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We study the voter model dynamics in the presence of confidence and bias. We assume two types of voters. Un-
biased voters whose confidence is indifferent to the state of the voter and biased voters whose confidence is bi-
ased towards a common fixed preferred state. We study the problem analytically on the complete graph using
mean field theory and on an Erdős-Rényi random network topology using the pair approximation, where we as-
sume that the network of interactions topology is independent of the type of voters.We find that for the case of a
random initial setup, and for sufficiently large number of votersN, the time to consensus increases proportionally
to log(N)/γv, with γ the fraction of biased voters and v the parameter quantifying the bias of the voters (v = 0
no bias). We verify our analytical results through numerical simulations. We study this model on a topology of
the network of interactions depending on the bias, and examine two distinct, global average-degree preserving
strategies (model I and model II) to obtain such random topologies starting from the random topology
independent of bias case as the initial setup. Keeping all other parameters constant, in model I, μBU, the
average number of links among biased (B) and unbiased (U) voters is varied at the expense of μUU and μBB, i.e.
the average number of links among only unbiased and biased voters respectively. In model II, μBU is kept
constant, while μBB is varied at the expense of μUU. We find that if the agents follow the strategy described by
model II, they can achieve a significant reduction in the time to reach consensus as well as an increment in the
probability to reach consensus to the preferred state. Hence, persuasiveness of the biased group depends on
how well its members are connected among each other, compared to how well the members of the unbiased
group are connected among each other.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The process by which people adopt an opinion about a given issue,
such as endorsing a political option or choosing a commercial product,
is a complex social phenomenon, and often the underlyingmechanisms
driving opinion dynamics are notwell understood. Yet, public opinion is
today a key player in most issues faced by our societies and policy
makers are obliged to take into account the evolution of public opinion.
Broadly speaking, the potential influences on an individual's opinion
can be divided in three categories: those that are intrinsic to the individ-
ual such as, for example, personal beliefs; global external factors such as
massmedia and, finally, interactionswith othermembers of the society.
In order to capture the opinion changes subject to this latter source of
influence, and inspired by the idea of understanding macroscopic be-
havior emerging from simple interactions between particles, a plethora
of models for opinion dynamics has emerged in the statistical physics
. This is an open access article under
literature [1–3]. Among them, one of the simplest and most extensively
studied is the so-called voter model [4], a model of opinion dynamics
that leads to herding. It was independently proposed in various research
fields to study, among other things, neutral genetic drift in an ideal pop-
ulation [5,6], competition for territory between two countries [7],
spreading of infectious diseases [8], language competition [9–12], kinet-
ics of catalytic reactions [13–15], coarsening phenomena [15,16], opin-
ion dynamics [17], political elections [18], etc. One of the
attractiveness of the voter model is that it is one of the few known
interacting-particle models exactly solvable in regular lattices of any
spatial dimension D [19,20]. Directly, or in many variations, it can also
be related to other standard well studied models in mathematics and
physics such as coalescing random walkers [21], the zero-temperature
Glauber kinetic Ising model and the linear Glauber model [22].

In its original formulation [7,21], the voter model was introduced as
an Ising-like model where an individual (an “agent” or “voter”) associ-
ated with a lattice site i can adopt two different values or “opinions”
si = ± 1. The dynamics of the system is implemented by randomly
choosing one individual and assigning to it the value of the opinion of
one of its randomly chosen nearest neighbors. The voter model is
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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characterized by purely noise-driven diffusive dynamics. It exhibits
two symmetric absorbing states, called “consensus” states, from which
the system cannot escape andwhich, forfinite-size systems, are reached
almost surely. If N is the total number of voters, the mean time to reach
consensus, TN, scales in regular lattices as N2 in D=1, as N log N in D=
2, and as N in D= 3 [23]. Many social systems display interactions that
find a better characterization as complex networks with distinctive
connectivity properties [24,25]. For this reason, in the last decades, an
extensive effort has been devoted to studying voter-like models on
complex networks [26–33]. In this scenario, defining μk as the k-th mo-
ment of the degree distribution, it is found that for uncorrelated net-
works, TN ∼ Nμ12/μ2, which grows sublinearly in N for a sufficiently
broad degree distribution [30,31].

Although the early versions of themodel consider that all agents are
identical, it is obvious that in real applications there will be structural
differences between the agents. For instance, the number of nearest
neighbors, the rate of interactions, the preference for one or another
state, etc. can broadly vary. These inhomogeneities, modeled as
quenched disorder, are known to have an important relevance in non-
equilibrium systems with absorbing states [34–38]. Many variations of
the voter model with quenched disorder have been proposed [39],
such as the inclusion of contrarians, defined as agents who adopt a dif-
ferent opinion than that of their neighbors [40,41], or zealots, defined as
agents who favor [42,43] or maintain inflexibly [44,45] a fixed opinion.
This favoring is implemented by including in thedynamics of the zealots
a spontaneous transition rate or “noise”, independent of the copying
mechanism, from the disfavored to the favored state.

Other models include the preference or bias for one of the states in
the copying mechanism. This is the case of the partisan voter model
[46] in which the population is split into two groups, each one favoring
one of the options (Democrats or Republicans in their example), or a
model for language competition [10] in which all agents favor one of
the two possible choices, understood then as a difference of prestige be-
tween the languages. This particular copying mechanism with prefer-
ence turns out to be isomorphic to a model of reaction-limited
heterogeneous catalysis [47,48] where the bias is the difference in the
probabilities of attempting an adsorption of one of two reactive molec-
ular species onto an empty substrate site.

In this work, we consider a variant of the voter model in which a
fraction of the population is biased towards one of the two options,
while the rest of the population is neutral. Our intention is to determine
if the biased community can optimize in some way its connectivity in
order to have a maximum influence in the behavior of the whole sys-
tem. Previous studies on an unbiased majority-like voter model have
shown that the opinion held by a minority group can win over that of
a larger one provided that it has more internal cohesion (stronger or
more connections) than the majority group [49]. Our setup is very dif-
ferent from previous models with bias in the copying mechanism,
such as that of the partisan voter model where each agent displays a
bias towards one or another option, or the language model in which
all agents favor the same option.

The structure of the paper is as follows: In Section 2 we present the
details of the model. In Section 3, we study the model dynamics on a
complete graph using mean-field theory. In Section 4, we extend the
study considering the voters' dynamics on an Erdős-Rényi random to-
pology, where we assume that the probability of a connection between
two sites is independent onwhether the voters are biased or not. Finally
in Section 5, we extend our studies to the case where voters lie on two
Erdős-Rényi (ER) networks of distinct characteristics, i.e. distinct aver-
age degrees, depending on their biased/unbiased type. For this latter
scenario, we identify a strategy bywhich one could change the underly-
ing topology of the network, while preserving the total average degree,
in such a way as to achieve a reduction of the consensus time.We show
that this is the case when the average degree of the network of interac-
tions among only biased individuals is increased at the cost of decreas-
ing the average degree of the network of interactions of only unbiased
2

voters, whilemaintaining the average degree of the in-between interac-
tions constant.
2. The model

Let us consider a given lattice ofN nodes connected by links. The net-
work is single connected and cannot be split in two disjoint ones. Each
node i = 1, …, N represents an agent that holds a binary state
(opinion) variable si = ± 1. In the standard voter model [7,21] those
state variables evolve by an interaction mechanism by which agents
copy the opinion of a randomly selected neighbor (those located on
connected nodes). We modify these rules by introducing a group of
biased agents with preference for one of the states. We consider that
NB = γN agents are biased, and the remaining NU = (1 − γ)N are
unbiased. Bias is introduced as a parameter v ∈ [−1,1] which alters
the probabilities of biased agents to copy the state of a neighbor. As in
the standard voter model dynamics, we select one agent at random
(node i). Next, one of its neighbors (node j) is selected also randomly.
If si = sj, nothing happens. Else, depending on whether i is biased or
unbiased and the state of agent j, the following scenarios are
considered:

• If i is unbiased then i copies j's state with probability 1/2.
• If i is biased:

– if si =+ 1 and sj =− 1 then i copies j's state with probability 1 � v
2 ;

– if si = − 1 and sj = + 1 then i copies j's state with probability 1þv
2 .
N of these node selections constitute one Monte Carlo step. Under
these rules, the preferred state is si = + 1 (resp. si = − 1), ∀i if v > 0
(resp. v < 0). The dynamical rules for v = ± 1 forbid the agents with
bias to change their opinion value. This extreme case might be
reminiscent of the case of zealots, agents that never change their
opinion, considered elsewhere [50]. However, in the model with
zealots, the initial opinion of a zealot is always in its preferred state
and, hence, never changes, whereas in the biased model the initial
opinion is chosen randomly. There is another practical difference
between the two models as, usually but not always, the number of
zealots nZ is considered to be constant and does not scale with system
size. This implies that the parameter γ = nZ/N goes to zero in the limit
of large N and this can change some of the asymptotic analysis carried
out later in the paper.

