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Abstract
We introduce a Maxwell demon which generates many-body entanglement robustly against bit-flip
noises, allowing us to obtain quantum advantage. Adopting the protocol of the voter model used
for opinion dynamics approaching consensus, the demon randomly selects a qubit pair and
performs a quantum feedback control, in continuous repetitions. We derive upper bounds for the
entropy reduction and the work extraction rates by the demon’s operation. These bounds are
determined by a competition between the quantum–classical mutual information acquired by the
demon and the absolute irreversibility of the feedback control. Our finding of the upper bounds
corresponds to a reformulation of the second law of thermodynamics under a class of Maxwell
demon which generates many-body entanglement in a working substance. This suggests that a
general condition for the operation of a successful entangling demon, one for which many-body
entanglement stabilization and work extraction are possible, is that the information gain is larger
than the absolute irreversibility.

1. Introduction

A modern view of a Maxwell demon is based on a closed-loop feedback control in which the dynamics of a
system uses outputs of a measurement as inputs in a smart manner. Within the framework of nanoscale
machines, quantum feedback controls involve systematic measurements and manipulations of quantum
systems with the aim of extracting useful work or cooling a system [13, 17–19, 22, 31]. The field of
thermodynamics of information [13, 29, 33, 36] has clarified the fundamental bounds on entropy reduction
and work extraction in terms of quantities such as the quantum–classical mutual information and absolute
irreversibility [13]. However, the thermodynamics of continuous quantum feedback [33] remains a largely
unexplored issue. Recently, variants of the original Maxwell demon which operate continuously in time
have been demonstrated [23, 35], showing an enhancement of the work extraction beyond the conventional
feedback control with a limitation given by modified second-law-like inequalities.

Stepping further along this direction, we propose in this paper a new type of Maxwell demon, namely a
continuous quantum feedback control, that is capable of generating many-body entanglement in the
working substance. Our demon (see figure 1) acts by randomly selecting two qubits A and B among many,
and inducing a quantum feedback control on them which reduces entropy and enhances correlation
simultaneously. The demon continuously repeats the selection and the feedback control.

In fact, such protocol realizes the quantum steady-state engineering [6, 12, 21, 25, 34, 39–42, 45, 47] as
studied in quantum information and optics. The two-qubit quantum feedback control realizes the
two-particle dissipations [8, 40–42, 44] whereby one particle’s dissipation depends on the state of the other.
Previous studies have identified possible types of entangled states which are stabilizable. However, the
quantum dynamics, i.e. how entanglement, coherence, and von Neumann entropy evolve in time, still lacks
understanding. The mechanism behind the quantum dynamics is nontrivial due to two simultaneous tasks,
the random selection and the continuous quantum measurement [2, 10]. Moreover, the fundamental
bound of entropy reduction rate by the two-particle dissipations has not been studied before, and an
identification of the bound requires a viewpoint from thermodynamics of information.
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Figure 1. Entangling Maxwell demon adopting a protocol of the voter model. (a) The demon selects a random pair of qubit A
and B among many, e.g. using a roulette. Then, it induces a quantum feedback control to the selected qubits, a copy process in
this case. In the copy process, the demon first measures whether the two qubits are in the same basis state or not, then flips the
qubit A only for the latter case. The whole process from the selection to the copy is repeated with a rate Γcopy. A thermal bath
induces a bit-flip with a rate Γflip. (b) The quantum feedback control realizing the copy process. It is series of controlled-NOT
gates [(1)–(3)] where the black circles depict the control and rectangular boxes depict the target.

In this paper, we study the quantum dynamics and the second law of thermodynamics under the action
of the entangling Maxwell demon. We first propose a quantum version of the voter model, an entangling
Maxwell demon adopting a protocol inspired by the noisy voter model [3, 7, 15, 16, 32], and motivated by
the fact that the classical model generates classical correlation of human opinions among agents. Our first
main finding is that Greenberger–Horne–Zeilinger (GHZ) entanglement [14, 20, 24] is generated among
the working substance and stabilized against the bit-flip noises [5, 9, 43]. During the entanglement
generation, the purity and the entropy of the working substance change non-monotonically in time, which
turns out to be due to the competition between the information gain and the absolute irreversibility of the
feedback control.

