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ABSTRACT: We present results of a detailed Monte Carlo simulation study of a system of a large num- 
ber of polymer chains terminally anchored or end-grafted on a flat surface. We study this system on a 
three-dimensional lattice for several different values of the surface coverage and the chain length. We also 
consider several different distributions for the chain lengths. For monodisperse chains, we find that the 
monomer density profile shows a depletion layer near the grafting plane in agreement with phenomenolog- 
ical theories. Beyond this depletion layer, the density profile can be represented by a parabolic form. This 
result is in agreement with recent self-consistent-field (SCF) calculations rather than with the scaling argu- 
ments that predict a plateau region for the density profile. The chain-end density is also found to be con- 
sistent with the SCF calculations; Le., we find that the free ends of the chains are not excluded from regions 
near the grafting surface. We also study the effect of polydispersity in the chain lengths. In the case of a 
system consisting of two species of polymers of length N and 2N, we find that there is a region in which the 
density profile matches that of the monodisperse case with chain length N ,  in agreement with another 
recent self-consistent-field calculation. The width of this region, however, is narrower than that predicted 
by the theory. We have also considered a uniform distribution of chain lengths and compared the density 
profile with the functional form obtained by intergrating the equations derived in the SCF formalism. The 
agreement between the Monte Carlo data and the theory is remarkable except, again, for the presence of a 
depletion layer near the grafting plane. 

I. Introduction 
The configurations of polymer chains adsorbed at a 

solid-liquid or liquid-liquid interface have attracted con- 
siderable interest in recent years, mainly because of their 
important applications in various different problems of 
colloidal stability, adhesion, lubrication, a n d  biophysics. 
Colloidal particles are k e p t  in suspension and often pro- 
tected against  flocculation by  terminally anchoring (also 
called grafting) polymers o n t o  their  Since 
the adsorbed polymer layers repel each other ,  they  can  
provide a long-range repulsion between t h e  colloidal par-  
ticles. A quant i ta t ive prediction a b o u t  t h e  interactions 
between the stabilized particles for different solvent qual- 
ities and polymer-surface interactions is an extremely 
difficult task,  since th i s  will involve a detailed knowl- 
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Permanent address: Departament de Fisica, Universitat de les 
Illes Balears. Palma de Mallorca, E-07071 Spain. 

edge of the chain conformations near the surface and a 
quant i ta t ive theory of polymer solution dynamics, none 
of which is presently attainable. As a result, previous 
theoretical t r e a t m e n t s  of surfaces bear ing terminally 
attached polymer chains have employed various approx- 
imate  schemes, such  as Flory-type mean-field argu- 
ments,6 phenomenological scaling  argument^,^ and self- 
consistent-field (SCF) methods.*-'' Among these vari- 
ous approaches, the SCF methods seem to be in better 
agreement  with the experimental  observations." 

Both Flory-type a rguments  of Alexander' and scaling 
a rguments  of d e  Gennes7 note that, under  good solvent 
conditions and high enough surface coverage u, allowing 
overlap between individual chains, the chains will be 
s t re tched ,  for  t h e  case of nonadsorbing graf t ing sur -  
faces. These theories do not provide an explicit form 
for the equilibrium monomer density profile as a func- 
t ion of dis tance z f rom the grafting plane (measured in 
uni t s  of monomer size a). The qualitative features  a re  

