PHYSICAL REVIEW A

VOLUME 44, NUMBER 10

15 NOVEMBER 1991

Scaling behavior of a model of block copolymers in three dimensions
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We have studied the dynamical and equilibrium scaling behaviors of a coarse-grained model for mi-
crophase separation of block copolymers. Our numerical study has been carried out in three dimensions.
We compute the power-law exponent 6 characterizing the equilibrium microdomain size R4 as a func-
tion of the molecular weight of the copolymers N as R, ~ N % and conclude that we are able to study the
weak-segregation regime, but not the true strong-segregation regime of the model. We have also tested
scaling hypotheses connecting the microdomain size and the equilibrium structure factor of the block

copolymers.

PACS number(s): 64.60.Cn, 61.41.+e¢, 64.60.My, 64.75.+¢g

I. INTRODUCTION

When a binary mixture of atomic or small molecular
systems (such as a metal alloy) is rapidly quenched from
an initial high-temperature uniform phase to a point deep
inside the coexistence curve, macroscopic domains rich in
one or the other component of the mixture are formed
[1]. For late stages of this phase-separation process, the
characteristic size of the domains, R (¢), grows as a power
law with time [2-4] as R (t)~t'/3. Moreover, the late
stages of the phase-separation process can be described in
terms of scaling [1,5,6] with the same time-dependent
length R(#). A main feature emerging from this scaling
picture is that the pair-correlation function G (r,t) and its
Fourier transform, the structure factor S(k,?), depend on
time through R (¢) only, namely

G(r,t)=g(r/R (1)) (1)
and

S(k,2)=R (t)*s(k-R(1)) , )

where d is the dimensionality of the system. The func-
tions g(x) and s(x) are the time-independent scaling
functions of the system.

The situation is quite different in a block copolymer [7]
(BCP) melt, in which the phase-separation process
proceeds in a different fashion due to the molecular struc-
ture of the copolymers. A diblock copolymer melt is
composed of long chain molecules consisting of two co-
valently bonded subchains of constituent monomers of A4
type and B type, respectively. When the two species are
mutually incompatible, a phase separation can occur at
low enough temperatures. However, due to the covalent
bond between the 4 and B chains, phase separation can-
not proceed to a macroscopic scale; instead microdomains
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rich in either of the two components are formed [8]. The
distinctive properties of these structures have been at-
tracting a lot of interest recently [9-26] due, in part, to
the great technological importance of the block copoly-
mer materials. In experiments one finds that the system
can form periodic lamellar, spherical, or cylindrical
structures depending on the relative chain length of the
two cobonded polymers and on the amount of solvent
present in the mixture [9—-12]. It also has been found ex-
perimentally [11-14] that the equilibrium mean thickness
D of these microdomains scales as the molecular weight
N of the copolymers as D~N® One usually distin-
guishes between two scaling regimes [15-19] to charac-
terize the value of the exponent 0: a strong-segregation
regime and a weak-segregation regime. If the A4-B
segment-segment (Flory) interaction parameter Y is such
that YN is less than a critical value (typically of the order
of 10), the copolymer is in a disordered state, whereas for
larger values of YN an order-to-disorder transition takes
place. A system in the ordered state but close to the
order-disorder transition point is said to be in the weak-
segregation limit and experiments in this limit yield 6= 1.
On the other hand, for YN >>10 the system is in the
strong-segregation regime and =2 has been observed in
experiments. It should be noted here that in some recent
experiments [13,14] a larger value of 6 (6~0.8) was
found. This was argued [14] to describe a crossover be-
havior from the weak-segregation to the strong-
segregation regime.