Then, as our second main finding, we reformulate the second law of thermodynamics under the action
of a generic class of entangling Maxwell demons. We derive an upper bound for the entropy reduction or,
equivalently, an upper bound for the work extraction. The bounds are determined by the competition
between the quantum–classical mutual information acquired by the demon and the associated absolute
irreversibility of the control. We recall that the absolute irreversibility, defined as the sum of the
probabilities of the backward trajectories which do not have a corresponding forward trajectory, is
responsible, for instance, of the breakdown of the Jarzynski equality in the free gas expansion [26, 27]. In
our case, the absolute irreversibility is generally non zero as the quantum measurement in the action of the
entangling Maxwell demon projects the state of the working substance to a local subspace which depends
on the selection, an inevitable factor hindering the entanglement generation or work extraction. Our
findings provide a necessary condition, namely that the information gain should be larger than the absolute
irreversibility, to determine when an entangling Maxwell demon can successfully stabilize the many-body
entanglement or extract work through the entangled working substance.

This paper is structured as follows. In section 2.1 we present the details of the quantum voter model and
the master equation in the Lindblad form. In section 2.2 we present the results of the quantum dynamics
and discuss a possible method for the experimental realization. In section 3.1, we derive the upper bounds
of the entropy reduction and the work extraction rates by the entangling Maxwell demon. In section 3.2 we
give an interpretation of the absolute irreversibility which appears in the bounds. In section 3.3 we show
that the non-monotonic behavior in the purity and the entropy of the quantum voter model is due to the
competition of the absolute irreversibility and the information gain of the feedback control. In section 3.4,
an example of the work extraction by the entangling Maxwell demon is shown. Finally, in section 4 we
summarize our main results.

2. Quantum voter model

2.1. Model
In the following, we explain the quantum version of the voter model. Let us consider a system of N qubits
(N � 2). In our analogy, the two level state |si〉 (|0〉 or |1〉) of qubit i = 1, . . . , N, plays the role of the
opinion variable si = 0, 1 held by an agent of the classical voter model, see figure 1(a). A quantum feedback
control (see below) realizes the copy process Ci←j whereby qubit i copies the state of qubit j. We focus on the
case of all-to-all connectivity, so that a copy process Ci←j of randomly chosen i and j �= i is induced with rate
Γcopy. (See appendix A for comparison with one-dimensional nearest-neighbor connections.) A thermal
bath around the system induces bit-flip noise, and the state |si〉 of the qubit i flips (|0〉 → |1〉 or |1〉 → |0〉)
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with a rate Γflip for random i. Such flip process corresponds to the transversal noise [5, 9, 43] induced by
the dephasing in the basis of |0〉 ± |1〉. Note that, as discussed in section 3.4, Γflip is determined by the
temperature of the bath [38]. When there is no coherence, our system corresponds to the voter model when
Γflip = 0 and to the noisy voter model when Γflip > 0 [32].

The copy process Ci←j cannot be realized only by unitary dynamics among the N qubits because of the
redundancy of the outcomes, e.g. (si, sj) = (0, 0) and (1, 0) both become (0, 0) after the copy process. This
process Ci←j can be realized instead using a quantum feedback control with an ancilla qubit (which plays the
role of a Maxwell demon) effectively measuring whether si = sj or not, see figure 1(b). The joint state of
qubits i, j (denoted by Qubit A and B in figure 1), and ancilla, |sisjsa〉, changes by the three controlled-NOT
(C-NOT) gates as

|000〉 (1)→ |000〉 (2)→ |000〉 (3)→ |000〉

|010〉 → |010〉 → |011〉 → |111〉

|100〉 → |101〉 → |101〉 → |001〉

|110〉 → |111〉 → |110〉 → |110〉

. (1)