C 1990 American Chemical Society 
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the following: a depletion zone of width 5 - u-lI2 near 
the surface beyond which the density increases as az213 
until it reaches a plateau of value proportional to 2 1 3 .  
For chains with molecular weight N ,  this plateau extends 
up to a distance h* - Null3 where the density decreases 
to zero. In the SCF theory of Dolan and Edwards,8 a 
diffusion-type equation is solved to obtain the configu- 
rations of terminally attached chains. Although some lim- 
iting cases of the Dolan-Edwards SCF method can be 
handled analytically, one needs to solve the correspond- 
ing equations numerically in the more general cases. 
Recent numerical study13 of this theory indicates that 
for nonadsorbing surfaces and good solvent conditions, 
the monomer density profile is substantially different from 
the form predicted by Alexander and de Gennes. Actu- 
ally, the authors in ref 13 find that the density profile 
shows a maximum near the grafting surface and then 
monotonically decreases to zero instead of showing a pla- 
teau region. In the SCF theories of Scheutjens and 
Fleer,g polymer configurations are modeled as step- 
weighted random walks on a lattice and the concentra- 
tion profile is calculated by an iterative matrix proce- 
dure. Numerical ca l~ula t ions ,~~"~ based on the Scheutjens 
and Fleer SCF method, have also been carried out. These 
studies also indicate that for nonadsorbing surfaces and 
good solvents the monomer density profile deviates from 
the one predicted by Alexander-de Gennes, showing, again, 
a maximum near the grafting surface. Recently, Milner, 
Witten, and Cates" (hereafter to be referred as MWC) 
have simplified the SCF formalism on the assumption of 
strongly stretched chains and weak excluded-volume inter- 
actions and found a parabolic form for the concentra- 
tion profile by analytical calculations. The authors have 
compared their results with those obtained from numer- 
ical solutions of Scheutjens-Fleer SCF-type  equation^'^ 
and claimed good agreements, although we note that the 
MWC calculation does not reproduce the maximum in 
the density profile for distances close to the grafting sur- 
face, observed by the methods described before. Since 
all the SCF-type calculations use essentially a mean- 
field approach, we believe that independent numerical 
computations of the density profile will be quite useful 
to understand the validity of the SCF-type calculations 
or, for that purpose, Flory- and scaling-type calculations 
as well. 

With an eye to this direction, Monte Carlo15*17 and 
molecular dynamics18 simulations have been carried out. 
The molecular dynamics calculations seem to support the 
parabolic density profile for not too large surface cover- 
ages and for distances not too close to the grafting sur- 
face, in which regime the calculations are not very pre- 
cise. Also, in the molecular dynamics simulation18 one 
needs to consider a short-range repulsive interaction 
between the grafting surface and the monomers whereas 
in the MWC theory no such interactions are assumed. 
Moreover, ref 18 considers monodisperse polymer chains 
only, and no detailed comparison with theorylg was car- 
ried out for other distributions of chain lengths. In pre- 
vious Monte Carlo simulations one finds a density pro- 
file showing a maximum near the grafting surface. How- 
ever, these Monte Carlo simulations are somewhat 
inconclusive, since the authors have studied single chain 
configurations and used the periodic boundary condi- 
tions to mimic  the effect of surface coverages, and it is 
not clear at all whether these studies provide quantita- 
tive informations about the density profile when the 
actual surface coverage is varied. 

In this paper, we report results of a detailed Monte 
Carlo simulation study of a system of a large number of 

polymer chains end-grafted onto a surface, for several 
values of the surface coverage and chain length. We con- 
sider different probability distribution functions for the 
chain lengths: a monodisperse distribution, a bimodal dis- 
tribution, and a uniform distribution between a mini- 
mum and a maximum value for the chain length N. For 
monodisperse chains, we find that the monomer density 
profile can be represented by a parabolic form, except 
for a depletion zone very close to the grafting surface. 
The width of this depletion zone is consistent with that 
predicted by scaling theories.' We also compute the den- 
sity of the free chain ends as a function of distances from 
the grafting surface and find that there is no "dead zone"; 
i.e., the free ends are not excluded from regions near the 
grafting surface, in agreement with SCF calculations of 
MWC and the molecular dynamics calculations.ls We 
also compare the results for the density profile in the 
case of bimodal and uniform distributions with those of 
another recent SCF-type c a l c ~ l a t i o n s . ~ ~  We find good 
agreement with the theory except, again, for the pres- 
ence of a depletion zone of width of a few monomer spac- 
ings near the surface. 

The rest of the paper is organized as follows: in sec- 
tion I1 we describe the model and the numerical meth- 
ods used in this study, in section I11 we present the results 
for both monodisperse and polydisperse chains, and finally, 
in section IV, we conclude with a brief summary and con- 
clusions. 

