describing the breakup
of an (i + j)-mer into an i-mer and a j-mer.

The competition between coagulation and fragmenta-
tion processes may lead to a final steady-state config-
uration. There the mean cluster size S(k,t = o0) is
expected to be determined by the breakup constant x,
measuring the relative strength of the rate constants for
fragmentation and coagulation reactions. For small x or
for sufficiently large mean cluster size, S(x,t = o0) de-
creases according to a power law: S(k,t = c0) ~ K7V
[17]. By assuming that the scaling ansatz, known to be
valid for pure aggregation processes, also holds in the
steady state, Family, Meakin, and Deutch {17] concluded
that ns(k,00) = s~2¢(u) with u = s/S(k, 00). Later on,
Sorensen, Zhang, and Taylor [18] (to be referred as SZT)
extended the same scaling relation to all times. They also
derived expressions for the mean cluster size at equilib-
rium and the characteristic time to reach equilibrium in
terms of the strengths of the kernels. In their derivation
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they assumed certain parameters to be constants. This
fact was criticized by Vigil and Ziff [20], who showed
that these parameters depend on the order of the mo-
ment used in the derivation of the time derivative for the
mean cluster size. Also, Meakin and Ernst [19] developed
the important result that the scaling form for the cluster
size distribution is different in the early stage of the evolu-
tion, which is in the aggregation dominated regime, from
the distribution in the later stages of evolution where
the system approaches equilibrium. They assumed the
existence of a characteristic time separating the evolving
and equilibrium regimes 7(x) ~ k=% for K — 0 where for
t > 7(k) the system had reached the steady state and
for t « 7(k) irreversible aggregation dominates. In the
early time regime the characteristic mean cluster size was
supposed to follow the scaling form S(x,t) ~ &~ ¥y(T)
with T' = t/7(k). To match the behavior of irreversible
aggregation as kK — 0 the function ¢ had to be of the
form Y(T) ~ T, for T — 0, with z = y/z, so that
S(k — 0,t) was independent of k. Again, to match the
steady state 1¥(T") must tend to a constant as T' — oo, so
1(oc) = 1. Finally the cluster size distribution n4(x,t),
depending on three arguments, approaches in the scaling
limit a form dependent only on two arguments:

ns(k,t) = s 2¢(u, T) 3)

with u = s/5(x,t). In order to match irreversible and
steady-state scaling form it was imposed that ¢(u,0) =
¢o(u) and ¢(u,00) = @(u). Therefore the simple scaling
assumption used by SZT was not supported and their
results must be questioned. However, the characteris-
tic time to approach equilibrium defined by Meakin and
Ernst [19] and the stability criterion found by Vigil and
Ziff [21] were correctly obtained by SZT [18]. Recently
Elminyawi, Gangopadhyay, and Sorensen [22] have solved
Eq. (2) numerically in order to investigate the validity of
the predictions of SZT. They compared the numerical
values obtained for the mean cluster size at equilibrium
and the time taken to reach equilibrium to those obtained
from the theoretical expressions of SZT. The good agree-
ment obtained for the mean cluster size was in contrast
with the systematic differences found in the characteristic
time. It was not clear whether the discrepancies resulted
from the approximations introduced by them in the scal-
ing function for the size distribution or from the approx-
imations in the work of SZT criticized by Vigil and Ziff
[20]. It seems that the SZT theory yields an asymptotic
solution of the GS equation, which, however, cannot give
accurate results in the intermediate time stage. However,
their asymptotic scaling predictions in which most of the
parameters are absorbed in the rescaled variables can be
tested against computer simulation of simplified models.

