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We present the results of numerical simulations of the irreversible aggregation process for self- 
avoiding flexible polymers in three dimensions. We have paid special attention to two 
experimentally interesting systems: telechelic ionomers and reverse micelles. The dynamics 
used in this paper to simulate the clustering process is based on Eden’s method. This dynamics 
was previously introduced by us for two-dimensional systems. We find a scaling relation 
between the radius of gyration of the cluster R,, the chain length n and the number of chains N 
in the cluster in the form R, -n “ND. The values of the exponents a and /3 calculated from the 
numerical simulations are somewhat lower than those predicted by Flory’s classical theory. We 
argue that the lower values of the exponents are possibly due to the finite size of the clusters 
and the presence of higher order interaction terms not considered in Flory’s theory. 

I. INTRODUCTION 

In recent years there has been an increasing interest in 
the subject of aggregation of self-associating polymer sys- 
tems. * These systems are formed by long flexible macromo- 
lecules that contain one or more associating sites which 
strongly attract each other and lead the chain molecules to 
aggregate and form clusters. The characteristic geometry of 
these aggregates is responsible for their unusual physical 
properties which, in turn, account for their technological 
importance. Examples of this aggregation process are the 
aggregation of ionic polymers’” (or ionomers, as they are 
known in the literature) and the formation of micelles7-9 
and reverse micelles.8*‘0~” 

The telechelic ionomers’2 are a particular case of ion- 
omers which contain just two ionic functional groups locat- 
ed one at each end of the chain. These functional or “active” 
groups interact via short-range forces which mediate the for- 
mation of structures which are relevant in several self-assem- 
bling processes, like the mesophase formation in liquid crys- 
tals with disklike molecules,‘3 block copolymers and gel 
formation,‘4 as well as the formation of microemulsions. 

Formation of micelles and reverse micelles is also of in- 
creasing theoretical interest’-” as an example of a self-asso- 
ciating system. Although there are many studies about the 
details of micelle formation, relatively little is known about 
reverse micelles. These are colloidal structures formed by 
surfactant molecules in nonpolar solvents. The polar head 
groups of the surfactant molecules comprise the core of the 
aggregate and the hydrofobic tail face the nonpolar solvent. 
Reverse micelles are of practical interest” because of their 
viability as solubilizing agents, catalysts, etc. Their ability to 
take up water in the polar core allows these structures to be 
useful for production of paints and lubricants and for effec- 
tive delivery of drugs. Also, simplified models of reverse mi- 

celles have become useful to imitate biological structures 
such as the cellular membrane. 

Despite the experimental evidences about self-associ- 
ation on the systems described above, it seems to be a very 
difficult task to explain the details of the clustering process 
as well as the size, shape, and stability of the aggregates. At 
this stage it seems that computer simulations of simple mod- 
els, which allow to control and isolate the essential param- 
eters that play an important role and influence the morphol- 
ogy of the aggregate, would help us in the understanding of 
the macroscopic properties of these structures. The models 
could then help to identify the relevant features that contrib- 
ute to the aggregation process. 