Theoretical studies of phase separation in block copo-
lymers have been carried out by several authors. Helfand
and Wasserman [15] use an analogy between the confor-
mation of a polymer chain and the trajectory of a
Brownian particle to write down the free energy for the
ordered state of a block-copolymer system under strong
segregation. When this free energy is minimized with
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respect to D, they find that 6=0.636, which compares
well to the value of 0 found in some experiments. A
different approach has been taken by Leibler [16] based
on a local order-parameter formulation. His analysis is
restricted to the weak-segregation limit and predicts
D~N'Y2 in agreement with experimental results in that
limit. Ohta and Kawasaki [17] use a method similar to
Leibler but incorporate long-range interactions, arising
from the connectivity of different monomer sequences in
a copolymer chain, and recover 6=2 for the strong-
segregation limit. Also, the crossover behavior of D be-
tween the weak-segregation and strong-segregation limits
can be described [18,16] by D ~N!/2f(yN), where the
crossover scaling function f(x) is given by f(x)—1 for
x—0and f(x)—>x1/%for x —» 0.

Recently, Oono and his group [20-22] proposed phe-
nomenological models for the phase-separation dynamics
for the block-copolymer system. They start from a
coarse-grained description of the ordering process in a
similar fashion to the Cahn-Hilliard (CH) model [1,27]
used to study phase separation in binary alloys. In the
CH formulation, one writes the time variation of the con-
centration field ¢(r,?) in terms of a variational derivative
of a local free-energy functional given by the Ginzburg-
Landau expression. The resulting equation of motion can
then be written as

g%tl)=MV2(—b¢+u¢3—f<v2¢), 3)

where M is the constant mobility, b, u, and K are phe-
nomenological positive constants, and the thermal noise
is neglected in this model. At low temperatures, the
noise term is not thought to affect some important
features of the late stages of the evolution [28], such as
the growth law for the characteristic domain size and the
scaling functions. The fact that the equilibrium
configurations in a block-copolymer system are made out
of microdomains is incorporated by Oono and his col-
leagues by modifying the previous equation for the
coarse-grained order-parameter field ¢(r,) in the follow-
ing way:

: ért’t’) =MV —b¢+up’—KV’¢)—Bé, @

where B is another phenomenological parameter. This
equation is the same as the CH equation [Eq. (3)] except
for the presence of the —B¢ term. This last term, —B¢,
makes the ¢ =0 state more stable than that with ¢7<0 in
the absence of spatial gradients. Thus, the domain size
saturates at an equilibrium value after an initial incre-
ment with time. Oono and Bahiana [21,22] studied a
cell-dynamics [29] version of Eq. (4) in two dimensions in
the weak-segregation limit. They conclude empirically
that B is proportional to N 2 and on the basis of that
find 6= 1.

In this paper we have carried out a detailed study of
the model proposed by Oono and his group [Eq. (4)] in
three dimensions by using a numerical integration ap-
proach. We compute 6 and study dynamical and equilib-
rium scaling hypotheses proposed in recent works
[23,24]. The paper is organized as follows. In Sec. II we
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describe the model and the numerical procedures used in
the study, in Sec. III we present our main results, and in
Sec. IV we conclude with a brief summary and discus-
sions.

II. MODEL AND NUMERICAL PROCEDURE

Equation (4) can be written in a simpler form after re-
scaling ¢(r,2) by (b /u)!/?, the distance by (K /b)'"?, and
the time by 2K /Mb?2. The resulting parameterless equa-
tion reads

@"(f)’t—’”zgvz(—¢+¢3—v2¢)—e¢, (5)
where € is the only parameter of the model. We consider
a critical quench with the order parameter equal to zero.
This situation corresponds to the case where the 4 and B
blocks of the diblock copolymers are of the same length.
One can show that the order parameter is conserved in
the above model for a critical quench in the following
way. If we denote

()= [ ¢(r,0)dr (©6)

to be the order parameter, then by integrating Eq. (5)
over all space one finds

id(,;(t—t)=—e¢(t) )

since the Laplacian term vanishes after integration. The
solution of the above equation is

PY(2)=1(0)e . (8)

For a critical quench, the order parameter is zero, i.e.,
1¥(0)=0 and thus 3(¢) is zero at all times, conserving the
order parameter.