11. The Model and Numerical Procedure 
In order to simulate the behavior of many polymer chains 

terminally anchored to a surface, we have carried out exten- 
sive Monte Carlo calculations. We choose a simple cubic 
lattice consisting of L, X Ly X L, sites, with L, = Ly = 
80 and L, = 100 and use periodic boundary conditions 
in the x and y directions. The grafting (and otherwise 
nonadsorbing) surface is located at  z = 0, and a second, 
also nonadsorbing, surface is situated at  z = 99. During 
the simulations, the chains are not allowed to cross these 
surfaces; otherwise, there is no explicit interactions between 
the chains and the surfaces. The second surface is placed 
at a far enough distance from the grafting plane such 
that it does not affect the chain configurations for the 
chain lengths considered in the simulations. Thus, effec- 
tively, our results correspond to the limit L, - m. We 
study systems of polymer chains consisting of N + 1 mono- 
mers with N = 49 and 99 for the monodisperse case, for 
several values of surface coverage u. The number of poly- 
mer chains present in the system is then given by Nt = 
aA, where A = L,Ly is the area of the grafting plane. 
The maximum value of u considered in the simulations 
is 0.12, for which case there are 768 chains in the system. 
All the chains in the simulations obey excluded-volume 
interactions, such that a particular lattice site cannot be 
occupied by more that one chain at a time. We have 
chosen random intial conditions for the simulation; i.e., 
for a particular run, one end of each of the Nt chains is 
kept fixed at a randomly chosen vacant site on the graft- 
ing surface. The results obtained are then averaged over 
10 such initial configurations in each case. 

In the presence of excluded-volume interactions and 
for large values of (T and N ,  it is extremely time-consum- 
ing to randomly end-graft a large number of chains. We 
follow a modified version of the existing methodm of grow- 
ing and equilibrating chains simultaneously. At  each step 
we try to put a complete chain as a self-avoiding random 
walk starting from a randomly chosen vacant site on the 
grafting surface. If the trial fails, all the chains already 
present in the system are equilibrated by one unit of time. 
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We define our unit of time, in Monte Carlo steps per 
monomer (MCM), as Nt "N-bead cycles", i.e. NJV ele- 
mentary bead jump attempts. The particulars of an ele- 
mentary bead jump attempt depend on the local envi- 
ronment of the randomly chosen monomer and could be 
one of the following:21*22 an end bead jump, a normal inter- 
nal bead jump, or a crankshaft motion. After all the 
required chains are grafted, the final equilibrating pro- 
cess starts. The starting configurations, at this stage, are 
equilibrated over times much large than the longest relax- 
ation time of an individual chain with excluded-volume 
interactions. I t  is well-known" that for a chain with N 
+ 1 beads and under excluded-volume interactions, the 
largest relaxation time T , ~ ~ ~ ~ ~  is given by, in units of N- 
bead cycles, 

In the monodisperse case, we have equilibrated the sys- 
tem for a time T = l 0 ~ ~ ~ ~ ~ ~ ~  MCM. Which means that, 
on average, every chain has been equilibrated 10 times 
the largest relaxation time for a single chain. When, for 
example, N = 99 and u = 0.12 (correspondingly, Nt = 
768), the system has been equilibrated for about 45 000 
MCM, or 3.4 billion monomer updates. This is a much 
more extensive calculation than any of the previous Monte 
Carlo studies of polymer systems known to us. For the 
polydisperse case, the equilibration time 7 is chosen to 
be 10 times T~~~ MCM, where T~~~ is the value of T~~~~~~ 

for the maximum N in the sample. After the equilibra- 
tion is done, several different quantities such as mono- 
mer density and free chain-end density as a function of 
distances from the grafting plane are computed over 
another time T ,  = 10 000 MCM. These quantities are 
then averaged over 10 different random initial conforma- 
tions of the chains. 

111. Results 

A. Monodisperse Case. The monomer density q ( z )  
as a function of distance z from the grafting plane, for 
several values of the surface coverage a, is shown in parts 
a and b of Figure 1, for chain lengths N = 49 and N = 
99, respectively. For all values of u considered here the 
density profile shows a maximum close to the grafting 
plane, also seen in previous Monte C a r l ~ ' ~ ? ' ~  and numer- 
ical SCF13-15 calculations. Although we cannot pre- 
cisely determine how the location 5 of the maximum var- 
ies with coverage, we observe that the values of 4 (a few 
lattice spacings) are in rough agreement with the 
relation7 5 = a-'I2. We also note that beyond these 
maxima the p(z) curves can be approximated by a par- 
abolic form q ( z )  = A ,  - B,z2 for all values of a and N. 
The quality of the parabolic fit improves as the chain 
length is increased. Further details of the parabolic fit 
are listed in Table I. The self-consistent calculations of 
MWC1' predict a parabolic form for all z up to a maxi- 
mum value h as 