Following this direction, numerical simulations have 
been carried out recently. These works have studied the clus- 
tering process in two and three-dimensional lattice systems 
on which polymer chains are modeled by self-avoiding ran- 
dom walks. The first studies were those of Balazs and co- 
workers’5-‘7 who extended the well known diffusion limited 
aggregation (DLA)18 model, previously used in single par- 
ticle aggregation, to the clustering process of long chains 
molecules with one or more associating sites (“sticker 
sites”). In their model one new chain at a time is released at a 
far distance from a seed chain and executes a random walk 
until, eventually, one of its stickers finds another sticker site 
belonging to the growing aggregate. In Ref. 15 the authors 
have simulated the aggregation of long flexible chains with 
one sticker site located at each end of the chain. This particu- 
lar localization of the functional group is relevant to the 
study of telechelic ionomers. Reference 16 reports the aggre- 
gation process for chains with a single sticker located at one 
end of the chain. In that case, and for sufficient long chains, 
the authors obtained structures similar to reverse micelles 
with very few chains belonging to the aggregate which is a 
typical characteristic of reverse micelles as seen in experi- 
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ments.* On the other hand, we have developed an alternative 
model,” based on an extension of Eden dynamics,20 origin- 
ally used for single particle aggregation. Its basic character- 
istic is that the new chain is added to the growing aggregate, 
by starting a self-avoiding random walk, from an empty 
nearest-neighbor site of one of the stickers belonging to the 
aggregate, picked at random. This method is computational- 
ly very effective in producing the clusters and, more impor- 
tantly, it shares several universal features with the DLA 
model such as the morphology of the clusters formed are 
quite similar for systems composed of chains with a small 
fixed number of sticker sites. This can be understood by the 
following argument: as the length of the chain increases, the 
relative number of sticker sites decreases and then the sites 
that allow association, forming the so-called active zone, are 
mostly located at the surface of the cluster because of the 
screening effect due to the excluded-volume interactions. So, 
in the DLA model when a long chain reaches the cluster 
surface, it still spends a considerable amount of time in locat- 
ing the active sites and thus the efficiency of the method in 
producing reasonably large size clusters becomes very low. 
One avoids this in the Eden type method by starting a new 
chain from an empty nearest neighbor site of one of the stick- 
ers in the aggregate and instantly the new chain becomes a 
part of the aggregate. Since in the presence of excluded vol- 
ume interactions it is extremely difficult to find enough emp- 
ty sites inside the cluster to be able to put a chain there, the 
active zone almost always remains at the surface of the ag- 
gregate in the Eden method as well. Thus, unlike the single 
particle aggregation case, here these two methods share uni- 
versal features such that the exponents characterizing the 
radius of gyration of the aggregates are similar.‘* 

length n in the simulation. We have also considered the con- 
tribution of the three body interactions, absent in the Flory’s 
theory and its influence over the value of the exponent a. 
This contribution partially explains the values obtained for 
this exponent in the simulation. In contrast to the situation 
in two dimensions,16*‘9 we haven’t been able to find “frozen” 
structures (unable to grow any further) for chains with only 
one sticker site that characterize reverse micelles for suffi- 
cient long chains as observed in experiments. Our simula- 
tions can continue for a long time, though each time it is 
more difficult to add new chains to the cluster. However, we 
note that for these long times in which the rate of growing of 
the aggregate is very slow, other effects not considered here 
would be relevant in the growing process in experimental 
situations. These include the presence of interaction effects 
between different micelles and fragmentation processes. 

The rest of the paper is organized as follows: In Sec. II 
we describe the numerical model. In Sec. III we present the 
results for the aggregation of telechelic ionomers. In Sec. 
III A we carry out a Flory type mean field calculation of the 
exponents a and p and consider the effect of three body 
interactions on the exponent a. In Sec. III B we obtain a 
geometric lower bound for the exponent @ . In Sec. IV we 
present the corresponding results for reverse micelles. Sec- 
tion V concludes with a discussion of the results and possible 
extensions of our work. 

II. NUMERICAL MODEL 

Since our previous work on the Eden type dynamics has 
been restricted to two dimensional systems, its application to 
real three dimensional system is somewhat limited. One ex- 
pects that the dimensionality of the aggregate would play an 
essential role in determining its characteristics. In this paper 
we have extended the Eden dynamics method in order to 
study the more experimentally relevant case of the clustering 
process in a three dimensional model. The structures genera- 
ted via this method allow us to visualize the growth and 
changes in the aggregate. We can then examine how varia- 
tions of polymer properties, such as the chain length, alter 
the clustering process. We have studied the functional de- 
pendence of the radius of gyration R,, with the chain length 
n, and the number of chains N, in the growing cluster. We 
have found that the radius of gyration verifies a scaling rela- 
tion of the form R, - -n”N O. The calculated values of the 
exponents a and p are lower than those predicted by an 
extension of Flor$s classical theory. This is similar to what 
happens in two dimensions. It has been argued” that the 
presence of self loops causes the cluster to contract in size, 
resulting in a small deviation from the predicted exponent 
relating R, and N. We believe, however, that the reason for/? 
to be less than the theoretical value is that the sizes of the 
clusters studied in the simulation are not large enough to 
enter the asymptotic scaling regime. To support this expla- 
nation, we have obtained an exact lower bound for the expo- 
nent B which takes into account the finite size of the chain 