Note that the probability for a biased node to copy the state of a
neighbor is independent ofwhether that neighbor is biased or unbiased.
The usual voter model is recovered either for γ= 0 (no presence of bi-
ased agents) or for v = 0 when all the nodes follow the standard voter
model dynamics with the modification that a neighbor's state is copied
onlywith probability 1/2. Thismodification is irrelevant as its only effect
is to rescale time (as measured by the number of Monte Carlo steps) by
a factor of 2. As a result of the dynamical rules the systemmight enter an
absorbing configurationwhere no agent can change its state and no fur-
ther evolution is possible. With the rules considered here, the only pos-
sible absorbing configurations are consensus situations, where all agents
hold the same state, either+1 or−1. The standard voter model also ac-
counts in some situations for dynamical steady states where a macro-
scopic fraction of agents (but not all of them) hold a particular opinion
during a long period of time until a finite size fluctuation takes the sys-
tem to one of the absorbing configurations. In the biased voter model
the symmetry between+1 and−1 states is broken, so that the ensem-
ble average 〈si〉 is no longer a conserved quantity and the system tends
to reach the preferred absorbing configuration by its intrinsic dynamics.
Still, finite sizefluctuations can lead the system to the non-preferred ab-
sorbing configuration.
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3. Mean-field approximation

We present now an analytical treatment of the biased-voter model
based on a mean-field type approximation valid for an all-to-all
(or complete graph) configuration, where each agent is connected

to all other agents. Let σ ¼ 1
2N∑

N
i¼1 si þ 1ð Þ be the fraction of network

nodes in state +1. One can treat the problem as that of a random
walk where the variable σ ∈ [0,1] can increase or decrease due to
the dynamics. At each time step a randomly selected node i can
change its state depending on the state of the randomly selected
neighbor j. If the change does occur, then the fraction σ increases
or decreases by an amount Δσ = 1/N. We denote by R+(σ) and
R−(σ), respectively, the transition probabilities P[σ → σ + Δσ], P[σ →
σ − Δσ]. Using the rules of the process described in Section 2 we can
write:

Rþ σð Þ ¼ P si ¼ −1; s j ¼ 1
� �

P i no biasð Þ1
2
þ P i biasð Þ1þ v

2

� �
¼

P s j ¼ 1jsi ¼ −1
� �

P si ¼ −1ð Þ 1−γð Þ1
2
þ γ

1þ v
2

� �
¼ σ 1−σð Þ1þ γv

2
:

ð1Þ

Herewe have used P(si=− 1)=1−σ and themean-field approx-
imation: P(sj = + 1| si = − 1) = P(sj = + 1) = σ, equivalent to
assuming that the state of an agent is independent of that of its
neighbors. This implies that the density ρ of active links, those
connecting nodes with different opinions, reads as ρ = P(si = − sj) =
2σ(1 − σ). Furthermore, we have assumed that the label of “biased”
or “unbiased” of agent i is independent on its state value si.

Similarly, we derive

R− σð Þ ¼ P si ¼ 1; s j ¼ −1
� �

P i no biasð Þ1
2
þ P i biasð Þ1−v

2

� �
¼

P s j ¼ −1jsi ¼ 1
� �

P si ¼ þ1ð Þ 1−γð Þ1
2
þ γ

1−v
2

� �
¼ σ 1−σð Þ1−γv

2
:

ð2Þ

Once these transition probabilities R+(σ), R−(σ) have been de-
rived, one can use the standard machinery of random walk theory
[51,52] to compute several quantities of interest. We focus in this
paper on the fixation probability P1 (probability that all agents
eventually reach consensus on the state +1), the average time τ to
reach any absorbing state and the average times τ1, τ−1 to reach
consensus on states +1 and −1, respectively. Without lack of
generality, we assume henceforth that v > 0 such that the preferred
state is +1.

3.1. Absorbing state

The magnetization m is defined in terms of the fraction σ as m =
2σ− 1. In a single time step Δt =1/N (in units of Monte Carlo steps)
m can vary by an amount ±Δm = ± 2Δσ = ± 2/N. The evolution
equation for the probability P(m, t) of finding a magnetization m at
time t follows from the basic rules of the process as

P m, t þ Δtð Þ ¼ R � mþΔmð ÞP mþΔm, tð ÞþRþ m�Δmð ÞP m�Δm, tð Þ
þ 1 � Rþ mð Þ � R � mð Þ� �

P m, tð Þ, ð3Þ

where R±(m) are the transition probabilities Eqs. (1) and (2) written in
terms of the m variable. Upon Taylor expanding up to order Δt in time
and up to second order in Δm or, equivalently, taking the continuous
3

limit 1/N → 0 and keeping only terms up to order 1/N, the time
evolution of P(m, t) is given by

∂P m, tð Þ
∂t

¼ Δm

Δt

∂ R � mð Þ � Rþ mð Þ� �
P m, tð Þ� �

∂m

þ Δmð Þ2
2Δt

∂2 R � mð Þ þ Rþ mð Þ� �
P m, tð Þ� �

∂m2
,

ð4Þ

which, after replacing the expressions for R±(m), Δm and Δt, becomes

∂P m, tð Þ
∂t

¼ � γv
2

∂ 1 � m2
� �

P m, tð Þ� �
∂m

þ 1
2N

∂2 1 � m2
� �

P m, tð Þ� �
∂m2

: ð5Þ

For the case γv=0 this reproduces the results of the standard voter
model [47,53]with the alreadymentioned rescaling of the timeby a fac-
tor of 2.

Eq. (5) is a Fokker-Planck equation with state-dependent drift

F mð Þ ¼ γv
2 1 � m2
� �

and diffusion coefficient D mð Þ ¼ 1 � m2

N , hence the
evolution of themagnetization can be viewed as themotion of a random
walk moving in a medium that is increasingly “sticky” near the extrem-
ities of the absorbing interval. Whenm=±1 the walk stops, indepen-
dently of whether there is bias or not. In principle, the steady-state

solution of the Fokker-Planck Eq. (5) would be Pst mð Þ ¼ Z � 1 eγvNm
1 � m2.

However, the normalization constant is Z ¼ R 1� 1
eγvNm

1 � m2 dm ¼ ∞, as the
integral diverges in both limitsm=±1. This indicates that the only ab-
sorbing state for a finite size system is consensus to either of these two
states. Given that γv> 0, we conclude that in the thermodynamic limit
it is Pst(m) = δ(m− 1), being δ(⋅) the Dirac-delta function, and the sta-
tionary consensus state will be the preferred onem = 1. To verify this,
we derive from the Fokker-Planck Eq. (5) the following equation of mo-
tion for the average magnetization 〈m〉

∂〈m〉
∂t

¼ γv
2

1 � 〈m2〉
� �

: ð6Þ

Neglecting fluctuations, 〈m2〉 ≈ 〈m〉2, the solution for an initial con-
dition 〈m(0)〉 = 0 is 〈m tð Þ〉 ¼ tanh γv

2 t
� �

as shown in [10] for the case
γ = 1. This describes a monotonic evolution to the stationary state in
a characteristic time scale 1/(γv). In the followingwe consider the effect
of finite size fluctuations that can lead the system to the non-preferred
absorbing state.

3.2. Fixation probability, P1

The fixation (or exit) probability P1(σ) is defined as the probability
that a finite system with an initial fraction σ reaches a consensus to
the preferred state +1 in a finite number of steps [23]. It can be
expressed as the probability of making one of the transitions σ → σ −
Δσ, σ, σ + Δσ multiplied by the exit probability from these
intermediate points:

P1 σð Þ ¼ Rþ σð ÞP1 σ þ Δσð Þ þ R � σð ÞP1 σ � Δσð Þ
þ 1 � Rþ σð Þ � R � σð Þ� �

P1 σð Þ, ð7Þ

with the boundary conditions P1(0) = 0, P1(1) = 1. Introducing the
notation P1 nð Þ ¼ P1 σ ¼ n

N

� �
, and using Eqs. (1) and (2), Eq. (7) is

rewritten as a recurrence equation

P1 nð Þ ¼ 1þ γv
2

P1 nþ 1ð Þ þ 1 � γv
2

P1 n � 1ð Þ: ð8Þ



2 2

2 2

Fig. 1. Plot of the fixation probability (probability to reach the preferred state s=+ 1),
P1(σ,β), as a function of the scaling variable β = 2γvN for two different values of the
initial condition: σ = 0.5 (top panel) and σ = 0.1 (bottom panel), using values γ= 0.1
andN=1000. The continuous (blue) lines are the analytical result, Eq. (14), and the open
square (□) symbols denote the results of computer simulations in a complete graph (CG)
for v= 0.01. We also plot the fixation probability for two random Erdős-Rényi networks
with average connectivity μ = 5 and μ = 10 and several values of v as indicated in the
legend of the top panel, and v = 0.01 in the case of the bottom panel. The theoretical
predictions lines, dashed (green) for μ = 10 and dotted (red) for μ = 5, come from the
same expression Eq. (14) replacing β by βμ ¼ 2γv μ

μþ1N as explained in Section 4.3,

while the different symbols are the results of numerical simulations.
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The solution of this equation satisfying the aforementioned bound-
ary conditions is:

P1 nð Þ ¼ 1 � an

1 � aN
, a ¼ 1 � γv

1þ γv
, ð9Þ

which for random initial conditions n ¼ N
2 takes the form

P1 n ¼ N=2ð Þ ¼ 1
1þ aN=2

: ð10Þ

If we approximate lna=− 2γv+O(γv)3, at this order in the expan-
sion of the logarithm, we obtain aN/2 ≈ exp (−γvN), which leads to

P1 n ¼ N=2ð Þ ¼ 1
1þ exp −β=2ð Þ ;β ¼ 2γvN: ð11Þ

Note that the exit probability in this approximation is only a function
of the product γvN = vNB. It turns out that the approximation is very
good and the maximum absolute difference between Eqs. (10) and
(11) is always smaller than 0.42N−2 for all values of γv, such that for
the system size N = 1000 used in most numerical simulations of this
paper, the error of the approximation is less then 4.2 × 10−7.