Since the numerical simulations carried out before have
all been restricted to very simple lattice models, the va-
lidity of the description of the evolution process in terms
of scaling laws should be tested in a more realistic model,
based on off-lattice simulations, where the locations and
movements of the particles are not constrained to a reg-
ular lattice. This could be useful in determining the
range of validity of the mean-field equations and in eval-
uating how severe are the approximations introduced by
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SZT in extending the same scaling law for the size dis-
tribution used in the steady-state limit to all time in
the aggregation-fragmentation process. We present in
this paper the results of a numerical study of the re-
versible aggregation process in an off-lattice coalescence
model in two- and three-dimensional systems. We have
paid attention to both dynamical and steady-state scal-
ing behaviors. We have computed the mean cluster size
and the size distribution at equilibrium. We have tested
the scaling predictions, which are in agreement with our
computer simulations. We have also computed the time
evolution of the mean size, which agrees reasonably well
with the theoretical predictions made by SZT.

The rest of the paper is organized as follows. In Sec. II
we present a theoretical review of the reversible aggrega-
tion process. In Sec. III we describe the numerical proce-
dure. In Sec. IV A we compute the time evolution of the
mean cluster size from the aggregation-dominated regime
to equilibrium. Section IV B deals with the steady-state
limit for the cluster-size distribution and the mean size.
Section V concludes with a discussion of the results.

II. THEORETICAL REVIEW

SZT started with the generalized Smoluchowski equa-
tion, Eq. (2), to study the mean-cluster-size evolu-
tion. There the coagulation and fragmentation kernels
were represented by K(i,7) = k.¢(4,7) and F(3,7) =
kf®(i,7), with ¥(1,1) = ®(1,1) = 1 and k. and ks be-
ing the coagulation and breakup constants, respectively.
They assumed a cluster-size distribution scaling behavior
as

ns(k,t) = M1S(k,t) " 2p(u), (4)

with v = s/S(k,t). M, is the first moment in the size
distribution and represents the total number of particles
in the system, which is a constant. The moments are
calculated in the usual way,

oo
M; = Zsin,(fi, t), (5)
s=1
and the mean cluster size is defined as

S(K,,t) =M2/M1. (6)

The kernels were assumed to be homogeneous functions
of their arguments, so that K(ai,aj) = a*K(4,5) and
F(ai,aj) = a®F(i,j). By writing the equation for the
time derivative of the second moment, one finally finds a
differential equation for S(k,t):

%S(K,, t) = My Ak.S* — BrsS°+2, (7)
where

A= /0 ~ dz /0 ” dy zyyp(z, y)p(z)p(y),

o0 o0
B = / dm/ dy zy®(z,y)e(z + v).
0 0
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One of the key points argued by Vigil and Ziff [20] was
that A and B were dependent on the order of the moment
used in deriving Eq. (7). For our purpose we consider A
and B to be constants here and will later discuss the
validity of this approximation.

Rewriting Eq. (7) in terms of the reduced variables

. Sk,

§s= S(N, w) bl (g)

~ t
one obtains the scaled equation,

d. A _ sat2

-8 = — 8 . 11

=8 (11)
The mean cluster size at equilibrium is found to be

_ MlAIic v

St o0) = (M=) (12)
and the characteristic time to approach equilibrium,

7 = (MyAr,)~@HD¥(Bg )Xy, (13)
where

y=(a—-X+2)"L (14)

The characteristic time separating the evolving and
equilibrium regimes introduced by Meakin and Ernst [19]
scaled as 7(k) ~ k™% with kK = K¢ /K., while SZT’s result
[Eq. (13)] shows that the characteristic time scales sep-
arately with x; and k., with different exponents for the
coagulation and breakup constants. For the case k. = 1,
which will be considered later, SZT’s results reduce to
the Meakin and Ernst hypothesis and the exponent z is
determined as z = (1 — A)y.

III. NUMERICAL MODEL

In order to test the scaling predictions for the cluster
size distribution and the time evolution of the mean clus-
ter size, we have carried out extensive numerical simula-
tions in two- and three-dimensional off-lattice systems.
We have considered a hard-sphere model for the parti-
cles enclosed in a cell or cube of dimensions L x L x L
(square of size L x L in two dimensions), where L is equal
to 100 particle diameters. The diameter is taken to be
the unit length. Our simulation starts by randomly plac-
ing a number of particles of unit mass in the cell in such
a way that we cover 10% of the total volume (surface)
available (that is, there are nearly 200 000 particles in the
system in the three-dimensional case). The initial condi-
tion preserves the excluded-volume criterion, so that the
particle placement is rejected if it overlaps with any of
the remaining particles. We choose at random one of the
clusters, initially identified with particles, and move it
by a distance equal to its diameter in a randomly chosen
direction. In this movement it may interact with another
particle in the sense that the distance between the cen-
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ters of these particles can become less than one diameter.
In that case, they aggregate and form a cluster. Time is
measured in units of Monte Carlo time steps per cluster.