The model used in our simulations is an extension of the 
Eden type dynamics developed in Ref. 19. A polymer of de- 
gree of polymetrization n is modeled by a self-avoiding ran- 
dom walk of n - 1 bonds in a simple cubic three dimensional 
lattice with L XL XL sites. For telechelic ionomers two 
sticker sites are located one at each end of the chain. Reverse 
micelles, on the other hand, will be formed by chains con- 
taining just one sticker site in one of the ends. All the chains 
in the simulation obey the excluded volume criterion, so that 
no lattice site can be occupied by more than one monomer at 
a time. No other interactions are considered between chains. 
For ionomers, the growing process starts by placing a seed 
chain with one of its two stickers located at the center of the 
lattice. After placing the first chain an integer random num- 
ber between 1 and n is generated. If the random number is 1 
we will try to add a new chain, given by a self-avoiding ran- 
dom walk, starting at a randomly chosen empty nearest- 
neighbor site of one of the sticker sites (chosen at random). 
If the random number equals n, the nth monomer, a sticker 
site, if not already stuck to another polymer, is tried to move 
to a randomly chosen empty nearest-neighbor site of the 
n - 1 th monomer. Finally, if a nonsticking bead located at ri 
is chosen, corresponding to a random number between 2 and 
n - 1, the chain dynamics is simulated by the following pro- 
cess: First the bead at location ri is tried to move by using the 
Verdier-Stockmayer algorithm.2’ The new position r; is giv- 
en by 

r;=ri+, +ri-1 -ri, (1) 
where ri,. , and rim , are the locations of the i + 1 th and 
i - lth beads, respectively. The final position r; is accepted 
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only if it is not already occupied by another bead. Otherwise, 
a cranckshaft motion is tried. This movement involves the 
monomers ith and the i- lth. The new positions are the 
following: 

rj=q+v j=i, i-l, (2) 
where v = aj*aj-,Xajandaj=rj+, -rjisthefihbond 
vector of the chain. The two signs that appear in v (chosen 
again randomly) indicate the clockwise or counterclockwise 
sense of the rotation. 

When there is more than one chain present in the clus- 
ter, we first randomly chose a chain and then chose a random 
bead from this already selected chain and proceed on the 
way described above. The aggregation process continues un- 
til there are a prescribed number of chains present in the 
cluster. 

The model and the numerical procedure for the aggre- 
gation process for reverse micelles are similar to the above 
case, except that the chains have just one sticker site located 
at one of the ends of the chain. 

III. AGGREGATION OF TELECHELIC IONOMERS 

In order to investigate the influence of the chain length 
and the number of chains in the morphology of the aggre- 
gate, we have carried out extensive computer simulations 
varying the chain length from n = 2 to n = 50 and the num- 
ber of chains from N = 10 to N = 7500. 

Figures 1 and 2 show characteristic morphologies of the 
aggregates for n = 10 and ?t = 50, respectively. We notice in 
both cases the presence of a gel type extended network, 
which can in principle fill out as large a volume as one de- 
sires. This is truly independent of the chain length. The ag- 
gregates are diffuse and basically irregular in shape. 

These kind of structures generated by irreversible 
growth can be described by fractal exponents relating the 
number of particles of the aggregate with a characteristic 
linear size, such as the radius of gyration. In order to investi- 

n= lO,N=500 

J 

FIG. 1. Typical morphology of the aggregates for telechelic ionomers for 
chain length, n = IO and number of chains N = 500. A  polymer chain is 
represented by a series of connected sites on a simple cubic lattice. The 
sticker sites are represented by dots. 

n=50,N=500 

FIG. 2. Same as Fig. 1 for n = 50 and N = 500, respectively. 