It is worth noting that the approximate solution Eq. (11) can also be
obtained from a continuous version of Eq. (7), obtained by expanding to
second order in Δσ:

1
2
Δ2

σ Rþ þ R �� �d2P1

dσ2 þ Δσ Rþ � R �� �dP1
dσ

¼ 0, ð12Þ

The so-called backward Kolmogorov equation for the exit probabil-
ity. After replacing Eqs. (1) and (2) and Δσ = 1/N, we obtain

d2P1

dσ2 þ β
dP1
dσ

¼ 0, ð13Þ

whose solution for boundary conditions P1(0) = 0 and P1(1) = 1 is1

P1 σ ;βð Þ ¼ 1 � e � σβ

1 � e � β : ð14Þ

Setting the initial fraction σ ¼ 1
2 we recover Eq. (11). Furthermore,

when γv = 0 we recover the well-known formula for the standard
voter model P1(σ) = σ. As shown in Fig. 1 the analytical expression
Eq. (11) agrees well with the data coming from numerical simulations
of the model on a complete graph. The figure also shows results
corresponding to the random (Erdős-Rényi) network for different
values of the average connectivity μ that will be analyzed in detail in
Section 4.

A consequence of Eq. (14) is that, as the system size increases, the
probability 1 − P1(σ;β) of reaching consensus in the non-preferred
opinion decreases and, eventually, tends to zero as N tends to infinity
for any non-zero value of the product γv. For a finite system size, how-
ever, there is a finite probability to reach the non-preferred state, which
means that, in principle, it is possible to observe some realizations of the
dynamics leading to consensus for this non-preferred state. A word of
caution is relevant here: due to the smallness of this probability for
1 The general solution of

z0 0 σð Þ þ βz0 σð Þ ¼ g σð Þ

is

z σð Þ ¼ C2 þ C1e � βσ þ
Z

dσ 0
Z

dσ 0 0e � β σ 0 � σ 0 0ð Þg σ 0 0� �
,

where C1, C2 are integration constants found by fulfilling the adequate boundary
conditions.

4

large system sizes, a large number Q of realizations is needed to observe
a consensus in the non-preferred state in a numerical simulation of
the process. Alternatively, for a given number or realizations Q there
will be a value of (γvN)0 above which the probability to reach the
non-preferred state is smaller that 1/Q and no consensus to the non-
preferred statewill be likely to be observed in the numerical simulation,
leading to thewrong conclusion that order in this non-preferred state is
never possible if γvN> (γvN)0. This value of (γvN)0 can be estimated by
noting that the probability that at least one of the Q runs ends in the
non-preferred state (si = − 1, ∀ i, remember that we assume γv >
0) is 1 − P1

Q and we demand this probability to be of the order the
inverse of the number of runs 1 − P1

Q ∼ 1/Q. Using Eq. (11), we arrive
at the condition

γvNð Þ0∼ � ln 1 � 1
Q

� 	 � 1=Q

� 1

 !
¼ 2 ln Q þ O 1=Qð Þ ð15Þ

If γvN> (γvN)0 then no runs will be typically observed to reach the
non-preferred state in the Q runs of the simulation. In practice, we ob-
serve that the threshold value (γvN)0 scales roughly as 1.3 ln Q, see
Fig. 2.

Image of Fig. 1
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Fig. 2. In this figurewe plot the threshold value (γvN)0 as a function of the number of runs
Q as obtained from numerical simulations of the biased-voter model in a complete graph
(all-to-all connectivity between the agents). As explained in the main text, (γvN)0 is
defined as the value of γvN above which none of the Q runs is observed to end in the
non-preferred state s = − 1. The solid line is the approximation 2 ln (Q) as given by
Eq. (15), while the dashed line is a fit to the form 1.3 ln Q.

2 2

Fig. 3. Average time τ to reach an absorbing state, in units of MCS and rescaled by the sys-
tem sizeN, for an initial condition σ=0.5 as a function of β= γvN. At the scale of the fig-
ure the analytical predictions of the continuous approach Eq. (24), continuous (blue) line,
and the discrete time approach Eq. (21), long-dashed (light blue) line, are indistinguish-
able. The open square (□) symbols denote the results of computer simulations in a com-
plete graph (CG) for v = 0.01, γ = 0.1 and N = 1000. We also plot the results for the
random Erdős-Rényi networks with average degree μ. The theoretical prediction lines,
dashed (green) for μ=5 and dotted (red) for μ=10 are given by Eq. (56), and the differ-
ent symbols are the results of numerical simulations.
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3.3. Time to reach consensus, τ

Let τ(σ) be the average time to reach any absorbing state (all agents
taking the same value, si= s,∀ iwith either s=+1or s=− 1) starting
from an initial fractionσ. As before, we consider the transitionsσ→σ−
Δσ, σ, σ + Δσ and relate τ(σ) to the average times from these
intermediate points,

τ σð Þ ¼ Rþ σð Þ τ σ þ Δσð Þ þ Δt½ � þ R � σð Þ τ σ � Δσð Þ þ Δt½ �
þ 1 � Rþ σð Þ � R � σð Þ� �

τ σð Þ þ Δt½ �, ð16Þ

and boundary conditions τ(0)= τ(1)=0. Replacingσ= n/N, introduc-
ing the notation τ(n)= τ(σ= n/N), and using Eqs. (1) and (2)we arrive
at the difference equation:

1þ γv
2

τ nþ 1ð Þ þ 1 � γv
2

τ n � 1ð Þ ¼ τ nð Þ � 1
n

� 1
N � n

, ð17Þ

to be solved with the aforementioned boundary conditions. Due to the
linearity of this difference equation and the symmetry of the process un-
der the change n → N − n and v → − v, the solution can be written as

τ nð Þ ¼ T1 n;γvð Þ þ T1 N � n; � γvð Þ, ð18Þ

where T1(n;γ) is the solution satisfying the boundary conditions T1
(0) = T1(N) = 0 of the following difference equation:

1þ γv
2

T1 nþ 1ð Þ þ 1 � γv
2

T1 n � 1ð Þ ¼ T1 nð Þ � 1
n
: ð19Þ

As explained in the Appendix, the solution can bewritten in terms of
the harmonic function Hn and the function f(n,a) defined in Eqs. (A6)
and (A7) as:

T1 n; að Þ ¼ 1þ a
1 � a

1 � an

1 � aN
HN � 1 � f N, að Þ½ � � Hn � 1 � f n, að Þ½ �

� �
: ð20Þ

According to the definition Eq. (9), when γv is replaced by −γv, a
becomes 1

a and Eq. (18) can be written as

τ n; að Þ ¼ T1 n; að Þ þ T1 N � n;
1
a

� 	
: ð21Þ
5

It is also possible to obtain an approximation to this expression
starting directly from the differential equation that follows from the ex-
pansion of Eq. (16) to second order in Δσ:

1
2
Δ2

σ
Δt

Rþ þ R−� � d2τ
dσ2 þ

Δσ

Δt
Rþ−R−� � dτ

dσ
¼ −1; ð22Þ

or, replacing the expressions for R+, R−, Δσ, Δt,

d2τ
dσ2 þ β

dτ
dσ

¼ � 2N
1
σ
þ 1
1 � σ

� 	
: ð23Þ

The solution of this equation with boundary conditions τ(0) =
τ(1) = 0 is

τ σ ;βð Þ ¼ 2N T σ ;βð Þ þ T 1 � σð ; � βÞ½ �, ð24Þ

with T(σ;β) the solution of

d2T
dσ2 þ β

dT
dσ

¼ � 1
σ
,

T 0ð Þ ¼ T 1ð Þ ¼ 0:
ð25Þ

given explicitly by (see footnote 1)

T σ ;βð Þ ¼ 1
β

e � βσ � 1
eβ � 1

Ei βð Þ þ 1 � eβ 1 � σð Þ

eβ � 1
ln ðð βj jÞ

�
þγeÞ þ e � βσEi βσð Þ � ln σð Þ�, ð26Þ

where γe ≈ 0.577 is the Euler-Mascheroni constant and Ei(x) =
− ∫−x

∞ exp (−z)/zdz the exponential integral. Again, the continuous
approximation Eq. (24) and the discrete counterpart Eq. (21) are
almost indistinguishable for all system sizes and parameter values
used in the figures. An example is given in Fig. 3, where we compare
the results of this theoretical analysis with those of computer
simulations on a complete graph and a random initial condition σ =
0.5. In the same plot we see results corresponding to the random

Image of Fig. 2
Image of Fig. 3
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(Erdős-Rényi) network for different values of the average connectivity μ
that we will address in a more detailed theory developed in Section 4.