A numerical study of Eq. (5) in three dimensions is
very demanding on computer resources (from the stand-
point of both central processing unit time and memory
requirements) due to the fact that one needs to run the
system to equilibrium. Also, one needs to consider
different values of the parameter € for the scaling analysis
and for each e the results need to be averaged over
several initial configurations of the concentration field.
In these calculations we have used a finite difference
scheme for both the spatial and temporal derivatives.
The spatial discretization is achieved by replacing the
continuous space of position vectors r=(x,y,z) by a sim-
ple cubic lattice with N =L 3 sites and lattice spacing 5.
Periodic boundary conditions are assumed in order to
avoid the surface effects. We integrate numerically Eq.
(5) by using a first-order Euler scheme. In order to carry
out the calculations within a reasonable amount of com-
puter time, one should choose a large time step and a
moderately large system size. However, the discretized
version of Eq. (5) would develop a subharmonic “bifurca-
tion instability”” for large time steps [28]. Following our
previous works [2] on the Cahn-Hilliard model in three
dimensions, we have chosen the mesh size 6r=1.7 and
the time step Ar=0.1. We have found that smaller
values of At do not change quantities that express a glo-



4 SCALING BEHAVIOR OF A MODEL OF BLOCK COPOLYMERS . ..

bal behavior, such as the structure function, the pair-
correlation function, or the typical (micro)domain size.
We have considered a simple cubic lattice with L =50,
which is equivalent to saying that the linear dimension of
the system (in the dimensionless units described before)
L,=85 units. We have considered ten different values
for the parameter € between 0.01 and 0.1. We chose the
initial field configurations to be uniformly distributed be-
tween —0.1 and 0.1 with the order parameter strictly
equal to zero. In order to average over the initial random
configurations, we have performed ten runs for each
value of €.

III. RESULTS

In Figs. 1-3 we show typical cross sections of the sys-
tem at equilibrium for three different values of €. In Fig.
1, where €=0.01, the cross section shows the typical
characteristic of the interconnected pattern of a spinodal-
ly decomposing system. A similar pattern for a block-
copolymer system has been observed in previous two-
dimensional simulations [20,21] of this model. However,
when € is increased, we find that the equilibrium pattern
shows more and more ordered structures and the pres-
ence of a lamellar structure seems to be developing. This
kind of ordered structure has been observed in experi-
ments in cross sections of thick films of block copolymers
[9,10].

For the equilibrium pattern in the above model, a scal-
ing description has been suggested by Oono and his
group. Using a dimensional analysis and comparing the
equilibrium properties of the model with the CH equa-
tion (i.e., €=0), they argue that [e '] corresponds to [7]
and also [e '] corresponds to [/*], where [ is a charac-
teristic length of the system that is identified as N!/2
Thus, [N?] corresponds to [¢] and the asymptotic growth
law I(¢)~¢" for the CH equation corresponds to [ ~N?%"
for block copolymers, i.e., §=2n. For spinodal decompo-
sition the accepted [2-4] asymptotic growth law ex-
ponent is n =1, which implies 8= 21, and this agrees very
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FIG. 1. A typical cross section of the system for e=0.01.
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FIG. 2. A typical cross section of the system for e=0.05.

well with the experimental results in the strong-
segregation limit. However, it is extremely difficult to
reach the strong-segregation limit in numerical simula-
tions and one finds 6=21. This is the weak-segregation
limit. It corresponds to the early stages of spinodal
decomposition, in which the interface thickness is appre-
ciable and surface diffusion dominates. In this case [1,30]
I~t'/%, which corresponds to =1 for block copolymers.