J 

gate the possible fractal nature of the telechelic ionomer ag- 
gregates generated in our simulation, we are interested in a 
scaling law relating the radius of gyration R, with the num- 
ber of chains N, and the chain length n. As discussed in Refs. 
15, 16, and 19 the mass Nn is inappropriate as a single vari- 
able, since the entropy plays an important role in deciding 
the linear size and the shape of the aggregates. So, one postu- 
lates that R, depends on n and N separately, i.e., 

R, z:n”N? (3) 
The exponents a and p characterize the size of the ag- 

gregate and are expected to depend on the dimensionality. In 
order to calculate the exponent a we have computed the 
radius of gyration for N = 50, 100,200,500, 1000 chain clus- 
ters for different values of the chain length, ranging from 
n = 2 to n = 50. After averaging over 100 configurations, we 
plot in Fig. 3 the logarithm of the radius of gyration R, vs the 
logarithm of the chain length n. The straight lines in this 
figure are the best fit to the data. The computed values for a 
for these different N values can be well described by 
0.45 k 0.05 although there is some systematic downward 
trend in the value of a as N increases. The exponent p is 
calculated in a similar way. Fixing n, we find the radius of 
gyration when the number of chains belonging to the aggre- 
gate varies from N = 10 to N = 7500, for n = 2,5; from 
N = 10 to 2500 for n = 10 and from N = 10 to 1000 for 
n = 25. From the best fits to the points on Fig. 4 we obtain 
that the values for p for these different n values can be well 
described by 0.27 & 0.05. Here also we note a downward 
trend in /? as n increases indicating that the clusters of these 
sizes are yet to enter the true scaling regime. To stress the 
relationship (3 ), we have plotted log (R,/n”) vs log(N) tak- 
ing a = 0.45 (Fig. 5). We observe that all the data collapse 
reasonably well in a single master curve; we also include in 
this figure a solid line of slope 0.27 to guide the eye and a 
dashed line with slope f corresponding to the value of/? cal- 
culated from the Flory mean field theory. Thus, Eq. (3) can 
correctly describe the data, but the exponents a and p must 
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FIG. 3. Logarithmic plot of the radius of gyration R, vs the number of 
beads n for several values of N. The straight lines are the best fit to data. The 
exponent a calculated from above fits are given by a = 0.45 f 0.05. 

be considered as effective exponents as we will discuss short- 
ly* 

We have also computed the probability density function 
for the radius of gyration P( R, ) for different values of n and 
N by taking averages over 100 configurations g in each case. 
We have found that P( R, ) can be approximated reasonably 
well by a phenomenological fit to a Gaussian distribution, as 
shown in Fig. 6. 

In the next section we discuss the classical Flory theory 
in the context of network formation from monodisperse 
polymer chains in three dimensions, and calculate the expo- 
nents a andp within the framework of this theory. We then 
go on to discuss the effect of the finite size of the samples and 
the presence of higher order interaction terms on the values 
of a and fl as computed in the numerical simulations. 

A. Flory’s mean field approximation 

In order to compute the free energy associated with one 
of the aggregates, we will start by considering the simplest 

3.0 

2.5 
lo- 
9: 
OE: 2.0 
\ 

=:” 2 1.5 

1.0 

0.5 

0.0 
2 4 6 8 10 

in(N) 

FIG. 5. Logarithmic plot of& scaled by no,“’ vs the number ofchains N, for 
n = 2, 5, 10, 25, for telechelic ionomers. The maximum number of chains 
for each aggregate is: N = loo0 for n = 25, N = 2500 for n = 10, and 
N = 7500 for n = 2,5. The straight line of slope 0.27 is a guide to the eye and 
the dashed line has a slope equal to the theoretical value fl= I/3. 

realization of a polymer chain: Orr’s (Gaussian or ideal) 
chain model in which a polymer is represented by an unres- 
tricted random walk on a periodic lattice. The free energy of 
such a chain as a function of the end-to-end distance r is 
given by22 

F,(r) =Fn(0) +Z?- (d- 1>r log(r), (4) 

where d is the space dimensionality, T the absolute tempera- 
ture, and n the chain length (the lattice spacing has been 
taken equal to 1). 