Using the known asymptotic expansions of the exponential integral
limx→∞Ei(x) = ex(x−1 + O(x−2)) we find that:

lim
β!∞

τ σ ¼ 1=2;βð Þ ! 2N
ln βð Þ þ γe

β
! ln Nð Þ

γv
, ð27Þ

whichmeans that the average time, in units of MCS, to reach consensus
starting from σ=1/2 in the presence of a group of biased agents, γv ≠ 0,
scales with the number of agents as ln(N). A result that is confirmed by
the numerical simulations, see Fig. 4. This is to be compared with the
limit of no bias γv→ 0 which can be obtained directly from Eq. (23) set-
tingβ=0, or fromEq. (24) using the expansion limx→0Ei(x)= ln (|x|)+
γe + x + O(x2)

lim
β!0

τ σ ¼ 1=2;βð Þ ! N ln 4ð Þ, ð28Þ

A much slower and well known approach to consensus than in the
biased case.

3.4. Time to reach preferred state, τ1

The average time τ1(σ) to reach the preferred absorbing state (for γv
> 0 the preferred state is +1) starting from an initial fraction σ satisfies
a recurrence relation:

P1 σð Þτ1 σð Þ ¼
Rþ σð Þ P1 σ þ Δσð Þτ1 σ þ Δσð Þ þ P1 σð ÞΔt½ �
þR � σð Þ P1 σ � Δσð Þτ1 σ � Δσð Þ þ P1 σð ÞΔt½ �
þ 1 � Rþ σð Þ � R � σð Þ� �

P1 σð Þτ1 σð Þ þ P1 σð ÞΔt½ �:

ð29Þ

We do not solve this recurrence relation, but proceed directly to the
continuous limit approach, in view of its accuracy. Expanding P1τ1 to
second order in Δσ = Δt = 1/N, Eq. (29) becomes

1
2N

Rþ þ R �� �d2 P1τ1ð Þ
dσ2 þ Rþ � R �� � d P1τ1ð Þ

dσ
¼ � P1: ð30Þ
 0
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Fig. 4.We plot the average time τ to reach an absorbing state, in units of MCS, in order to
check the logarithmicdependencewith systemsizeN as it follows from the asymptotic ex-

pression Eq. (27), written as τ
2N ! log β

β , solid line. The symbols correspond to numerical

simulations on a complete graph for different values of γv, as indicated in the legend.
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Replacing P1(σ) from Eq. (14) in the right-hand-side, we obtain

d2 P1τ1ð Þ
dσ2 þ β

d P1τ1ð Þ
dσ

¼

� 2N
1 � e � β

1
σ
þ 1
1 � σ

� e � βσ

σ
� e � βσ

1 � σ

� 	 ð31Þ

with boundary conditions τ1(1)P1(1) = τ1(0)P1(0) = 0. To solve this
equation we note that the solution of

d2bT
dσ2 þ β

dbT
dσ

¼ � e � βσ

σ
,bT 0ð Þ ¼ bT 1ð Þ ¼ 0,

ð32Þ

is bT σ ;βð Þ ¼ e � βσT σ , � βð Þ, with T(σ;β) as given by Eq. (26). The solu-
tion of (31) is hence

τ1 σ ;βð Þ ¼ 2N
1−e−βσ ½T σ ;βð Þ þ T 1−σ ;−βð Þ

−e−βσT σ ;−βð Þ−e−βσT 1−σ ;βð Þ�:
ð33Þ
Fig. 5. Plot of the average time to reach consensus in any state starting from an initial frac-
tion σ of agents in the preferred state, τ(σ), as given by Eq. (24) continuous (black) line,
and the average time to reach consensus in the preferred state, τ1(σ), given by Eq. (33)
dotted (red) line for β = 1 (top panel), and β = 10 (bottom panel). Note that both
times, and hence also the time τ−1 to reach consensus in the non-preferred state, see
Eq. (34), coincide for σ = 1/2. Parameters values: γ = 0.1, v = 0.01, N = 1000.

Image of Fig. 4
Image of Fig. 5
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In Fig. 5 we plot the times τ(σ;β) and τ1(σ;β) as given by Eqs. (24)
and (33), as a function of the initial value σ for two different values of β.
For the particular case of random initial conditions σ=1/2, it turns out
that τ(σ = 1/2;β) = τ1(σ = 1/2;β). When the initial fraction σ of +1
agents is smaller than 1/2, then even in the presence of bias it is τ1 >
τ. In the opposite case, when we run the dynamics starting with more
than half of the agents in the preferred state and small values of β
(see Fig. 4), we observe that τ1 < τ. A similar relation between τ and
τ1 holds for the standard voter model [30]. As shown in Fig. 4, for a
large bias parameter β = 2γvN both times converge to the same
value, a result which is a consequence of the very small probability to
reach the non-preferred state.

The average time to reach the non-preferred state, τ−1(σ;β) can be
found by noting the relation:

τ σ ;βð Þ ¼ P1 σ ;βð Þτ1 σ ;βð Þ þ 1 � P1 σ ;βð Þð Þτ � 1 σ ;βð Þ ð34Þ

andusing Eqs. (14), (24), and (33).We show in Fig. 6(a), (b) that the an-
alytical expression for the times to reach the absorbing states τ1 or τ−1

agree well with computer simulations of the system dynamics both in
the complete graph and in the random networks to be discussed in
Section 4. The presence of a bias decreases both times τ1 and τ−1.
Fig. 6. Average times τ±1(σ) to reach consensus in +1 or−1 states, in units of MCS and
rescaled by the system size N, for an initial condition σ = 0.5 as a function of β = γvN.
Numerical results (symbols) are compared with analytical predictions (solid lines) both
for the complete graph (CG) and for the random Erdős-Rényi networks with different
average degree μ, as given by Eqs. (33) and (60) for τ1 and Eq. (34) for τ−1. Same line,
symbol meanings and parameter values than in Fig. 3.
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4. Random networks

So far, we have only discussed the situation of a complete graph. In
this sectionwewant to considermore general networks of interactions.
A network is fully defined through its adjacency matrix A whose ele-
ments areAi,j ¼ 1 if nodes i and j are connected andAi,j ¼ 0 otherwise.
This detailed information is most times simplified to the knowledge of
the degree distribution Pk = Nk/N, being Nk the number of nodes with
degree k and N the total number of nodes. The average degree is μ =
∑kkPk, and the second moment μ2 = ∑kk

2Pk. A random or connected
Erdős-Rényi network is constructed by linking each possible pair of
nodes with a given probability p. In the large N limit such a network fol-
lows a Poisson distribution for Pk, k > 0, with an average value μ = pN
and second moment μ2 = μ2 + μ. As usual, in the numerical
simulations we disregard those networks that can be split in two
disconnected parts.

4.1. Pair approximation

At the level of the mean-field approximation, the only relevant var-
iable is the fractionσ(t) of sites in the state s=+1as a function of time.
Within this mean-field approximation, the probability that a randomly
selected pair of neighbors is “active”, i.e. both sites are in different states,
is 2σ(1 − σ), a result coming from the statistical independence as-
sumed in the approximation. At a more detailed level, the pair approxi-
mation considers correlations between the states of different connected
sites by introducing the density of active links, ρ(t), as a new dynamical
variable [10,31,54–56]. This approach is reasonably successful to treat
random network configurations without degree-degree correlations
such as an Erdős-Rényi network. If i, j are connected nodes, we define
ρi, j = P(si = − sj) as the probability that the link i, j is active.
The global density of active links is then ρ ¼ 1

L∑〈i,j〉ρi,j, being L = μN/2
the total number of links. The pair approximation assumes that the
probability of a link being active is independent of the state of
the other links, hence ρi, j ≈ ρ. Consistent with this approximation it is
further assumed that P(si = − s, sj = s) ≈ ρ/2 independently of the
value of s = ± 1.