The first two gates, steps (1) and (2), effectively measure whether si = sj by flipping the ancilla qubit sa = 0
to sa = 1 only when si �= sj, while the third gate, step (3), realizes the copy process. Note that this copy
process is not prohibited by the no-cloning theorem [28] because it does not copy an arbitrary state. The
ancilla state should be initialized to sa = 0 before starting the copy process, otherwise we obtain the
opposite result, i.e. si �= sj after the feedback. We assume an ideal ancilla in this study, which can be realized
by attaching a separate bath [19] that relaxes the ancilla into the state |0〉 in a time scale much faster than
Γ−1

copy. Below, we focus on the dynamics of the N qubits, tracing out the ancilla.
The copy process Ci←j changes the density matrix ρ of the N-qubit state to Ci←j(ρ),

Ci←j(ρ) =
∑
k=0,1

U(i)
k M(ij)

k ρM(ij)
k U(i)†

k . (2)

Here, M(ij)
0 (resp. M(ij)

1 ) is the measurement operator for the outcome si = sj (resp. si �= sj),

M(ij)
0 ≡ |0i0j〉〈0i0j|+ |1i1j〉〈1i1j|, (3)

M(ij)
1 ≡ |0i1j〉〈0i1j|+ |1i0j〉〈1i0j|. (4)

The probability of each one of these outcomes is

p(ij)
k = Tr(M(ij)

k ρM(ij)
k ), for k = 0, 1. (5)

The post-measurement state is

ρ
(ij)
k ≡ 1

p(ij)
k

M(ij)
k ρM(ij)

k . (6)

U(i)
k is the feedback operation for each measurement outcome,

U(i)
0 = 1, U(i)

1 = Xi, (7)

where Xi is the operator flipping the state of the qubit i: Xi|0i〉 = |1i〉 and Xi|1i〉 = |0i〉. Note that U(i)
k is a

unitary and Hermitian operator for the copy process.
The time evolution of ρ by the combined effect of the random copy processes and flips is given by

ρ̇ = Γcopy

N∑
i,j=1
i�=j

(
Ci←j(ρ) − ρ

)
+ Γflip

N∑
i=1

(XiρXi − ρ) . (8)

Equation (8) is derived by considering a completely positive map of a small-time evolution, hence it is in
the Lindblad form [38, 45]; see appendix B for details. To obtain the results of figures 2–4 described below,
the time evolution of ρ has been calculated by a numerical integration of equation (8). For brevity in the
notation, we define the total number of copy processes Ci←j for different choices of i and j, as
Ncopy ≡ N(N − 1).

3
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Figure 2. Entanglement generation by the consensus dynamics in the absence of bit-flip noise. The quantum feedback controls
induce consensus among the qubits (a), while enhancing GHZ entanglement (c). They reduce [or increase] entropy of the qubits
depending on time (d), accompanying the enhancement [or reduction] of coherence (b). Here N = 5, Γflip = 0, and the initial
state is

∑
s1,...,sN=0,1|s1 . . . sN 〉. The time is measured in Γ−1

copy.

Figure 3. Entanglement stabilization against bit-flip noise. Here, the initial state is GHZ state, |00 000〉+ |11 111〉. When
Γcopy 	 Γflip, the consensus (a), entanglement (c), coherence (b), and entropy (d) is protected against the bit-flip noise. The time
is measured in Γ−1

flip.

2.2. Entanglement generation and stabilization
To understand the effect generated by the copy process dynamics, we first focus on the case when there is no
bit-flip noise, Γflip = 0, a purely consensus dynamics in the language of the voter model [3].