When considering a self-avoiding chain we must include 
in the previous expression the z-body interaction term ori- 
ginated by the application of the excluded volume criterion. 
This term causes the radius of gyration of the chain to be 
greater than that of a Gaussian chain. Below a critical di- 
mension, then, the chain with the same mass has a linear 

ln(RJ 3 

OJ 
2 4 

ln(NT 
8 10 

FIG. 4. Logarithmic plot of R, vs N, for different values of the chain length FIG. 6. Probability density function P(R,) for the radius of gyration for 
n. The straight lines are the best fit to the data. The exponent B  calculated n = 25 and N = 100 and 1ooO. The histograms obtained are fitted by a phe- 
from above fits are given by fl= 0.27 f 0.05. nomenological Gaussian distribution. 
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extension larger than the ideal chain; we look for a func- 
tional dependence for the mean end-to-end distance 
(4 = r. z PI” with Y > +j (where the symbol z stands for the 
asymptotic leading behavior for large n). 

ory, let us consider the effect of the three-body interaction 
term on the radius of gyration. 

The z-body interaction term can be written as 
wTC’f/2, where for z = 2, w = (1 - 2~) is the excluded 
volume parameter and x the Flory’s interaction parameter; 
x = 0 for ideal solvents and x < ; for good ones. C is the 
local concentration of monomers, C = n/P. The interaction 
term becomes 

We can write the free energy as: 

F=Fl+F2+F3. (11) 
Where F 1, F2, and F 3 represent the elastic term, the two- 
body interaction term, and the three-body interaction term, 
respectively. 

For a single chain at the overlap concentration 

FIzRi/n, 

tiT -nzr- (z- I)d< 

2 
Adding this term to (4) and minimizing the resulting 
expression with respect to r, we get 

dro -= d- 1 + @(Z- 1) nzr-‘z-l)d-l 

2 0 (6) 
n r. 

Assuming r, _ - n’ and considering the n dependence only we 
get 

n 1’ ,- I __,-v+,z-CL--l)dv--v. (7) 
If we assume - Y <z - (z - 1) dv - Y or equivalently 
t*<z/[(z- l)d],thenthefirsttermoftherhsofEq. (7)is 
negligible compared to the second one for large n. Equating 
the powers of the leading term in n of both sides we get 

v- 1 =z- (z- l)dv-Y 

or 

(5) F2zR 0°C” zRt,dn/R,d)2 = RGdn2, (12) 
F3zR ;Ce3 zRztfn/Rz)3 = R;2dn3. 

For a system with Nchains the elastic energy term will be N 
times the elastic energy of a single chain. For F 2 and F 3 we 
can take the same expression as before but with the monomer 
concentration of the cluster at the overlap threshold, 
Nn/R ,“, so the asymptotic behavior of each term is 

FlzNR~/n, (13a) 
F2-R dC”2 = R - g -dn2N2 g , (13b) 
F3zR,dCe3 = RguZdn3N3, (13c) 

where R, is the radius of gyration of a single chain and R, 
the radius of gyration of the aggregate. They scale as R, z ny, 
R, z naNP. We have seen before that including the two-body 
interaction term [making z = 2 in Eq. (5) 1, in the expres- 
sion of the free energy, Eq. (4)) we get a = $; whereas, con- 
sidering z = 3, allowing three-body interactions only, the ef- 
fect is to lower the value of a to a = Y = $. We are interested, 
then, in finding out what is the importance of F 3 when F 2 is 
also present. The asymptotic behavior of F 1 + F 2 is given by 

Fl +F~zNR~/~+R;~(N~)~ 

zNn2”- 1 +N2-L?dn2-ad. (14) 
By minimizing F 1 + F2 with respect to n we finally get 
0 = l/d and a = (3 - 2v)/d and then 

F1~F2~Nn2”-‘, 

F3=:Nn4”-3. 
(15) 

,’ = z+ 1 
2+ (z- 1)d 

(8) 

valid for d < (22/z - 1) = d,. Whereas for d>d, (the criti- 
cal dimension) we have Y = f. 