Beyond themean-field approach developed in the previous sections,
the pair approximation uses ρ(t) and σ(t) as an independent pair of dy-
namical variables to describe the state of the system. Note, however,
that ρ(t) = 0 is only consistent with σ(t) = 0, 1, coming from the fact
that a consensus state, one in which all nodes hold the same value of
their state variable, has no active links. It is of course possible to include
further variables in the analysis. For instance, the set of degree-
dependent fractions defined as the ratio σk = nk/Nk between the
number nk of nodes which are in state +1 and have degree k and the
total number Nk of nodes with degree k. It is obviously σ = ∑kPkσk. A
better description of the state of the network replaces the fraction of
nodes in the state +1 by the degree-weighted fraction
σ L ¼ 1

μ ∑kPkkσk. For a regular or all-to-all connected network where

Pk = δk, μ, the degree-weighted fraction σL(t) coincides with σ(t).
A complete and closed description of the evolution of the dynamical

variables ρ(t), σ(t), σL(t) is possible within the context of the pair
approximation. This description is, however, rather cumbersome [57]
and we have decided to present here a simplified treatment based on
[31]. The idea is to consider a random walk not for the variable σ(t)
but for the variable σL(t). A microscopic update si ← sj where node i
with degree ki = k copies the state of node j modifies σL by an amount
� k

μN ≡ � Δk. We now compute the probability Rk
+ that, given that

node i with degree ki = k has been chosen for updating, the change of
the degree-weighted fraction σL is +Δk:

Rþ
k ¼ P si ¼ −1; s j ¼ 1jki ¼ k

� �� P i no biasð Þ1
2
þ P i biasð Þ1þ v

2

� �
¼ ρ

2
1þ γv

2
;

ð35Þ

Image of Fig. 6
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where we have used the approximation P si ¼ � 1, sj ¼ þ1jki ¼ k
� � ¼

P si ¼ � 1, sj ¼ þ1
� � ¼ ρ

2 and that the probability that a node is biased
or unbiased is independent of its degree. Similarly for the probability
Rk
− that, given that node i with degree ki = k has been chosen for

updating, the change of the degree-weighted fraction σL is −Δk we
obtain:

R �
k ¼ ρ

2
1 � γv

2
: ð36Þ

Note that we still can define the rates R+(σ), R−(σ) that the fraction
σ decreases or increases, respectively, by an amount Δσ = 1/N. Within
this context, they are equal to Rk

+ and Rk
−, respectively, as these are

independent of k due to the approximations considered.
To proceed, we need an equation for the time evolution of ρ. We fol-

low closely the derivation of [31] and note that every time a node with
degree k and ℓ active links is updated, the density of active links varies

in an amount Δρ ¼ 2 k � 2‘ð Þ
μN . As time increases by Δt = 1/N after every

node update, we write:

dρ
dt

¼
X
k

Pk
Δρ
Δt






k

¼
X
k

Pk

1=N

X
s¼�1

P s→−sð Þσ s

Xk
ℓ¼0

B ℓ; kjsð Þℓ
k
2 k−2ℓð Þ

μN
;

ð37Þ

where Δρ
Δt





k
denotes the average change in ρwhen a node of degree k is

chosen, P(s→− s) is the probability that the proposed change s→− s is
accepted, and B(ℓ,k|s) is the conditional probability thatℓ of the k links
connected to a node are active, given that the node is in the state s. We
have introduced the notation σ1 = σ, σ−1 = 1 − σ. This expression is
equivalent to

dρ
dt

¼ 2
μ
∑
k
Pk ∑

s¼�1
P s ! � sð Þσ s 〈‘〉k,s �

2
k
〈‘2〉k,s

� 	
ð38Þ

where 〈ℓ〉k, s, is the average number of active neighbors of a node in
state s and degree k. Using the pair approximation and neglecting
correlation of second and higher neighbors, it turns out that B(ℓ,k|s)
becomes a binomial distribution, whose first and second moments are

〈‘〉k,s ¼
ρk
2σ s

, 〈‘2〉k,s ¼
ρk
2σ s

þ k k � 1ð Þρ2

4σ2
s

: ð39Þ

Replacing in Eq. (38), using P � 1 ! 1ð Þ ¼ 1þγv
2 ,

P 1 ! � 1ð Þ ¼ 1 � γv
2 , we arrive at

dρ
dt

¼ 2ρ
μ

μ
2

� 1
� �

� ρ μ � 1ð Þ1þ γv 2σ � 1ð Þ
4σ 1 � σð Þ

� �
: ð40Þ

This equation has to be combined with the evolution equation for
the fraction σ:

dσ
dt

¼ Rþ σð Þ � R � σð Þ ¼ γv
2

ρ: ð41Þ

The set of coupled Eqs. (40) and (41) are the basis of our subsequent
analysis. They are the result of the pair approximationwhich neglectsfi-
nite size fluctuations and it is therefore valid in the thermodynamic
limit. In this limit and in the absence of bias (v = 0), σ is a conserved
quantity and there is a stationary solution with a finite value of ρ. How-
ever, when bias is present, the stationary solution fulfills ρ=0, indicat-
ing that the absorbing state is reached by the intrinsic dynamics of the
system in the absence of finite size fluctuations. The dynamical
Eqs. (40) and (41) reproduce the ones obtained in the preferred lan-
guage study [10], when setting γ=1, i.e. when all agents are biased, al-
though our analysis is different. Instead of finding the general solution
8

σ(t), ρ(t) with given boundary conditions, we note that for γv small
the time scale of Eq. (41) indicates that σ(t) is a slow variable, and we
assume that the dependence of ρ(t) in time is through the relation
ρ(t)= ρ(σ(t)). Dividing Eq. (40) by Eq. (41)we get a closed differential
equation to find the dependence ρ(σ):

dρ
dσ

¼ 4
μγv

μ
2

� 1
� �

� ρ μ � 1ð Þ1þ γv 2σ � 1ð Þ
4σ 1 � σð Þ

� �
: ð42Þ

The solution satisfying the boundary conditions ρ(σ = 1) = ρ(σ =
0) = 0 is

ρ σð Þ ¼ μ � 2
μ � 1þ γv

2σ 1 � σð Þa1 2F1 a1, a2;1þ a2;σð Þ,

a1 ¼ 1þ γv
γv

μ � 1
μ

,

a2 ¼ γvþ μ � 1
γvμ

,

ð43Þ

where 2F1(⋅) is the hypergeometric function. It is possible to check the
limits

lim
v!0

ρ σð Þ ¼ μ � 2
μ � 1

2σ 1 � σð Þ, ∀μ , ð44Þ

lim
μ!∞

ρ σð Þ ¼ 2σ 1 � σð Þ, ∀γv: ð45Þ

While the first limit coincides with the one obtained in [31], the last
limit is an important check of the consistency of the calculation.When μ
=N− 1 every twonodes are connected and it follows the exact relation

ρ ¼ 2σ 1 � σð Þ
1 � 1=N and, forN→∞, ρ=2σ(1−σ) ismandatory independently

on the value of the bias parameter v or the fraction of biased agents γ.
We simplify the complicated functional relation ρ(σ) as given in

Eq. (43) in order to use it in further calculations and get full analytical
expressions for P1 and τ. To this end we use the previous asymptotic
limits and expand around σ = 1/2:

4σ 1 � σð Þρ 1=2ð Þ
ρ σð Þ ¼ 1 � c1 μ , vð Þ 2σ � 1ð Þ þ O 2σ � 1ð Þ2

� �
: ð46Þ

While ρ(1/2) and c1(μ,v) can be fully expressed in terms of the
hypergeometric function, it is possible to use approximate expressions

valid for small v, namely ρ 1=2ð Þ≈ μ � 2
2 μ � 1ð Þ and c1≈

γv
μ � 1. This leads to

the approximation

ρ σð Þ≈ 2 μ � 2ð Þσ 1 � σð Þ
μ � 1þ γv 1 � 2σð Þ : ð47Þ

The maximum relative difference between this approximated ex-
pression and Eq. (43) occurs at σ = 1/2, and for μ = 10 it is of order
10−6 for γv = 0.01, reaching a maximum value of 0.04 for γv = 1.
This difference decreases with increasing μ.

The essence of our adiabatic approximation, in contrast to other ap-
proaches in the literature [10,31], is that ρ(t) follows adiabatically σ(t)
and we can use Eq. (47) using the time-dependent values σ(t) and
ρ(t). The comparison with computer simulations shown in Fig. 7(a)
proves the goodness of this approximation for Erdős-Rényi networks
and two different values of the average degree μ. In Fig. 7(b) we plot
the time dependence of the interface density in a single realization of
the dynamics of the system and compare it against the value of the pla-

teau ρ 1=2ð Þ≈ μ � 2
2 μ � 1ð Þ that follows from the stationary solution of

Eq. (40) [31]. We now introduce this approximation to analyze the be-
havior of the fixation probability and the times to reach the different
consensus states.



Fig. 7.Density of active links ρ for a single realization of the systemdynamics ofN=10000
agents on an Erdős-Rényi network and with initial conditions σ(0) = 1/2. In panel (a) we
displaywith symbols ρ(σ) as obtained from a parametric plot of the numerical simulation
values (σ(t),ρ(t)) for average connectivity μ=5 (circles) and μ=10 (triangles). The solid
lines correspond to the adiabatic approximation Eq. (43). Panel (b) shows with symbols
the time evolution of ρ(t) coming from the numerical simulations. The corresponding
solid lines are the result of the numerical integration of Eqs. (40) and (41). The horizontal

solid lines correspond to the plateau values ρ≈ μ � 2
2 μ � 1ð Þ as given by Eq. (47) for σ = 1/2.
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4.2. Absorbing state

In this subsectionwe go beyond the pair approximation, introducing
finite size effects which are neglected in the previous treatment. In
order to identify the absorbing state of the system, we resort to the rel-
evant master equation for the probability P(m, t) that the system has
magnetization m at time t. In a time step, a node with opinion s flips
with probability σsP(−s|s)P(s → − s) after which the magnetization
m = 2σ − 1 changes by Δm = 2sΔk where Δk ¼ k

μN with k the number

of neighbors of the selected node.
Following a similar approach as before, we arrive to the following

Fokker-Planck equation

∂P m; tð Þ
∂t

¼ −
μ−2
μ−1

γv
2

∂
1−m2

1−
γv
μ−1

m
P m; tð Þ

2664
3775

∂m

þ μ−2
μ−1

1
2Nμ

∂2
1−m2

1−
γv
μ−1

m
P m; tð Þ

2664
3775

∂m2

ð48Þ
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where Nμ ¼ μ2

μ2
N or Nμ ¼ μ

μþ1N for the Erdős-Rényi network. Here we
see that if γ or v are set to 0 we obtain the same result as in [31]. We
can now perform a similar analysis to that of Eq. (5) to conclude that
for γv > 0 it is Pst = δ(m − 1), and that the approach to the stationary

state m = 1 occurs in a characteristic time scale μ � 1
μ � 2ð Þγv.