In order to avoid the complexity arising from the ge-
ometrical structure of the clusters, which should be re-
flected in the functional form of the reaction kernels, we
employ the so-called particle coalescence model [14]. In
this model, the clusters are defined to be single particles
with the same size as the initial ones. So, when two clus-
ters of masses ¢ and j meet, they coalesce into a heavier
cluster of the same diameter and mass ¢ + j at a rate
proportional to the reaction kernel K(i,j). Since there
is no cluster geometry, the functional form of the reac-
tion kernel can be specified exactly. In our simulation we
have assumed a mass-independent sticking probability,
so that the aggregation kernel (i, j) is constant. This
gives A = 0. Furthermore, we consider k. = 1 (so that

k = Ky), which yields simply K(i,j) = 1. Therefore
Eq. (14) becomes
y=(a+2)"% (15)

The probability of choosing a cluster of mass s =i+ j
is given by ns(k,t), and any of the s — 1 bonds can be
broken with equal probability. Then the probability of
breaking one of the s — 1 bonds of a cluster of size s can
be written as

ng(K,t)

—p(s), (16)
where p(s) is considered to have the following functional
form:

p(s) = ks(s = 1) 5%, (17

so that F(i,7) = ks ®(i,5) = kz(3 + j)*. Therefore the
constants a and k are the adjustable parameters in the
model. In the simulation, a cluster is picked at random
and an attempt is made to either break it or to move
it also in a random fashion. If we attempt to break a
cluster of size s = i + j, it will break with a probability
given by p(s). The new position of one of the two frag-
ments will remain at the same location of the original
cluster and the other one is placed at a random location
inside the cell, preserving the excluded-volume criterion.
This situation corresponds to the so-called uncorrelated
fission: the resulting fragments are placed at random,
uncorrelated positions, in the spirit of the mean-field the-
ory. This choice of uncorrelated fission, coupled with the
fact that the resulting geometry of clusters is neglected,
make it plausible that the process is described by the GS
equation, with single choices for the fragmentation and
aggregation kernels.

In a general computer simulation, where long-range
forces are present, each cluster A; can potentially in-
teract with any of the remaining aggregates. However,
for short-range interactions, a significant amount of com-
puter time, used in determining which pairs of clusters
are close enough to interact, can be reduced. In order
to achieve this, one should be able to efficiently com-
pute the subset of clusters with which A; interacts. For
this reason we have implemented a link-cell (LC) method
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[26-28]. In this scheme the simulation cell is broken into
N. smaller subcells. Then we assign to each subcell a
list of clusters belonging to it. If the edge length of each
cell L, exceeds the diameter of the particles, then all in-
teracting pairs are located within the same cell or one of
the 26 adjoining cells (8 in two dimensions). Therefore
the time to find all pairs of clusters that interact scales
with the actual number of clusters, say N, instead of N2
for the standard method. For each pair of values (k, @)
the maximum number of subcells N, is chosen in order
to minimize the CPU time.