(2) 
1 p(z) = ;(A - Bz') O(h-Z) 

where 

(3) 

(4) 

e ( x )  is a step function of x ,  and, for a system under no 

3 -  

3 

0 
I I 

r _  13 20 33 4c 5C 
z 

Figure 1. (a) The monomer density profile &) vs distance 
from the grafting plane z for several values of the surface cov- 
erage u and for chain length N = 49. The symbols O , O ,  and A 
correspond respectively to u = 0.04, 0.08, and 0.12. The solid 
lines are the parabolic fit to the form (p(z) = A,  - Bg2. The 
details of the fit are listed in Table I. (b) The monomer den- 
sity profile &) vs distance from the grafting plane z for sev- 
eral values of the surface coverage u and for chain length N = 
99. The symbols ., 0, and A correspond respectively to u = 
0.04,0.08, and 0.12. The solid lines are the parabolic fit to the 
form &) = A, - B$. The details of the fit are listed in Table 
I. 

external force like the ones considered here 

(5) 

Here o is the strength of the excluded-volume interac- 
tion. The parameters of the parabolic fit are thus deter- 
mined by this theory as 

X' Bo = - 
SMO 

These equations lead to the following identities: 

(7) 

(9) 

After computing the best parameters of the parabolic fit 
A,  and Bo by a least-squares method, we have checked 
that eq 8 is well satisfied (see Table I). Then, from eq 9 
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Table I 
Values of the Parabolic Fit p(z) = A, - Bo2 for N =  49 and N =  99 for Different Values of ua 

N U Zmin GuaX A0 BO (A2/Bo)(4/9u2N2) 9u2u2/ 32A2 r2/8N2B0 
49 0.04 3 15 0.20 8.75 x 10-4 1.058 0.555 0.587 
49 0.08 3 18 0.33 1.03 x 10-3 1.009 0.494 0.499 
49 0.12 3 20 0.44 1.02 x 10-3 1.074 0.469 0.504 
99 0.04 4 29 0.21 2.67 x 10-4 0.983 0.480 0.471 
99 0.08 4 33 0.34 2.77 x 10-4 1.005 0.452 0.454 
99 0.12 4 39 0.44 2.68 x 10-4 1.001 0.469 0.470 

a The parabolic fit is tried beyond the maximum of the density profile and seem to work for distances between zmin and z, whose val- 
ues are also listed in the table. Column 7 should be 1 if A, and Bo were consistent with MWC. Columns 8 and 9 are different values for w 
according to eqs 9 and 10 (see text). 

0 

0 

9 
"1 

0 

O D "  0- " 
a;;.: 0 

and 10 we have determined w for any value of u and N .  
The results are also listed in Table I and do not show 
any systematic dependence on either u or N .  From this 
table we extract the value of the excluded-volume-inter- 
action strength for our lattice model as the average of 
the results listed in columns 8 and 9 of Table I: 

w = 0.50 f 0.05 (11) 

Another equivalent, yet illuminating way of present- 
ing the data is to note that, according to eq 6 and 7, ~ ( 0 )  - u2I3 and h, the distance at  which p(h) = 0, scales as 
Null3. It  is possible then to rewrite eq 2 in a scaling 
form 

$ = F 1 ( I )  Null3 

where Fl(x) is a scaling function independent of u and 
N .  In order to test this scaling prediction, we rescale 
I&) by u2I3 and z by Null3 and plot the corresponding 
graphs in Figure 2. All the data seem to collapse reason- 
ably well on a single master curve. 

Another important claim of MWC is that free ends of 
the chains are not excluded from regions near the graft- 
ing surface. Actually, an analytical form of chain-end 
density, &), is found in the above c a l ~ u l a t i o n : ~ ~  

Since we have been able to determine the value of w quite 
accurately from the density profile data, all the param- 
eters in the above equation are known. In order to stress 
the universal features of this expression, we note that if 
t(z) is reduced by a 2 / 3 / N  and z is reduced by Null3, then 
one should have a scaling curve for the reduced chain- 
end density, which should not depend on either N or u. 

0 . 0  0.5 1 . c  1.5  

z / N ~ ' / ~  
Figure 3. Scaling plot of the density, &), for different values 
of u and N.  The solid line is the MWC predictionls eq 15, with 
w = 0.5. The symbols have the same meaning as in parts a and 
b of Figure 1. 