4.3. Fixation probability P1

To compute the fixation probability P1 we consider the randomwalk
in the degree-weighted fraction σL which takes the value σL = 1 in the
consensus state si = s, ∀ i. It can be computed by a reasoning similar to
the one that led to Eq. (7), but considering the different contributions
according to the degree of the selected node for updating:

P1 σ Lð Þ ¼
X
k

Pk Rþ
k P1 σ L þ Δkð Þ�

þR−
k P1 σL−Δkð Þ þ 1−Rþ

k −R−
k

� �
P1 σ Lð Þ�: ð49Þ

Expanding up to second order in Δk ¼ k
μN and replacing the rates

(Eqs. (35), (36)) we arrive at:

d2P1

dσ2
L

þ βμ
dP1
dσ L

¼ 0, ð50Þ

here βμ=2γvNμ. Hence the solution Eq. (14) is still valid if we replace β
by βμ and σ by σL. Nevertheless, as proven by a more detailed analysis
[55], the variable σ(t) follows σL(t) and we can replace one variable
by the other. However, it is essential to do the random-walk analysis
in terms of the variable σL, otherwise the dependence on Nμ is lost. As
shown in Fig. 1, where we plot the fixation probability for the
complete graph and two Erdős-Rényi networks with average degree μ
= 5 and μ = 10, the agreement of Eq.(14) with the numerical results
is very good if we include the system-size dependence in Nμ ¼ μ

μþ1N.

4.4. Time to reach consensus, τ

We modify the approach used for the complete graph by noticing
that in the case of a heterogeneous network, the change Δk in the
fraction of nodes in state +1 depends now on the degree k of the
node selected for update. Hence we add all contributions weighted by
its probability and modify Eq. (16) as

τ σ Lð Þ ¼
X
k

Pk Rþ
k τ σ L þ Δkð Þ þ Δt½ ��

þR−
k τ σ L−Δkð Þ þ Δt½ �

þ 1−Rþ
k −R−

k

� �
τ σ Lð Þ þ Δt½ ��:

ð51Þ

Expanding to second order in Δk ¼ k
μN and replacing Δt ¼ 1

N, this

equation becomes

X
k

Pk
k2

2μ2N
Rþ
k þ R−

k

� � d2τ
dσ2 þ

k
μ

Rþ
k −R−

k

� � dτ
dσ

" #
¼ −1; ð52Þ

and after replacing the rates as given by Eqs. (35), (36), and (47)

d2τ
dσ2 þ βμ

dτ
dσ

¼ � 2Nμ
A
σ
þ B
1 � σ

� 	
, ð53Þ

where

A ≡
μ � 1þ γv

μ � 2
, ð54Þ

B ≡
μ � 1 � γv

μ � 2
, ð55Þ

Image of Fig. 7
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and, in view of the aforementioned equivalence, we have replaced σL by
σ. The solution of Eq. (53) with the boundary conditions τ(0)= τ(1)=
0 can be written in terms of the function T(σ;β) defined in Eq. (26) as

τ σ ;βμ

� �
¼ 2Nμ AT σ ;βμ

� �
þ BT 1 � σð ; � βμÞ

h i
: ð56Þ

In Fig. 3 we compare this analytical solution with the results of com-
puter simulations for Erdős-Rényi networks with average degree μ=5,
μ = 10. We observe that the time to reach consensus increases for de-
creasing average degree μ and that it is larger in anErdős-Rényi network
than in the all-to-all configuration. Note, again, that analyzing the ran-
dom walk in terms of σ instead of σL we would have missed the
dependence on Nμ which provides a much better fit to the numerical
data.

4.5. Time to reach preferred state, τ1

We start by writing an analog expression of Eq. (29) for heteroge-
neous networks (see Section 4.4) but considering a random walk in
the σL variable with contributions depending on the degree k

P1 σ Lð Þτ1 σ Lð Þ ¼
∑
k
Pk Rþ

k P1 σL þ Δkð Þτ1 σ L þ Δkð Þ þ P1 σ Lð ÞΔt½ �
þR �

k P1 σL � Δkð Þτ1 σ L � Δkð Þ þ P1 σ Lð ÞΔt½ �
þ 1 � Rþ

k σLð Þ � R �
k σ Lð Þ� �

P1 σLð Þτ1 σLð Þ þ P1 σ Lð ÞΔt½ ��:
ð57Þ

Expanding to second order in Δk ¼ k
μN and replacing Δt ¼ 1

N, we

obtain

X
k

Pk
k2

2μ2N
Rþ
k þ R−

k

� �d2 P1τ1ð Þ
dσ2

L

"
þ k
μ

Rþ
k −R−

k

� �d P1τ1ð Þ
dσ L

�
¼ −P1:

ð58Þ

Using in the right-hand-side the expression of P1(σ) from Eq. (14)
with β replaced by βμ, and substituting again σL by σ, we obtain

d2 P1τ1ð Þ
dσ2 þ βμ

d P1τ1ð Þ
dσ

¼

� 2Nμ

1 � e � βμ

A
σ
þ B
1 � σ

� Ae � βμ σ

σ
� Be � βμ σ

1 � σ

 !
,

ð59Þ

where A, B are given by Eqs. (54) and (55). The solution with boundary
conditions τ1(1)P1(1) = τ1(0)P1(0) = 0 can be expressed in terms of
the function defined in Eq. (26) as

τ1 σ ;βμ

� �
¼ 2Nμ

1 � e � βμ σ
AT σ ;βμ

� �
þ BT 1 � σð , � βμÞ

h
� Ae � βμ σT σ ; � βμ

� �
� Be � βμ σT 1 � σð ;βμÞ

i ð60Þ

In this case, it is no longer true that τ1(σ=1/2;βμ)= τ(σ=1/2;βμ),
as it was in the mean-field approximation, although both times scale in

the same way τ1 σ ¼ 1=2;βμ

� �
, τ σ ¼ 1=2;βμ

� �
∼ B

γv ln Nμ
� �

as N → ∞.

In Fig. 6 we compare these analytical results for τ1(σ) and τ−1(σ),
derived from Eq. (34) with the results of numerical simulations in
Erdős-Rényi networks.

5. Topology dependent on bias

So farwe have assumed that links among agents, and hence the pos-
sibility of interaction, form, not just randomly, but also independently of
whether they are biased or unbiased. In this sectionwewill assume that
the bias influences not only the interactions between individuals but,
10
more importantly, the way they are connected, their network topology.
Our goal is to determinewhether the biased community is able to influ-
ence the whole system more efficiently by establishing their links in a
more organized fashion. By more efficiently we mean that consensus
to the preferred state occurs with a higher probability and in a shorter
average time. To this end we will consider different network structures
in which the connections between nodes will depend on their biased/
unbiased label.

For the sake of simplicity, we assume that the total number of links
in the system, L, is fixed and given. Consequently, the total average de-
gree of nodes μ=2L/N is also fixed.Wedenote the total number of links
between biased-biased, unbiased-unbiased and biased-unbiased pairs
of nodes as LBB, LUU, and LUB respectively. Thus the total number of
links is L ¼ LBB þ LUU þ LUB ¼ 1

2 μN. Let us denote by μB, μU the average
degrees of biased and unbiased nodes, respectively. They are related
to the global average degree by μ = γμB + (1 − γ)μU, if one assumes
that the degree distribution Pk, U for unbiased nodes is independent of
the degree distribution Pk, B for biased nodes. We can write the
average degree of the given node as a sum of the connections to
biased and unbiased neighbors, i.e., μB = μBB + μBU and μU = μUB +
μUU, where μXY is the average number of links from an X-type node to
a Y-type neighbor. Note that in general μUB and μBU are not equal but
they are related as μBUNB = μUBNU or γμBU = (1 − γ)μUB. For the
generation of the networks whose topology depends on bias we will
use as a control parameter the ratio δ of links a biased node has to
biased neighbors with respect to the number of links an unbiased
node shares with its unbiased neighbors, i.e. δ ¼ μBB

μUU
. In the case of a

random network independent of bias this control parameter takes the

value δrand ¼ γ
1 � γ.

There are many ways in which one can modify the links in order to
vary the parameter δ above or below its random value δrand. Among
all possibilities we have chosen to compare one case (so-called model
I) in which the average connectivity of each agent remains always
equal to μ and another case (so-called model II) in which the number
of UB links is kept equal to that of the random network. In summary,
in model I, we set μB = μU = μ, while in model II we set μUB = γμ. The
fulfillment of these conditions, given the constraints listed in Table 1,
leads, after a simple but lengthy algebra, to the values of the
parameters listed in the same table.

