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We present results of a numerical study of the Cahn-Hilliard model of phase separation for a binary
mixture quenched deep in the nucleation regime. We study the volume-fraction dependence of the scal-
ing functions for the pair correlation function and the structure factor. Our results indicate that for
small volume fraction ¢ the shape of the scaling functions depends strongly on ¢, whereas for larger
volume fractions the scaling functions seem to be independent of ¢.

An important question in the study of phase-separation
processes! is the effect of varying the volume fraction (¢)
of the minority constituent of the binary mixture on ex-
perimentally measured quantities such as the scattering
intensity of radiations. In particular, one is interested in
the dependence of the time-independent scaling function
(obtained from the scattering intensity after suitably re-
scaling the wave vectors by a time-dependent characteris-
tic length scale) on the volume fraction. Several analyti-
cal studies®® have been carried out to obtain the volume
fraction dependence of the scaling functions for the struc-
ture factor. Among these calculations, the theory of
Tokuyama, Enomoto, and Kawasaki? seems to be the
most complete one, since it considers both initial thermal
fluctuations and nonthermal fluctuations generated by
soft collision among droplets. This theory predicts a
strong dependence of the shape of the scaling functions
on the volume fraction ¢. The theory is, however, appl-
icable only in the limit of small volume fraction ¢ (typi-
cally ¢ <10%) and unfortunately cannot be extended for
the case of larger volume fractions due to the perturba-
tive nature of the calculations. Numerical studies, on the
other hand, have recently been carried out in two dimen-
sions for larger volume fractions and could not detect’
any appreciable dependence of the scaling function on ¢
even when the volume fraction is changed from 50% to
about 21%. Since the analytical studies break down for
large volume fractions and the numerical studies are
difficult to carry out for small volume fractions due to
finite size limitations, it has been possible to compare
even the qualitative features of the scaling functions seen
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in the analytical studies with the numerical simulations.

In this paper we report results from a numerical study
of a model of phase separation (the Cahn-Hilliard® model)
for volume fraction as small as 5% for one of the constit-
uents. Although the numerical study is carried out in
two dimensions (due to computer-time limitations) and
the analytical study of Tokuyama, Enomoto, and
Kawasaki’ is valid only in three dimensions, the small
volume fraction used in the present study allows us to
compare the qualitative features of the scaling function
calculated in the simulations and the theory. Our main
results are as follows: Although no appreciable change in
the shape of the scaling functions was found before’ for
volume fractions ¢ =50% and ¢=21%, we find that the
scaling functions for $=5% and ¢=21% are distinctly
different both for the structure factor and the pair corre-
lation functions. This is a striking result in the sense that
both for ¢ =5% and ¢ =21% the morphology of the sys-
tem is similar to each other and is comprised of droplets,
whereas for $=50% the morphology is interconnected
and is radically different from that with either ¢ =5% or
¢=21%.

The standard Cahn-Hilliard equation of motion for the
concentration field ¥(r,¢) is

g"[’f-f,—’”=Mv2[—b«/wﬂuV—KVZ'H ’ W

where M is the constant mobility, b, # and K are phenom-
enological positive constants, and thermal noise is
neglected in this model. Equation (1) can be written in a
simpler form after rescaling (r,z) by (b /u)!/?, the dis-
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tance by (K /b)'/2, and the time by 2K /Mb?. The result-
ing parameterless equation

WL — v — g+ =V, @

at 2

has been the subject of several recent numerical studies in
both two”?!2 and three!® dimensions.

A numerical study of Eq. (2) is very demanding on
computer resources (both from the point of central pro-
cessing unit time and memory requirements) particularly
for small volume fractions due to the following reason:
For small volume fractions, one would need to consider a
very large system size such that the minority phase has
enough matter in it to produce several droplets of
different size, so that a statistical analysis of the dynamics
is meaningful. The finite-size effect becomes more prom-
inent at late times since the number of droplets decreases
with time. On the other hand, the evolution of the sys-
tem needs to be studied out to late enough times so that
the system is in the so-called scaling regime. Thus one
needs to consider a very large lattice size in the simula-
tion, such that at late enough times in the scaling regime,
one still has a large number of droplets of the minority
phase. We have numerically integrated Eq. (2) on a
square lattice of size 540% using a second-order Runge-
Kutta scheme and with periodic boundary conditions.
The specific details of the numerical integration will be
given elsewhere."* For small volume fractions, one needs
to be careful with the initial conditions as well. Since the
system is in the metastable region of the phase diagram in
this case, a strong fluctuation is needed in the initial dis-
tribution of the order parameter in order to allow for
growth of the initial random nuclei. We chose the initial
configuration of ¥(r,t) to be Gaussian distributed with
center at ¥,=0.9 and with a variance of magnitude 5. A
final adjustment is made in order to have the mean value
of the field () exactly equal to ;. For this particular
choice of the initial configuration the magnitude of the
order parameter can be very large at random points on
the lattice, so that initially one needs a very small time
step for the stability of the numerical integration. How-
ever, the order parameter settles down to values smaller
than unity very soon and then the time step can be in-
creased safely. We have carried out the numerical in-
tegration up to ¢ =20000 in the above-mentioned units.
The mesh size is fixed at &x=1.0 and the time step
chosen is as follows: From =0 to =100 the time step
is chosen to be 8:=0.001, from t=100 to t=1000 the
time step is chosen to be 6¢=0.025 and for ¢ > 1000, &¢ is
fixed at 0.05. In order to average over the initial random
configurations, we have performed 60 runs with different
initial configurations.