Explicitly we obtain 

where the scaling function F2(x)  is given by 

We show such a scaling plot for the chain-end density in 
Figure 3 together with the theoretical curve, eq 15, using 
w = 0.5. Although some of the important features (such 
as the location and value of the peak) of the scaling func- 
tion F 2 ( x )  obtained in the simulation are well repro- 
duced by eq 15, we note that there are some systematic 
deviations from the simulation data. In particular, MWC 
predict that ~ ( z )  should tend to zero linearly with z,  whereas 
we obtain a finite value for the chain-end density a t  z = 
0. Also, the tail of the computed chain-end distribution 
does not show the abrupt decrease to zero predicted by 
MWC. It is difficult to determine whether these differ- 
ences arise from the relatively small chains used in our 
simulations or from the fact that the theoretical calcula- 
tions for 4 2 )  are based on a parabolic monomer density 
profile, which we have shown not to be accurate for small 
distances near the grafting plane. The quality of the scal- 
ing is better for N = 99, where the graphs for the two 
largest coverages agree with each other, whereas the cor- 
responding plots for N = 49 show strong deviations from 
scaling. We attribute these deviations to the fact that 
we are not probably in the scaling regime for N = 49. 

B. Effect of Polydispersity. In another recent paper 
Milner, Witten, and Cateslg (hereafter to be referred as 
MWCB), extended the SCF formalism to study the effect 
of the polydispersity of the chain lengths on the mono- 
mer density profile. In particular, they calculated the 
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Figure 4. (a) The monomer density profile for a bimodal dis- 
tribution function with chain lengths N = 49 and N' = 2 N  = 
98. The symbols o,O, and A correspond to u = 0.04,0.08, and 
0.12, respectively. The dotted lines correspond to data for den- 
sity profiles for monodisperse chains with N = 49. Note the 
perfect agreement between these two sets of results for dis- 
tances close to the grafting surface. The solid lines are the cor- 
responding MWC2  prediction^.'^ (b) The density of free chain 
ends for a bimodal distribution function with chain lengths N 
= 49 and N' = 98, and u = 0.12. The squares are the results of 
the simulations. The dotted line is the theoretical profile for 
N = 49 monodisperse chains with u' = a12 = 0.06 and for z < 
z1 (see text). The good agreement of the simulation data with 
this curve strongly suggest that the N chains are mostly con- 
fined in this region. The solid line is the theoretical prediction 
for z > 2 ,  (eq 18b) with u = 0.12. Good agreement with this 
curve supports the MCW2 argument that all the long chain ends 
are a t  the outer end of the brush. 

density profile for the cases of a bimodal and a uniform 
distribution of the chain lengths. In order to check the 
validity of these SCF calculations, we compute the mono- 
mer density profile for these two distributions for sev- 
eral values of surface coverage u. 

For the bimodal distribution, we consider two groups 
of chains, each group containing the same number of 
chains. The chain length in these two groups are cho- 
sen t o  be N = 49 and N' = 2N = 98, respectively. In the 
case of N' = 2N, MWC2 predict that the density profile 
should be that of a monodisperse distribution of chains 
with length N up to a distance, z,, given by 

z 1  = h(1 - 2 - 2 / 3 ) 1 / 2  (16) 
( h  is defined in eq 5) ,  beyond which it should cross over 
to a functional form given by 

where A, and Bo are defined in eqs 6 and 7 and h,  = h(1 
+ 2-'13). We show the density profiles in Figure 4a for 

13 
7 
i 

Figure 5. The monomer density profile for a uniform distri- 
bution function with chain lengths between N ,  = 17 and Nz = 
80. The symbols 0, 0, and A correspond to IJ = 0.04,0.08, and 
0.12, respectively. The solid lines are the corresponding MWC2 
predictions.lg 

several values of the surface coverage u along with the 
theoretical curves and the corresponding results for the 
monodisperse case with N = 49. There is indeed a region 
close to the grafting surface where the profiles for the 
bimodal and monodisperse distributions agree with each 
other, even though the profiles cannot be approximated 
by a parabolic form as discussed earlier. Moreover, the 
two distributions start deviating at  a distance z i  smaller 
than the predicted z,. As the coverage increases, zl' 
approaches z1 and the Monte Carlo profile develops hints 
of a singularity a t  this point. Of course, it is always dif- 
ficult to observe a nonanalytic behavior in a numerical 
simulation because finite samples tend to smooth out any 
singularity. 