Using as an initial state a symmetric superposition of all possible opinion configurations,

|ψ〉 =
∑

s1,...,sN=0,1

|s1 . . . sN〉, (9)

(here and henceforth we omit the normalization factor of all the pure states), the different panels of figure 2
provide evidence that this dynamics generates GHZ entanglement. Panel (a) shows that the consensus
probability

Pc(ρ) ≡ 〈0, . . . , 0|ρ|0, . . . 0〉+ 〈1, . . . , 1|ρ|1, . . . 1〉, (10)

increases in time and converges to 1. When approaching the consensus, the state tends to the GHZ state,
|0 . . . 0〉+ |1 . . . 1〉, as evidentiated by the GHZ-witness value, defined as [24],

WGHZ(ρ) = 1 − Pc(ρ) − 2|〈0, . . . , 0|ρ|1, . . . , 1〉|, (11)
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Figure 4. Competition of the quantum–classical mutual information IQC and the absolute irreversibility λfb. (a) Entropy
production rate by copy processes in Γflip = 0 and a symmetric initial state, the situation of figure 2. (b) Competition of IQC and
λfb. (c) and (d) Plots corresponding to (a) and (b) in Γflip = 0.1Γcopy and a GHZ initial state, the situation of figure 3. The time is
measured in Γ−1

copy.

displayed in panel (c). The negative value of WGHZ means that the state displays a GHZ entanglement,
where the lower bound −1 is achieved for the GHZ state [20]. Interestingly, as displayed in panel (d), the
von Neumann entropy,

S(ρ) = −Tr(ρ log ρ), (12)

initially increases and then decreases. Of course the coherence, measured by the so-called purity Tr(ρ2), also
follows the corresponding trend, see panel (b). As discussed in section 3.3, this turns out to be the result of
a competition between the quantum–classical mutual information and the absolute irreversibility.

Figure 3 shows that the quantum feedback controls protect the GHZ entanglement against the bit-flip
noise. The initial state is now chosen as the five-qubit GHZ state, |00000〉+ |11111〉. (See appendix C for
the case of an initial state equal to the symmetric superposition). When Γcopy = 0 the noise destroys, in
time, the consensus, the coherence, and the entanglement, while increasing the entropy. When Γcopy > 0,
the effect of the noise is reduced, and the different quantities reach a new stationary value. When
Γcopy 	 Γflip, the stationary value of the entanglement is significantly large (WGHZ < −0.5 for
Γcopy/Γflip > 5).

We now give an example of a three qubits case, for an insight of the GHZ stabilization. Let us consider a
GHZ state ρGHZ which suffered a bit flip with probability ε, (1 − ε)ρGHZ + ερFGHZ. Here
ρFGHZ =

∑
i=1,2,3 XiρGHZXi/3. Then, the copy process recovers the flipped state to GHZ state with

probability 1/3; e.g. for the state where qubit 1 is flipped, among six possible copy processes only C1←2 and
C1←3 return the flipped state to the GHZ state. Thus the copy processes contribute to ρ̇ by an amount of
Γcopyε(ρGHZ − ρFGHZ)/3. The noise converts the GHZ state to the flipped state or the flipped state to the
double flipped state. The double flipped state is the same as the GHZ state with probability of 1/3, or equal
to the single-flipped state otherwise. Thus the noise contributes to ρ̇ by amount of
(1 − ε)Γflip(ρFGHZ − ρGHZ) + εΓflip[(1/3)ρGHZ + (2/3)ρFGHZ − ρFGHZ]. A steady state is formed at
ε = 3/(4 + Γcopy/Γflip), satisfying ρ̇ = 0 when summing both contributions.

We briefly discuss experimental feasibility. As described in appendix D in detail, the initial state of the
symmetric superposition

∑
s1,...,sN=0,1|s1 . . . sN〉 = (|0〉+ |1〉)⊗N can be prepared when realizing the qubit

states 0 and 1 by the 1/2-spin up and down state in the z direction, and aligning the spins in the x direction
within some error. The repeated random selection of qubit pairs can be realized e.g. using a random
number generator. The regime of the fast copy processes, Γcopy > Γflip, can be reached in the experiments
like reference [46], as Γcopy ∼ 5 MHz (according to an operation time ∼200 ns of a C-NOT gate) and
Γflip ∼ 0.1 MHz (according to a spin decoherence time of 10 μs). The regime of the fast ancilla relaxation
can also be realized. The relaxation rate of the ancilla is (D/2)(ΔEanc/h) csch (ΔEanc/(kTanc)) [19], (k is
Boltzmann’s constant) when the ancilla of level splitting ΔEanc is coupled to a thermal reservoir of
temperature Tanc with tunneling probability of D. This value can be as high as GHz scale in typical
experimental situations, hence exceeding the rate of copy process Γcopy; for example, when Tanc = 0.2 K,
D = 1, and ΔEanc/h = 2kTanc/h ≈ 8 GHz.