IV. RESULTS AND DISCUSSION
A. Dynamical evolution

In order to investigate the validity of Eq. (11) and
therefore the approximation introduced by SZT, we have
solved Eq. (11) analytically for @ = 1 and numerically
for a = —%, with the initial condition for the mean
cluster size equal to §(t = 0) = 1/9(k,00). Then we
have computed the mean cluster size S(k, t), the cluster-
size distribution n,(k, t), and the total number of clusters
n(k,t) = My every 5 x 10* Monte Carlo time steps from
t = 0 up to the steady state. The results are averaged
over ten different initial conditions. In Figs. 1 and 2
we compare the data obtained in our numerical simula-
tion with the analytical solution of Eq. (11) for A = 0.
We define a new reduced variable &7 = n(k,t)/S(k, o)
and plot the analytical and numerical values for the
reduced variables § versus ¢, 7 versus ¢, and §4 ver-
sus £ on a logarithmic scale. In order to obtain the
time rescaling parameter 7, we rewrite Eq. (13) in the
form 7 = (MyAr:)"1S(k,00)"*. In our case A = 0
and k. = 1, so that 7 = (M1A4)"1S(k,00). Therefore
T = Sﬁ’f , where M1 A is an adjustable parameter in
the model, which must be independent of a. In practice
we have varied in every case the value of A to get the
best agreement between theory and simulation. The val-
ues of A obtained in this manner for different values of a

R AR

>

my Sy U

FIG. 1. Log-log plot of the reduced variables 7, §, and 57
vs £, for a = —% and kK = 5 x 107 in the three-dimensional
case. Observe the good agreement between simulation data
and the curves coming from solving Eq. (11).
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107!
0.1 05 1

FIG. 2. Same as Fig. 1 for a = 1.

are constant within the numerical accuracy (for instance,
M;A =067 fora =1 and M1A =0.66 for a = —1). In
Figs. 1 and 2, we plot the results for a three-dimensional
system with a breakup constant x = 5x10"* and a = —3
and a = 1, respectively. We observe that the numerical
data are in good agreement with the theoretical predic-
tions and, as expected, after a sufficiently long time, the
mean cluster size becomes time independent and reaches
its saturation value S(k, co). However, some discrepancy
between theory and simulation can be observed in the
early times when SZ'T’s theory is claimed to break down.
We should point out that the initial condition (satisfy-
ing the excluded-volume criterion) placed particles quite
close together and might have had some effect on the
early evolution of the system. Although the results of
SZT are not exact, they represent an asymptotic solu-
tion of the GS equation, and they seem to be very good
when the system enters in the scaling regime. To analyze
this point, we assume the scaling form for the size dis-
tribution suggested by Meakin and Ernst [Eq. (3)] and
plot in Fig. 3 n,(k,t)S%(k,t) versus u = s/S(k,t) for
different values of T' = tk®. In our case A = 0, so that
z =1 and = y. We observe that the shape of the

104
103
=
°
3 102
0
=
< 10!
=]
100
1071
o1 L
0.1 05 1 5 10
s/S(x.t)
FIG. 3. Scaling of the time dependence of the cluster-size

distribution. We plot in a logarithmic scale of n,(x, t)S?(, t),
vs 8/S(k,t) for K = 5x 10™* and a = 1 for different values of
T = tx® for the three-dimensional case.
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distribution function is different at the early stages of
the system evolution (i.e., for small values of T'). This
is because the cluster-size distribution evolves in time
from the aggregation-dominated regime to the equilib-
rium regime, as argued by Meakin and Ernst. Presum-
ably this causes the small differences observed between
the numerical data and SZT’s theoretical curve in Figs. 1
and 2.

B. Steady-state limit

To test the scaling relation, Eq. (12), we have com-
puted the cluster-size distribution n,(k,00), the mean
size S(k,00), and the averaged number of clusters
n(k, 00) every 2 x 10* time steps once the system reaches
equilibrium. We have averaged these quantities over
2000 measurements. To determine the exponent y we
have plotted on a logarithmic scale the mean cluster size
S(r,00) versus the breakup constant k. For S(k,00) we
have considered the usual definition M3 /M, which is de-
noted by S(k, 00)2 in the figures. We have also considered
M, /My, which should be proportional to the previous
measure if scaling holds, and labeled it as S(k,00);. We
have considered eight different values for x ranging from
106 to 10~3. We have also plotted on a logarithmic
scale the mean number of clusters n(x, 00) ~ S(x,00)~!
versus k. In Figs. 4 and 5 we compare the results ob-
tained in two and three dimensions with the theoretical
predictions, considering ¢ = 1 in both cases. The ex-
pected theoretical value in this case is y = % For the
two-dimensional simulation we obtain y = 0.31 + 0.01
from the best least-squares fit to the data. For the three-
dimensional case we get y = 0.31 +0.01. We also include
in the figures dashed lines of slope :}:-:1; coming from the
mean-field theoretical result. In Fig. 6 we show the re-
sults for a three-dimensional study with o = —%. The

o: In[S(x,=),] 8 [
O: In[S(e.=),)