For d = 3 and considering only two-body interactions 
(z = 2), we recover the results of Flory’s theory Y = ;. If 
only three-body interactions are allowed (z = 3) then Y = 4, 
lower than the previous one. 

We now assume that the mean end to end distance r,, is 
proportional to the radius of gyration of a single chain, R, . 
Furthermore, we consider that every chain is a fully equili- 
brated self-avoiding random walk at every stage of the aggre- 
gate growth, thus, the aggregate is expectedi to have a size 
such that its monomer concentration, Nn/R i, is propor- 
tional to the monomer concentration of a chain, n/R 0” (the 
so called overlap threshold concentration C*): 

C*=n/R,dccNn/R,d. (9) 

Assuming z = 2, R, z n 3’(d + *) so that the radius of gyration 
scales as 

R -N l/dn3/(d+ 2) 
g- (10) 

The values predicted for the exponents by this relation 
are, assuming d = 3, a = v = $ and fl= $ (p = l/d in gen- 
eral dimensions). However, the values for the exponents ob- 
tained from the numerical simulation are lower than those 
predicted by Eq. ( 10). The same discrepancy was seen in the 
previous two-dimensional studies.‘5”9 

In order to explain the fact that the value for a in the 
simulation is smaller than the value obtained on Flory’s the- 

Sintes, Toral, and Chakrabarti: irreversible aggregation process 5119 

If v < 1 (d> 1) F3 is less important than F2 but one can 
conclude that the effect of F 3 is to reduce the effective value 
for the exponent a making it lower than Y. 

As discussed above, the presence of three-body or high- 
er order interactions then can decrease the value of a from 
that predicted in Flory’s classical theory. However, we be- 
lieve that the finite size of the clusters also affect the expo- 
nents, in the sense that the clusters of these sizes are yet to 
enter the true asymptotic scaling regime. This is particularly 
true for the exponent B as we will discuss in the next section. 
It was pointed out in Ref. 15 that the presence of self loops 
which cause the cluster to collapse could somewhat reduce 
the value of /?. It should be noted however that such self 
loops are extremely rare in our simulation. We believe, then, 
that the numerical result p< l/d is due simply to the fact 
that the values of N considered on the simulation are not 
large enough to enter the scaling regime in which (3) is sup- 
posed to hold fully. To support this expranation, we have 
obtained exact (lower) bounds of a geometrical origin for 
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the exponent fl. These bounds turn out to reproduce accu- 
rately the values for ,L? obtained in the numerical study. 

B. A geometrical restriction 
The radius of gyration R, of any structure formed by N 

chains of length n satisfies the geometrical restriction 
Nn 

(16) 

where rj characterizes the position of the ith monomer from 
the center of mass and Rh is the radius of gyration of an 
hypersphere (the most compact structure possible) of mass 
(volume) M  = Nn. If R is the radius of the hypersphere we 
note R = (2) ‘j2Rh,ford=3and 

1U=$rR~=4/3~(5/2)‘/~R; =C,R;f, 

where Cd is a constant. From ( 16) we get 

(17) 

By writing R, = ANO we arrive at 

log A + l/d lOg( cd/n) 
1ogN ’ 

(18) 

Here log(A) can be measured as the independent term com- 
ing from the fit of the data in the log( Rg) vs log(N) repre- 
sentation. Note that p- l/d when N- a. 

In Table I we compare the lower bounds for/?, calculat- 
ed from Eq. ( 18) compared with the values obtained by the 
numerical simulation. We note, as mentioned before, that 
the lower bounds agree reasonably well with those values of 
fl found in the simulation. This supports the fact that the 
values of N considered here although quite large (e.g., 
N = 7500) are not large enough to enter the asymptotic re- 
gime. 

IV. FORMATION OF REVERSE MICELLES 

In this study we have investigated the influence of the 
chain length on the morphology of the cluster for two limits: 
short chains (n<25) and long chains (n)50). 