5



New J. Phys. 24 (2022) 033028 S Ryu et al

We remark a nontrivial aspect of the copy process Ci←j. Generally, the interaction of the qubits with the
ancilla leads to the decoherence of the qubits due to the entanglement generation between the qubits and
the ancilla. However, the copy process circumvents the destruction of coherence because the ancilla
measures only the parity of two qubits. We observe that when the ancilla measures all the information of
the two qubits, there is no feature of entanglement generation as in the above result, see appendix E.

3. Second law of thermodynamics

3.1. Upper bounds of entropy reduction and work extraction rate
Here we derive the upper bound of the entropy reduction and work extraction rate by a generic class of
entangling Maxwell demons. Our derivations for the bounds are based on the approach of references
[13, 33].

We consider a situation in which the working substance, composed of N qubits, is subject to an arbitrary
Hamiltonian, arbitrary Markovian dissipations induced by weak coupling to a bath of temperature T, and
to the action of the entangling Maxwell demon. In the derivation below we use the specific notation of the
quantum voter model, but this can be generalized straightforwardly to a generic entangling Maxwell
demon.

We first derive the Lindbladian master equation describing the time evolution of the quantum state of
the working substance (which will be called ‘system’ below). Let L0 be the Liouvillian in the absence of
feedback controls. We consider a time step Δt which is smaller than the repetition period of the selection
and feedback, Γ−1

copy, and the time scales of L0, but larger than the operation time of a single quantum
feedback control, e.g. the time for completing the three controlled-NOT gates in the case of the quantum
voter model. Then, we obtain the density matrix of the system evolved by both L0 and the feedback
controls,

ρ(t +Δt) = ΓcopyΔt
∑
i�=j

Ci←j(ρ) + (1 − NcopyΓcopyΔt)eL0Δtρ+O(Δt2). (13)

Hence, we obtain the master equation,

ρ̇ = − i

�
[H, ρ] + Dbath[ρ] + Dcopy[ρ]. (14)

Here H is the system Hamiltonian, Dbath (resp. Dcopy) is a Lindblad super-operator describing the
dissipation of the system induced by its coupling to the bath (resp. multi-particle dissipations due to the
feedback control). In the case of the quantum voter model, Dcopy is

Dcopy[ρ] = Γcopy

∑
i�=j

[
Ci←j(ρ) − ρ

]
. (15)

As the dissipations by the bath and the feedback control contribute additively to the master equation, the
rate of change of system entropy, Ṡ, is the sum of the two contributions. Using Ṡ = −Tr(ρ̇ ln ρ), we obtain

Ṡ = Ṡbath + Ṡcopy, (16)

Ṡbath ≡ −Tr(Dbath[ρ] ln ρ), (17)

Ṡcopy ≡ −Tr(Dcopy[ρ] ln ρ). (18)

Note that Ṡbath (resp. Ṡcopy) at time t equals the rate of change of the system entropy assuming that the
system ρ(t) is subject only to the dissipation by the bath (resp. feedback controls).

The entropy change rate by the bath is lower-bounded depending on the rate of heat absorption Q̇ from
the bath as [33],

kṠbath � Q̇/T. (19)

On the other hand, the entropy reduction rate by the entangling Maxwell demon, −Ṡcopy, is
upper-bounded as

Ṡcopy � −NcopyΓcopy(IQC − λfb), (20)

(see appendix F for its derivation). This is our first main result of this section.