In order to find the exponent 6 from our simulation,
we calculate the microdomain size in the equilibrium as
in earlier studies: We calculate the pair-correlation func-
tion g(r,t,€) and define the location of the first zero of
this pair-correlation function, R (t,€), as a measure of the
microdomain size. When the system reaches equilibrium,
R (t,€) becomes independent of ¢ and we take the value
R (€) as a measure of the characteristic size of the mi-
crodomains in equilibrium (D). In Fig. 4 we show a log-
log plot of R, (€) vs e. We find that the best fit to the
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FIG. 3. A typical cross section of the system for e=0.1.
Comparing with Figs. 1 and 2 we note that the ordered lamellar
structures become more and more evident as € increases.
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FIG. 4. Log-log plot of R,(€) vs €. The straight line is the
best fit to the data yielding an exponent —0.29+0.01. The ex-
ponent € (see text) is thus 6~0.58.

data yields an exponent of —0.29+0.01, which, using the
above identification e~N ~2, corresponds to 8=~0.58.
This number is larger than that for the weak-segregation
limit but smaller than that for the strong-segregation lim-
it. This indicates that our simulation study did not probe
the true strong-segregation regime of the model. In order
to see the strong-segregation regime, the molecular
weight N of the block copolymers needs to be much
larger. Since the parameter e~N ~2, this means that the
parameter € needs to be much smaller than considered in
this study. However, for smaller values of € it is extreme-
ly difficult in numerical studies to reach equilibrium.
(For the system size considered here, the equilibration
time is already close to t =10000 when €=0.01.) Also,
since the equilibrium domain size is going to be much
larger when € is smaller, one needs to consider larger lat-
tice size as well in order to avoid finite-size effects. Thus,
the strong-segregation regime for a numerical study of
this model seems to be beyond reach at this point.

A scaling hypothesis for the characteristic length
R (t,€) has been proposed by Liu and Goldenfeld [23].
They propose a scaling form

R(t,e)=€"%2F(te) , 9)

where F(x) is a scaling function independent of ¢ and e.
We show our data for R (t,€) vs Int for various values of €
in Fig. 5 and test the above scaling form [Eq. (9)] in Fig.

Int

FIG. 5. R (t,€) vs Int for various values of €.
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6 by taking 6=0.58, which was obtained earlier. As can
be seen from Fig. 6, the scaling works fairly well.

The suggestion of Oono and colleagues that there is a
correspondence between the block-copolymer system and
spinodally decomposing system (with N2 corresponding
to ¢ in the two cases) is studied in Fig. 7. In this figure we
plot the equilibrium structure factor S(k,e) for the
block-copolymer system against k for different values of
€. As € is decreased, the structure factor becomes
sharper and the location of the peak shifts to smaller
values of k. Thus the equilibrium structure factor for
block-copolymer systems with decreasing € behaves qual-
itatively similarly to the time-dependent structure factor
S (k,t) for a spinodally decomposing system as ¢ increases
after the quench [1].

In order to study the correspondence between the
structure factors of the two systems mentioned above, we
use a scaling hypothesis [24] for the structure factor of
the block-copolymer system as

S (k,e)=R(e)’F(kR(€)) (10)

in three dimensions. We test this scaling hypothesis in
Fig. 8 by plotting S(k,E)Req(e)_3 vs kR (€). In numeri-
cal simulations it is not easy to test this scaling hy-
pothesis, due to the fact that the structure factors are
very sharply peaked (see Fig. 6) and the lattice discretiza-
tions do not leave us with enough data points to accurate-
ly determine the structure factors near the peak. This
could be responsible for the scatter seen in the data in
Fig. 8.

IV. CONCLUSIONS

In summary, then, we have studied a model for micro-
phase separation of block copolymers originally proposed
by Oono and colleagues. Our numerical study is carried
out in three dimensions by numerically integrating the
model equations for a very long time. Even with exten-
sive computations we could not probe the true strong-
segregation regime of the model. However, the morphol-
ogy of our system and the value of the exponent 6 charac-
terizing the microdomain size to the molecular weight of
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FIG. 6. Test of the scaling hypothesis Eq. (9) for R(¢,€).
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FIG. 7. Plot of the spherically averaged equilibrium struc-
ture factor S (k,€) vs wave vector k for various values of €.

the copolymers suggest that we are probably in between
the weak-segregation and the strong-segregation regime.
We have also found our data to be consistent with a scal-
ing hypothesis for the microdomain size proposed by Liu
and Goldenfeld and another scaling hypothesis proposed
by us for the equilibrium structure factor.
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