For short chains we have systematically varied the 
length from n = 2 to n = 25 and the number of chains from 
N= 1Oto IOOOOforn = 2,3,4;fromN= lOtoN= 2500for 
n = 10; from N= 10 to 500 for n = 15 and from N= 10 to 
100 for n = 25. In Figs. 7 and 8 we show some of the typical 

TABLE I. Lower bounds for pcalculated from Eq. ( 13) for telechelic ion- 
omers are compared with the values ofpobtained from the simulation. A  is 
obtained from the fit to the expression R, = AN? 

n N log A  P  ~(simulation) 

2 7500 -0.14 0.27 0.29 
5 7500 0.36 0.25 0.27 
10 2500 0.80 0.22 0.25 
25 1000 1.29 0.17 0.23 

n=2,N=5000 

FIG. 7. Typical morphology of reverse micelles for short chains (n = 2) 
with one sticker site. The number of chains is N = 5000. 

morphologies of those aggregates. We note that the struc- 
tures formed are more compact than the ones observed in 
telechelic ionomers. They appear to be ellipsoidal in two di- 
mensional cross sections as can be easily seen in Fig. 9, where 
we present several cross sections of the aggregate for differ- 
ent planes. Here we have also calculated, as in the case of 
telechelic ionomers, the exponents a and fi characterizing 
the asymptotic behavior of the radius of gyration as 
R, =: n”N”. After averaging over 100 runs, we present in Fig. 
10 a log-log plot of the radius of gyration R, vs the chain 
length n, for different values of N. From the best least 
squares fit to the data we obtain values for a as 0.45 + 0.05. 
In order to compute the exponent p we now fix n to a partic- 
ular value and represent log (R, ) vs log(N) (Fig. 11) . The 
fit to the data gives values forfl as 0.3 1 +_ 0.02. In Fig. 12 we 
have plotted log(R,/n”) vs log(N), taking a = 0.45. We 
also include in this figure a solid line of slope 0.31 i.e., to 
guide the eye and a dashed line with slope f, expected from 
Flory theory. Obviously, the bounds found on the previous 
section, being of a purely geometrical origin, also apply in 

I 

FIG. 8. Same as Fig. 7 for n = 10 and N = IGOO. 
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FIG. 9. Different cross sections with a vertical coordinate z for a reverse micelle corresponding to n = 2, N = 5000. The middle plane is z = 56. These 
ellipsoidal shapes are a typical characteristic of these structures, as seen in experiments (Ref. 8). 

2.5 
ln(R,) 

1 2 3 

ln(n> 

3.0 

2.5 
ln(R,) 

2.0 

2 4 
ln(NY 

8 

FIG. 10. Logarithmic plot of the radius of gyration R, vs the chain length n 
for several values of N, for reverse micelles. The straight lines are the best to 
the data yielding a = 0.45 f 0.05. 

FIG. 11. Logarithmic plot of R, vs N, for different values of the chain length 
n for reverse micelles. The straight lines are the best fit to the data yielding 
p = 0.31 + 0.02. 
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TABLE II. Same as in Table I for the case of reverse micelles. 
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3.0 
F 

2.5 n N 
lo- -! 
“G 2.0 

2 10000 

ha 
3 10000 

02 5 750 0 

z 
1.5 10 250 0 

15 500 
1.0 25 250 

0.0 
2 4 

ln(Ny 
a 

FIG. 12. Logarithmic plot for reverse micelles of R, scaled by no4’ vs the 
number of chains N for n = 2, 3, 5, 10, 15, 25. Note that most of the data 
obtained collapse on a single master curve. The maximum number of chains 
for each aggregate is: N = loo0 for n = 2,3; N = 7500 for n = 5; N = 2500 
forn=lO;N=5CXJforn=15;N=lCOforn=25.Toguidetheeyewe 
include a straight line of slope 0.31. The dashed line corresponds to the 
theoretical value 0 = 4. 

this case. We show in Table II the values obtained for fi in 
our simulations for each n, and the corresponding bound 
values calculated from Eq. ( 13) where we have considered 
the highest value for N. Note that as N increases, the bound 
values agree better with those found in our simulations. 