We also calculated the chain-end density &) for the 
bimodal distribution. Our results for u = 0.12 are shown 
in Figure 4b. The MWC2 theory predicts that all the 
N-chain free ends are found for 0 < z < z1 (zl is defined 
in eq 16) and all the "-chain free ends are found beyond 
2,. Explicitly, this theory predicts that 

K 2  

4WM 
E(Z) = -z(h2 - z2)1/2; 0 < z < z1 (18a) 

and 

where y = ( 2 , / 2 ) ( ( z / z 1 )  + ( z , / z ) ) .  In order to compare 
the simulation results with the MWC2 calculations, we 
show in Figure 4b the corresponding end-density func- 
tions predicted in the theory. The agreement is reason- 
ably good and thus supports the MWC2 argument of seg- 
regation by chain length (all ends of long chains being 
in  the outer half of the brush). 

For the uniform distribution case, we consider chain 
lengths uniformly distributed between N ,  = 17 and N ,  
= 80. The corresponding density profiles for three val- 
ues of u are shown in Figure 5. By integrating MWC2 
equations in this case, we obtain the functional form for 
the density profile &) (rather for the inverse function 
z(d) as 
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The distribution is cutoff a t  z = h, = ( 1 / 7 r ) ( ~ A ~ / 2 ) ~ / ~  x 
(3N, + N J .  We show the corresponding curves in Fig- 
ure 5 as well. Apart from the depletion zone near the 
surface, the agreement between Monte Carlo results and 
the analytical theory is remarkable. 

IV. Conclusions 
We have carried out a detailed Monte Carlo simula- 

tion for the grafted polymer brush for several values of 
surface coverages and computed the monomer density 
profile for both monodisperse and polydisperse distribu- 
tions of chain lengths. The simulations are computation- 
ally very extensive since we consider a large number of 
long chains in the system in the presence of excluded- 
volume interactions. Also special care is needed in let- 
ting the system properly relax to equilibrium before any 
measurements are carried out. If each chain in the sys- 
tem is not equilibrated over a time much larger than that 
of a single isolated chin, we observed some unphysical 
results. This is particularly true for large values of sur- 
face coverages. 

For the monodisperse case, the monomer density pro- 
file computed in our simulations shows a depletion zone 
near the grafting plane in agreement with phenomeno- 
logical  argument^.^ Beyond this depletion layer, the den- 
sity profile can be approximated by a parabolic form. 
This result is consistent with recent analytical calc- 
ulations16 but not with the scaling arguments, which sug- 
gest a plateau region for the density profile. Moreover 
the free chain ends are not excluded from near the graft- 
ing plane in agreement with ref 16. We point out that 
in the comparison of the theory and the Monte Carlo 
simulations, only one parameter needs to be deter- 
mined, namely, the strength of the excluded-volume inter- 
actions, w. 

In the case of a system consisting of two species of 
polymers of length N and 2N, we find that there is a 
region in which the density profile matches that of the 
monodisperse case with chain length N ,  in agreement with 
ref 19. The width of this region, however, is narrower 
than predicted by the theory, and no parabolic fit seems 
to be valid for distances near the grafting plane. The 
density of free chain ends agree reasonably well with 
MWC2 predictions, and we find that almost all the ends 
of longer chains are in the outer region of the brush. 

We have also considered a uniform distribution of chain 
lengths and compared the density profile with the func- 
tional form obtained by integrating the equations derived 
in the SCF formalism of Milner, Witten, and Cates. The 
agreement between the Monte Carlo data and the the- 
ory is remarkable except, again, for the presence of a deple- 
tion layer near the grafting plane. 

Finally, we note that it will be interesting the calcu- 
late the force profiles by squeezing the brush against a 
wall at  the front, since this kind of calculation is quite 
relevant for experimental situations." For this purpose 
one needs to calculate the free energy of the system which 
is difficult to calculate in Monte Carlo calculations. How- 

ever, we point out that methods for determinin the pres- 
sure in lattice simulations have been developed in recent 
years. These methods can be generalized to the case of 
grafted chains as well and will be addressed in future 
 publication^.'^ 
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