As, obviously, the quantities μUU, μBB, μUB, μBU must be all non-
negative, it follows from Table 1 that when constructing model I it
should be sign(1− 2γ)= sign (1− δ)= sign (1− γ(1+ δ)). A simple
manipulation of these conditions allows us to conclude that there are
two regions of allowed parameters (γ, δ) for model I, namely, (γ < 1/
2,δ < 1), and (γ > 1/2,δ > 1). Although in the case of Model II we do
not have any of those limitations, we restrict our posterior analysis to
γ < 1/2, where the biased community is a minority.

When analyzing the behavior of the average number of links μBB,
μUU, μBU, μUB as given in Table 1, formodel I it turns out that if δ increases
above the value δrand ¼ γ

1 � γ, then μBB and μUU increase and μUB and μBU
decrease with respect to the respective values, μBBrand = γμ, μUUrand = (1−
γ)μ, μBUrand = γμ, μUBrand = (1 − γ)μ, they adopt in a random Erdős-Rényi
network with average degree μ. The opposite behavior, namely μBB <
μBBrand, μUU < μUUrand, μBU > μBUrand, μUB > μUBrand, occurs for δ < δrand. In the
case of Model II, μUB and μBU do not vary with δ, but μBB increases and
μUU decreases with respect to their random values μBBrand, μUUrand when δ
> δrand, and the opposite behavior μBB < μBBrand, μUU > μUUrand if δ < δrand.
This allows us to interpret Model I as follows: In order to increase δ >
δrand, start from a random Erdős-Rényi network and rewire the neces-
sary number of UB links (with equal probability) either as BB or as UU
links. Analogously, in order to decrease δ < δrand, rewire an equal num-
ber of BB andUU links as UB links. Similarly, we can interpretmodel II as
follows: In order to increase δ> δrand, start from a random Erdős-Rényi
network and move UU links to BB links. Analogously, in order to



Table 1
Comparison of relevant networks quantities, and definitions and relations among them, for an Erdős-Rényi network and the topologies dependent on bias. Setting the values of μ,γ, δ andN

determines all other possible quantities. For the Erdős-Rényi network it is δrand ¼ γ
1 � γ, while for model I and II, δ is a free parameter.

Quantity Erdős-Rényi Model I Model II

μB μ μ 1þδ � γ 2þδ � γ 1þδð Þ½ �
1 � γ 1 � δð Þ μ

μU μ μ 1 � γ 1 � γ 1þδð Þ½ �
1 � γ 1 � δð Þ μ

μUU (1 − γ)μ 1 � 2γ
1 � γ 1þδð Þ μ 1 � γð Þ2þγ2

1 � γ 1 � δð Þ μ

μUB γμ γ 1 � δð Þ
1 � γ 1þδð Þ μ γμ

μBU ¼ 1−γ
γ

μUB

μBB ¼ δμUU

μ ¼ γμB þ 1−γð ÞμB

μB ¼ μBB þ μBU

μU ¼ μUB þ μUU

NB ¼ γN
NU ¼ 1−γð ÞN
LBB ¼ 1

2
μBBNB

LUU ¼ 1
2
μUUNU

LUB ¼ 1
2

μBUNB þ μUBNUð Þ ¼ μBUNB ¼ μUBNU

L ¼ LUU þ LBB þ LUB ¼ 1
2
μN

pUU ¼ μUU=NU

pBB ¼ μBB=NB

pBU ¼ μBU=NU ¼ μUB=NB

Fig. 8. Schematic representation of the strategy to form dependent on bias topologies.
Starting from an Erdős-Rényi network independent of bias, model I moves UB links to ei-
ther UU or BB in order to increase δ > δrand, while the opposite moves of UU or BB to UB
links decrease δ < δrand. This keeps the average connectivity of each agent unchanged. In
model II the movement of a UU link to a BB type increases δ > δrand, while the opposite
move of BB to UU decreases δ< δrand. This leaves constant the number of UB links joining
both communities.
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decrease δ < δrand, move BB links to UU links. See Fig. 8 for a schematic
representation of these two strategies. In Fig. 9 we show some character-
istic networks for values of δ equal, smaller and larger than the δrand value
of the bias-independent Erdős-Rényi case in the case of model II.

In practice, those networks whose topology depend on bias are con-
structed starting from N disconnected nodes, a fraction γ of which are
biased, and linking each possible pair of nodes with probabilities pBB,
pUU, or pUB if both nodes are biased, both nodes are unbiased, or one
node is biased and the other unbiased, respectively. The random
Erdős-Rényi network uses the same probability p = μ/N for the three
cases. In order to achieve the correct network characteristics as before
one must use the values of pBB, pUU, pUB listed in Table 1.

We now discuss the type of communities that biased and unbiased
agents form in each model for different values of the parameters (γ,δ).
To this end we introduce, as a measure of how strongly united a com-
munity is, the ratio of the number of links that this community holds in-
side to the number of links it holds outside. For the biased community
the measure is defined as δB ≡ 2 LBB

LUB
¼ μBB

μBU
, (the factor of 2 in the defini-

tion is arbitrary) and for the unbiased community we use
δU ≡ 2 LUU

LUB
¼ μUU

μUB
. For the topology independent of bias they adopt the

values δrandB ¼ γ
1 � γ and δrandU ¼ 1 � γ

γ . Therefore, whenever δB > δBrand,
the biased community is more strongly linked internally than in the
case that links are formed randomly without taking into account the
preference of the agents, and we talk about a closed biased
community. Similarly, for δB < δBrand, the biased community has less
internal links that those corresponding to a complete random
assignment andwe speak of an open biased community. A similar clas-
sification of closed or open applies to the community of unbiased agents
for δU > δUrand or δU < δUrand, respectively. As shown in Fig. 10, it turns out
that, for fixed γ < 1/2, the biased community is closed for δ > δrand and
open for δ < δrand, independently of the model I or II considered. How-
ever, for model I, the unbiased community is open for δ < δrand and
closed for δ > δrand and the opposite behavior for model II: open for δ
> δrand and closed for δ< δrand. This allows us to plot the phase diagram
of Fig. 11,where, for completeness, we also include the characteristics of
the communities for γ > 1/2, a case not considered here.
11

Image of Fig. 8


Fig. 9. Here we plot for Model II representative Erdős-Rényi networks of N = 50 nodes

with average degree μ = 5 with a γ fraction of biased nodes. δrand ¼ γ
1 � γ. On the left

(red circles) we draw biased nodes and on the right (green circles) unbiased nodes.
Black links connect nodes of the same type (i.e. UU and BB pairs), whereas orange links
represent connections between pairs of nodes of different types (i.e. BU).

Fig. 10. δU ≡ μUU
μUB

and δB ≡ μBB
μBU

, defined in terms of the average number of links between bi-

ased and unbiased communities, rescaled by the values they adopt in a random network

where links are not determined by the preference of the agents, δrandB ¼ γ
1 � γ,

δrandU ¼ 1 � γ
γ , as a function of δ ¼ μBB

μUU
for both model I and II, defined in the main text.

Values of δB larger (resp. smaller) than δBrand indicate a closed (resp. open) biased
community, and similarly for the unbiased community. We consider a minority fraction
γ = 0.3 of biased agents.
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Having established the strategies with which we obtain the depen-
dent on bias topology of interactions of the network, we proceed to ex-
amine the dependence of the main observables, such as the fixation
probability P1, the consensus time τ and the time to reach consensus
to the preferred state τ1, on the different points of the phase diagram
and its dependence with the closed/open property of the
communities. As the results are rather representative, we focus on a
12
fixed value of γ = 0.1 and vary the parameter δ taking values smaller

and larger than the purely random case δrand ¼ γ
1 � γ ¼ 0:1

0:9 ¼ 0:11.

The results can be found in Fig. 12, where we plot the aforemen-
tioned observables as a function of δ. In thisfigurewe see that increasing
δ beyond the random value δrand and using the strategy proposed in
Model II to change the dependent on bias topology of the network, re-
sults in a significant reduction in the time to reach consensus, while it
also results in a significant increase in theprobability to reach consensus
to the preferred state, when compared to a homogeneous Erdős-Rényi
random network topology of interactions where the establishment of
a link is not influenced by the preference of the nodes. Similarly, de-
creasing δ below the random value δrand results in a decrease of the
probability to reach consensus on the preferred state and a slight in-
crease in the time to consensus (although the results in this latter case
are not conclusive due to the statistical errors). In what concerns the
use of the strategy proposed by model I to change the dependent on
bias topology of the network, the results indicate that neither the fixa-
tion probability P1, nor the consensus time τ show any significant
deviation with respect to the homogeneous Erdős-Rényi case both for
δ larger or smaller than the random value δrand.

Image of Fig. 9
Image of Fig. 10


Fig. 11.Herewe plot the phase diagram according to the type, closed δB, UI, II > δB, Urand or open
δB, UI, II < δB, Urand, of each of the two communities, biased and unbiased, as a function of the
parameters γ, the fraction of biased voters, and δ, the ratio of the average number of
connections among only biased voters over the average number of connections among
only unbiased voters. On the top panel, we plot the phase diagram for model I. We see
that in all of the phase space, the open/close property is the same for both communities.
We have a transition of the type when the line δrand is crossed, and also when the line
γ = 0.5 is crossed. On the contrary, for model II, bottom panel, the type of the two
communities are always opposite, i.e. when the biased community is closed the
unbiased is open and vice versa.