+: In[n(x,=)]

0: 0.304
+: 0.295

-14 -12 -10 -8 -6
In(x)

FIG. 4. Logarithmic plot of the mean cluster size S(x, co)
vs the breakup constant «, and the averaged number of clus-
ters n(k,00) vs k for eight different values of k and o = 1
for the two-dimensional case. To compute the mean cluster
size we use Eq. (6), which in the figure stands for S(k,00)
and S(x,00)1 = M1 /n(k,00). The expected theoretical value
is y = . Straight dashed lines of slope :t-;— are included to
guide the eye.
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o: In[S(k.»),] 8
0: In[S(k,),]
+: In[n(x,=)]

0: 0.314

-14 -12 -10 -8 -6
In(x)

FIG. 5. Same as Fig. 4 for the three-dimensional case.

10
o: In[S(k,),] <
0: In[S(x.=).] 8 |- \\ <
+: In[n(x,)] XX
_y RSN
oL | o 0635 ~3
a: 0.596
+: 0.619 B
4+ oz =
2|
1 1 1 1 —J
-14 -12 -10 -8 -6
In(x)
FIG. 6. Same as Fig. 5 for a = —%. The expected theo-

retical value is now y = 2.

104_ MO X ER R X B Xk
xn‘.m".

n(.)S%x.)
2

10!l | %
e
| 1 x ¥
0.1 0.5 1 5 10
s/S(x.)

FIG. 7. Plot in a logarithmic scale of n,(k,00)S?(k,c0)
vs 8/S(k,00) for different values of k and @ = 1 in two-
dimensions. Note that all data collapse reasonably well in
a single master curve, supporting the scaling relation for the
cluster-size distribution at the steady-state limit.
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FIG. 8. Same as Fig. 7 for the three-dimensional case.

theoretical value now is y = % In this case our best

result corresponds to y = 0.64 & 0.02. To stress the rela-
tionship (4) at equilibrium (¢ — co) we have plotted on
a logarithmic scale n,(x, 00)S?(k,00) versus s/S(k, o0).
Figures 7 and 8 show these results for the two- and three-
dimensional cases, respectively, for &« = 1. We observe
that all of the data collapse reasonably well onto a single
master curve, supporting the scaling relation assumed by
Family, Meakin, and Deutch [17].

V. CONCLUSIONS

In this paper we have studied the reversible aggre-
gation process in a single-particle off-lattice coalescence
model. We have paid attention to both dynamical and
steady-state scaling behaviors. We find that the results
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of the numerical simulation support the theoretically pre-
dicted value of the exponent describing the dependence
of equilibrium size on . The slight discrepancies found
between the mean-field results and our numerical simu-
lations might be due to the fact that the scaling function
ng(K,t) evolves from the aggregation-dominated regime
to equilibrium. However, this evolution is confined to
small k/s, as Elminyawi, Gangopadhyay, and Sorensen
[22] demonstrated and it may have a small effect on the
evaluation of the integrals that give the parameters A
and B in the theoretical study of SZT. The breakdown
of scaling at the early stage of the system evolution could
also mean that the system might still not have entered
a scaling regime and that the memory of the initial con-
figurations has not yet been washed out. We have also
computed the time evolution of the mean size and found
that the numerical results and the theoretical predictions
are in good agreement. Again some small differences are
observed at the early stage of the evolution process in
the aggregation-dominated regime. The value for the ex-
ponent y computed in this off-lattice model agrees well
with mean-field results within the errors of our numerical
data. Finally, we have verified the scaling assumption for
the size distribution at the steady-state limit for different
values of a and k.
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