6
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The upper-bound of the entropy reduction rate, equation (20), is determined by the competition of two
quantities. First, IQC is the quantum–classical mutual information gained in the feedback control averaged
for all the possible selections,

IQC ≡ N−1
copy

∑
i�=j

I(ij)
QC, (21)

I(ij)
QC = S(ρ) −

∑
k=0,1

p(ij)
k S(ρ(ij)

k ), (22)

where I(ij)
QC is the mutual information given that the qubits i and j are selected. Second, λfb is the absolute

irreversibility of a stochastic feedback control (applied to a random pair of qubits), see section 3.2.
Using equations (19) and (20), we obtain

kṠ � Q̇

T
+ kNcopyΓcopy(−IQC + λfb). (23)

Replacing Q̇ = Ė − Ẇ , as given by the first law of thermodynamics (Ė is energy change rate of the system),
into equation (23), we obtain the upper bound of the work extraction rate −Ẇ ,

Ẇ − Ḟ � kTNcopyΓcopy(−IQC + λfb). (24)

This is our second main result of this section. Ḟ = Ė − kTṠ is the rate of change of nonequilibrium free
energy [29].

3.2. Absolute irreversibility
Here we show that the absolute irreversibility λfb of a stochastic feedback control is related to how much the
feedback-operated states are different for distinct selections.

As we mentioned earlier, the absolute irreversibility is defined as the sum of probabilities of the
backward trajectories which do not have a corresponding forward trajectory [13]. Let ρ be the initial state of
the forward trajectory. The final state of the forward trajectory is the result of a stochastic feedback control
without knowing which particles were selected,

C(ρ) ≡ 1

Ncopy

∑
i�=j

Ci←j(ρ). (25)

This final state becomes the initial state of the backward trajectory, ρr = C(ρ), the reference state in the
language of the fluctuation theorem (see appendix F).

The absolute irreversibility λfb of a stochastic feedback control is the average of the absolute
irreversibility given that it is known which particles were selected,

λfb =
1

Ncopy

∑
i�=j

λ
(ij)
fb , (26)

λ
(ij)
fb ≡

∑
k=0,1

p(ij)
k Tr[Π

null(ρ
(ij)
k )

U(i)†
k ρrU

(i)
k ]. (27)

λ
(ij)
fb is the absolute irreversibility given that the selected particles were i and j, and Π

null(ρ
(ij)
k )

is the projection

operator onto the null space of the post-measurement state ρ(ij)
k . Using equations (25)–(27) and the relation

U(i)
k Π

null(ρ
(ij)
k )

U(i)†
k = Π

null(U(i)
k ρ

(ij)
k U(i)†

k )
, (28)

we obtain the absolute irreversibility for a stochastic feedback control,

λfb =
∑

i�=j,l �=m

1

N2
copy

∑
k,q=0,1

p(ij)
k p(lm)

q Tr

[
Π

null(ρ
(ij)
fin,k

)
ρ(lm)

fin,q

]
. (29)

ρ
(ij)
fin,k = U(i)

k ρ
(ij)
k U(i)†

k is the feedback-operated state given that the selected particles were i and j, and
measurement outcome was k.

Equation (29) shows that the absolute irreversibility λfb is related to how much the feedback-operated
states are different for distinct selection. The term Tr[Π

null(ρ
(ij)
fin,k)

ρ(lm)
fin,q] quantifies how much the result of two

7
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different feedback controls are different; it is 1 when the support of the two feedback-operated states are
orthogonal, and 0 when identical.

We also find that the absolute irreversibility for a pure state ρ is determined by how much the state
decoheres by the stochastic feedback control,

λfb = 1 − Tr
[
C(ρ)2

]
. (30)

This is proved as follows. From equation (29), we use Π
null(ρ

(ij)
fin,k)

= 1 −Π
sup(ρ

(ij)
fin,k)

, where Π
sup(ρ

(ij)
fin,k)

is the

projection operator onto the support of ρ(ij)
fin,k. As ρ is a pure state, ρ(ij)

fin,k is also a pure state, and we simplify

Π
sup(ρ

(ij)
fin,k)

= ρ
(ij)
fin,k. Then, after summing k, q and using that

∑
k p(ij)

k ρ
(ij)
fin,k = Ci←j(ρ),

∑
q p(lm)

q ρ(lm)
fin,q = Cl←m(ρ),

we obtain

λfb =
1

N2
copy

∑
i�=j,l �=m

[
1 − Tr

(
Ci←j(ρ)Cl←m(ρ)

)]
, (31)

= 1 − Tr

⎡
⎣ 1

N2
copy

∑
i�=j,l �=m

Ci←j(ρ)Cl←m(ρ)

⎤
⎦ . (32)

This is equivalent to equation (30) after summing over i, j, l, m and using equation (25).