Fig. 12. (a) Time to reach consensus τ and (b) probability of reaching consensus in the pre-
ferred state P1, as a function of the parameter δ ¼ μBB

μUU
, starting from an initial conditionσ=

0.5. The red dashed horizontal lines corresponds to the theoretical result for an Erdős-
Rényi network and a topology independent of bias, Eqs. (56) and (14), respectively,
replacing β with βμ, as explained in the main text. The vertical line is the value

δrand ¼ γ
1 � γ, that separates closed from open communities (see Fig. 11). Blue

continuous lines represent numerical results for model I (note that model I by
construction is only defined up to δ = 1), while green dotted lines correspond to model
II (see the text for a detailed explanation of these two models). We can see that model II
results in a significant reduction of the consensus time as δ is increased, while it also
results in a significant increase in the probability to reach consensus to the preferred
state, when compared to both model I and the case of a homogeneous Erdős-Rényi
random network topology of interactions. The plot for the consensus time τ1 to the
preferred state resembles (a) so it is omitted. The parameters are v = 0.01, γ = 0.1, μ =
5 and N = 1000, and the numerical results have been averaged over 1000 realizations.
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The conclusion we draw from these results, is that what matters the
most for the biased group in being more efficient in convincing the rest
of the community to reach consensus on their preferred state, is that
these agents, on average, havemore connections with each other, com-
pared to the random topology of interactions scenario, while at the
same time the unbiased group has, on average, less number of connec-
tionswith each other, compared to the random topology of interactions
scenario. To be more specific, from the results concerning the topology
variation following the strategy corresponding to model I, we conclude
that when both the biased and unbiased agents decide to “clash”, i.e. to
interact more among each other at the expense of losing interactions
with their peers, then this offers no significant advantage to the biased
agents (blue lines in Fig. 12 for δ > δrand). The same conclusion arises
when both groups decide to interact less among each other at the ex-
pense of winning interactions with their peers (blue lines in Fig. 12 for
δ < δrand). On the contrary, when the biased agents decide to interact
less with the external group, i.e. the unbiased agents, and more among
themselves, and at the same time the unbiased agents interact less
among themselves, then at the long run this gives the biased agents
an advantage compared to the unbiased agents and results in the pre-
ferred opinion being reached faster and more often (green lines in
13
Fig. 12 for δ > δrand). This is because if the group of biased agents is
more compact, i.e. when they interact much more among themselves
compared to their number of interactions with unbiased agents, and
at the same time the unbiased agents are less internally connected,
this allows the biased group to have on average a constant bias towards
the preferred state for large periods of time, bias that cannot be reversed
by a weak unbiased group. In this way the biased agents drag the unbi-
ased ones towards their preferred state.

6. Conclusions

In this work, we have studied a variation of the standard classical
voter model, where voters have a constant confidence. This means
thatwith a constant probability p they keep their opinion upon an inter-
actionwith their neighbor, instead of copying.We assumed that the de-
fault confidence is p = 1/2. Furthermore, we assumed that a fraction γ
of these voters are biased towards a fixed opinion, in the sense that
their confidence when changing from a fixed state, say si = − 1 to
si = + 1 is given by p = (1 + v)/2 with a bias parameter v, while the
reverse switch si = + 1 to si = − 1 occurs with a confidence equal to

Image of Fig. 11
Image of Fig. 12
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p=(1− v)/2.We have considered two distinct scenarios in our studies.
First, we assumed that there was no dependence of the topology of the
network on which the dynamics took place and the type of voters, in
which case we studied the model on the complete graph as well as on
an Erdős-Rényi (ER) network. Then we assumed that the topology of
interactions of the two distinct type of voters was indeed dependent
on their type and we examined strategies that the biased voters could
follow to convince faster the rest of the voters to adopt their opinion.

For the topology of interactions independent of bias, we showed that
the fraction of biased agentsγ and the bias parameter v are not indepen-
dent parameters, but rather γv is the only relevant parameter. Bias
breaks the symmetry of the problem. As a consequence, in the thermo-
dynamic limit the system reaches the absorbing preferred statem= 1,
ρ = 0 in a characteristic time 1

γv. This is at variance with the unbiased

voter model (γv→ 0) in which magnetization is conserved and the sys-
tem remains in a dynamically disordered state with a finite value of ρ.
Moving beyond this, we considered finite size effects on the system,
for the same topology of interactions setup independent of bias. We fo-
cused on three observables, the fixation probability P1(σ), or probability
to reach the preferred state, as a function of the initial densityσ of nodes
in state+1, the average consensus time τ(σ) and the average consensus
time to the preferred state τ1(σ) for which we derive analytical
expressions. We show that local effects introduced by the Erdős-Rényi
network, as compared with the complete graph case, are accounted by
replacing N by Nμ ¼ μ

μþ1N. The main effect of the bias is to reduce the

consensus times so that τ scales as log(N) while it scales linearly with
N in the limit of no bias (γv → 0).

Finally, we also have studied the case where the voters lie on Erdős-
Rényi networks of distinct characteristics, i.e. distinct average degrees,
depending on the type of the voter. We refer to this as a dependent on
bias topology of interactions. In this case, we defined as the parameter
that quantifies our deviation from the homogeneous random network,
the ratio δ ¼ μBB

μUU
, where μXY represents the average degree of

connections between voters of type X to voters of type Y. With this in
mind we identified two candidate rewiring strategies that keep the
total average degree μ constant and we studied how they affect the dy-
namics to consensus as a function of the parameter δ. In strategy I we
considered the case of varying μBU at the expense of μBB and μUU. We
found that the consensus time and the probability to reach consensus
in the preferred option is indifferent to this variation. On the contrary
in strategy II we considered the scenario of varying μBB (and
accordingly μUU) while keeping μBU constant. We found that increasing
μBB resulted in a significant reduction of the consensus time τ, as well
as to a significant increment to the probability P1 of reaching
consensus to the preferred state. This evidences that what matters the
most for the members of the biased group in being more efficient in
convincing the rest of the community to reach consensus on their
preferred state, is to increase their internal connections within the
group and, at the same time, decrease the interactions between the
members of the unbiased group. Or, in other words, that a closed
community, defined as one where its members have a higher
proportion of inside to outside links that it corresponds to a
completely random Erdős-Rényi network, when put into contact with
an open one, can lead the rest of the system faster and with higher
probability to an agreement to its preferred state. Further extensions
of this work could include the case where the agents have biases of
different amount to both opinions. It is known that the presence of
different types oz. zealots is able to prevent consensus in the voter
model [44] and it would be interesting to see if a similar result holds
in this model with bias.
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Appendix A

To find T1(n), the solution of the recurrence equation Eq. (19)
satisfying the boundary conditions T1(0) = T1(N) = 0 we first define
x(n) as

x nð Þ ¼ T1 nþ 1ð Þ � T1 nð Þ⇔T1 nð Þ ¼ ∑
n � 1

j¼0
x jð Þ: ðA1Þ

After substitution in Eq. (19), x(n) is found to satisfy the recurrence
relation

x nð Þ ¼ ax n � 1ð Þ � 1þ a
n

, a ¼ 1 � γv
1þ γv

, ðA2Þ

whose solution is

x nð Þ ¼ x 0ð Þan � 1þ að ÞLn að Þ, Ln að Þ ¼ ∑
n

j¼1

an � j

j
, L0 að Þ ¼ 0: ðA3Þ

Replacing in Eq. (A1) and setting the constant x(0) by imposing the
boundary condition T1(N) = 0, we get

T1 n, að Þ ¼ 1þ að Þ 1 � an

1 � aN
∑

N � 1

j¼1
Lj að Þ � ∑

n � 1

j¼1
Lj að Þ

" #
: ðA4Þ

The sums of the function Lj(a) can be written as

∑
n � 1

j¼1
Lj að Þ ¼ ∑

n � 1

j¼1
∑
j

q¼1

a j � q

q
¼ ∑

n � 1

q¼1
∑
n � 1

j¼q

a j � q

q

¼ ∑
n � 1

q¼1

1
q
1 � an � q

1 � a

¼ 1
1 � a

Hn � 1 � f n, að Þ½ �

ðA5Þ

where Hn (the harmonic function) and f(n,a) are defined by:

Hn ¼ ∑
n

q¼1

1
q
, ðA6Þ

f n, að Þ ¼ ∑
n � 1

q¼1

an � q

q
, ðA7Þ

which replaced in Eq. (A4) yields Eq. (20) in the main text.
It turns out that the function f(n,a) can be written as

f n, að Þ ¼ � Φ
1
a
, 1,n

� 	
� an ln

a � 1
a

� 	
, ðA8Þ
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in terms of the Lerch transcendent function

Φ x, s,nð Þ ¼ ∑
∞

j¼0

xj

jþ nð Þs , ðA9Þ

A relation valid for all values of a and n as the imaginary parts of the
logarithm and the Lerch transcendent function cancel out for a < 1.
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