It is well established by now that the late stages of the
phase separation process can be described in terms of
scaling with a time dependent length."’>~!7 The funda-
mental assumption of scaling is that, in the late stages of
the evolution process, only one length, R(¢), is relevant.
This characteristic length represents a measure of the
typical domain size and increases with time. A main
feature emerging from this picture is that the pair corre-
lation function G(r,t) and its Fourier transform, the

AMITABHA CHAKRABARTI, RAUL TORAL, AND JAMES D. GUNTON 44

structure factor S(k,?), depend on time through R(t)
only, namely

G(r,t)=g(r/R(t)) (3)
and
S(k,t)=R(t)F(kR (1)), 4)

where d is the dimensionality of the system. The func-
tions g(x) and F(x) are the time independent scaling
functions of the system.

The scaling function defined in Eq. (3) is shown in Fig.
1 for the circularly averaged and normalized correlation
function G, (r,t) for different volume fractions ¢ of one
of the constituents of the binary mixture. Here G,(r,t) is
defined to be G(r,t)/G(0,t), i.e.,

G(r,t)
(2(t)) —()?

such that G,(0,¢) is equal to unity for all ¢. In Fig. 1,
R (2) is defined as the coordinate of the first zero of
G,(r,t) which is denoted as R,(¢). It is clear that the
scaling function of ¢ =5% is distinctly different from that
of either ¢=21% or $=50% (the last two are, on the
other hand, very similar to each other). The interesting
feature of the scaling function for §=5% is that the os-
cillations seen in the scaling function for larger volume
fractions are almost absent here and the magnitude of the
pair correlation function is very small for r >R,. This
suggests that the spatial correlations among the droplets
are much weaker in this case.

Figure 2 shows the data for the circularly averaged and
normalized structure factor S(k,z) plotted to verify the
scaling ansatz Eq. (4) for ¢ =5%. In this plot we have
used the average radius of gyration R;(z) of the droplets
as a typical measure for the domain size R(¢). As can be
seen in this figure, scaling holds quite well for ¢ > 10 000.
In Fig. 3 we compare the scaling functions for ¢=21%

G,(r,t)= (5)
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FIG. 1. Scaling function corresponding to the circularly

averaged and normalized pair correlation function G,(r,t) [Eq.
(3)] vs r /R, for different volume fractions ¢. Here R, is the lo-
cation of the first zero of G,(r,t). Note that the scaling func-
tion is very similar for ¢=50% and ¢$=21% whereas it differs
significantly from the above ones for $=5%. The scaling func-
tions for ¢=50% and ¢$=21% are taken from Refs. 11 and 7,
respectively.
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FIG. 2. Data for the circularly averaged and normalized [by
G(0,2)] structure factor S(k,t) plotted to verify the scaling an-
satz Eq. (4) for §=5%. In this plot we have used the average
radius of gyration Rg(¢) of the droplets as a typical measure for
the domain size R(#). As can be seen in this figure, scaling
holds quite well for ¢ >10000. The solid line is a guide to the
eye.

and $=5%. Since the scaling functions for ¢ =21% and
¢=50% agree well with each other the scaling function
for 50% is not included in this figure. Again we see that
the scaling functions are quite different for these two
volume fractions.

Let us now compare the qualitative features of the scal-
ing functions computed here with those found in the
theoretical calculations of Tokuyama, Enomoto, and
Kawasaki? for three-dimensional systems. Comparing
the scaling functions in Fig. 3 we find that as the volume
fraction is decreased, the half-width of the scaling func-
tions increase, the location of the peak of the scaling
function shifts toward smaller reduced wave vectors and
the peak height decreases. All of these features are in
good qualitative agreement with the above theory.

In Fig. 4 we show the same data of Fig. 3 in a log-log
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FIG. 3. Comparison of the scaling function for the structure
for $=21% (dotted line) and ¢ =5% (solid line). Since the scal-
ing functions for ¢=21% and ¢$=50% agree well with each
other (see Ref. 7), the scaling function for ¢ =50% is not includ-
ed in this figure. The scaling functions are quite different for
these two volume fractions and the qualitative features of the
scaling functions agree well with Ref. 2 (see text).
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FIG. 4. Scaling functions of Fig. 3 plotted in a log-log plot.
Note the presence of a secondary maxima or shoulder in both
scaling functions for large k values. Note also that although the
two scaling functions are more or less parallel to each other for
large k values, their functional forms are very much different for
small values of k.

plot. It is easy to determine the small and large (reduced)
wave-vector behavior of the scaling function if plotted in
this fashion. Several important features are evident from
this figure. First of all, a secondary maxima shows up in
both of the scaling functions for large k values. Howev-
er, the locations of the secondary maxima is slightly
different for the two volume fractions considered in the
figure. This type of secondary maxima or shoulders have
been observed in experiments with polymer mixtures'® as
well as in theoretical®!® and numerical®® calculations.
Another important feature is that although the two scal-
ing functions are more or less parallel to each other for
large k values, their functional forms are very much
different for small values of k. For small k the scaling
function increases approximately as k* for $=21% in ac-
cordance with recent theories,?""?? whereas for ¢=5%
the scaling function seems to be quite flat for small wave
vectors.

In summary, we conclude that we have carried out a
numerical study of the Cahn-Hilliard model for a quench
deep in the nucleation regime of the phase diagram. We
have studied the volume fraction dependence of the scal-
ing functions for the pair correlation function and the
structure factor in two dimensions. Our results indicate
that for a small volume fraction ¢ the shape of the scaling
functions depend strongly on ¢ whereas for larger volume
fractions, the scaling functions seem to be independent of
¢, at least within the numerical accuracy. In the absence
of any good theory in two dimensions, the qualitative
features of the results are compared with analytical
theories valid in three dimensions?* and for small volume
fractions.” Comparison with our results for the scaling
functions for different volume fractions will be a good
test for any future theory in two dimensions.
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