We now turn to the study of long chains. Figure 13 is an 
example of these structures. They seem irregular in shape 
and they are less compact than the clusters generated with 
short chains. We also represent in Fig. 14 several cross sec- 
tions. Figure 15 shows the radial density as a function of r, 
for different values n and N. For small n (n < 10) we can see 
a plateau corresponding to a compact and homogeneous 

n=ZOO,N=50 

log (A) P fi(simulation) 

- 0.27 0.28 0.31 
- 0.13 0.28 0.31 

0.07 0.28 0.31 
0.30 0.27 0.33 
0.42 0.26 0.32 
0.78 0.22 0.28 

core for rgR,, then the density drops quickly to zero. For 
longer chains the density appears as a rather smooth curve 
due to the inhomogeneities and less compact form of the 
clusters. 

In two dimensional studies a critical chain length n, was 
found, such that for n <n, the chains form an extended 
network and for n > n, the tails would sterically hinder a new 
chain from attaching to the aggregate because of the ex- 
cluded volume effect, generating “frozen” structures. This 
does not seem to be the case at the present three dimensional 
study, where we can add to the cluster as many chains as we 
want. However a word of caution is required. As the aggre- 
gate grows, an increasing amount of time (as measured by 
the number of trials) is needed to successfully add a new 
chain into the aggregate already formed. The rate of growth 
of the aggregate diminishes very much as its size increases. 
In real systems fragmentation processes will also be present 
and the aggregation will be reversible. When these processes 
are included the dynamics will drive the system to a steady 
state characterized by aggregates with a limited number of 
chains belonging to them, as already seen in a recent three- 
dimensional study.” 

V. CONCLUSIONS 

FIG. 13. Morphology obtained for reverse micelles with long chains 
(n = 200) for N = 50. 

In this paper we have studied the aggregation process 
for self-associating flexible polymer in three-dimensions, fo- 
cusing our attention on the clustering of telechelic ionomers 
and the formation of reverse micelles. In order to simulate 
this process we have used a dynamical model based on an 
extension of Eden’s method. This model was successfully 
used previously in a two-dimensional simulation. This mod- 
el has been shown to share some common features in two 
dimensions with a diffusion limited aggregation type model. 
Our model, despite its simplicity, qualitatively reproduces 
some structures observed in experimental systems. How- 
ever, contrary to the experience in two dimensions, here we 
have not found any “frozen” structure that characterizes 
reverse micelles for sufficient long chains. The long time tak- 
en to add new chains to the aggregate and the absence of 
interactions between reverse micelles and fragmentation 
processes may partially explain these differences with real 
experimental situations. We have calculated the radius of 
gyration of the cluster and related it to the chain length and 
the number of chains belonging to the aggregate. Deviations 
observed from the theoretical values for the exponents a and 
fi, calculated from the Flory theory, can be explained by the 
fact that the sizes of the cluster studied in our simulations are 
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FIG. 14. Several cross sections for reverse micelles with n = 200, N = 50. We show 8 cuts through parallel planes from z = 5 1 to z = 58. The middle plane is 
2 = 55. 

not large enough to enter the asymptotic scaling regime. We 
have found an exact bound for p for finite clusters and have 
shown that the presence of three body interactions, included 
as an extension of Flory’s theory can cause a to be lower than 
the predicted theoretical value. We have also computed the 
probability density function for the radius of gyration for the 
telechelic ionomer model and found that it is well fitted by a 
Gaussian distribution. Density profile for reverse micelles 
are also computed and we have found that for short chains, a 
plateau is present characterizing compact and homogeneous 
structures. 

Our simplified model can be improved in order to make 
it more realistic. We are currently extending our work to 

polymer systems defined without the constraint of a regular 
lattice. Possible modifications include the possibility of al- 
lowing fragmentation processes and also of assigning differ- 
ent probabilities to the sticking process depending on tem- 
perature through a Metropolis type algorithm. 
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