3.3. Competition between IQC and λfb

The result of the quantum voter model can be understood in terms of the competition between IQC and λfb.
Figures 4(a) and (b) show the entropy production rate (i.e. the negative value of the reduction rate), in the
absence of bit-flip noises and a symmetric initial state, the situation of figure 2. Around the initial time, it is
λfb > 0 because different choices of copy pairs result in different feedback-operated states. For example, at
the initial time, C1←2(ρ) = |Φ+〉 ⊗ |+++〉 is different from C4←5(ρ) = |+++〉 ⊗ |Φ+〉, as their overlap
is 1/4, where

|±〉 ≡ |0〉 ± |1〉, (33)

|Φ+〉 ≡ |00〉+ |11〉 = |++〉+ | − −〉, (34)

|Φ+〉 being the maximally entangled two-qubit state. It can be proved (see appendix G for the derivation)
that for the symmetric state one finds λfb = 3/4 × [1 − 2/Ncopy], taking the value λfb = 0 at N = 2 and
monotonically increasing up to 3/4 as N increases. Meanwhile, initially IQC = 0 because for any Ci←j there is

no decrease of entropy when the measurement outcomes are known; S(ρ) = 0 and S(ρ(ij)
k ) = 0 as the initial

state ρ is a pure state. Therefore, the absolute irreversibility dominates over the quantum–classical mutual
information and the entropy increases by the copy processes. In addition, the purity decreases [see
figure 2(b)] due to the non-vanishing λfb, as predicted by equation (30). As time increases, the system gets
closer to the consensus state [see figure 2(a)]. Then, most copy processes Ci←j do not change the state, hence
λfb → 0. When λfb < IQC, the entropy is reduced by the copy processes.

Figures 4(c) and (d) show the entropy production rate in the presence of bit-flip noise and a GHZ initial
state, the situation of figure 3. In this case, the initial state yields λfb = 0, as the state is in the perfect
consensus and IQC = 0, as the initial state is a pure state. As time increases, the noises induce lack of
consensus and decoherence. Therefore both λfb and IQC increase. In this case, IQC > λfb at all times and the
entropy is always reduced by the copy processes. Note that the inequality equation (20) is always satisfied.
When ignoring the absolute irreversibility λfb, the lower bound determined by the quantum–classical
mutual information predicts the entropy reduction in a too much optimistic way; see the green dashed
curve in figure 4(a).

3.4. Example of the work extraction by the entangling Maxwell demon
Finally, we provide a simple example showing that the entangling Maxwell demon can indeed convert heat
from the thermal bath to work using the information IQC. The work is done on an external object through
the field operating the controlled-NOT operations. For example, if the NOT operations are realized by
emitting or absorbing a photon, the work is extracted when the qubit emits a photon which can then
provide power to another physical unit [11].

Consider two qubits interacting by a Hamiltonian

H = −JZ1 ⊗ Z2, (35)

8
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and weakly coupled to a bath of temperature T which induces the bit-flip noise. Here Zi is the Pauli matrix
measuring the spin of qubit i in the z-direction, and J(> 0) is the interaction strength between the two
qubits. The bit-flip noise can be realized when (a) each qubit observable Xi is weakly coupled to the bosonic
bath [38], and (b) the interaction between the qubits is weak J 
 �Γflip [4]. Note that the second condition
is necessary to ensure that the bath induces independent local dissipations for each qubit. The time
evolution of the qubits is governed by equation (8) with additional term −(i/�)[H, ρ],

ρ̇ = − i

�
[H, ρ] + Γcopy

∑
i�=j

(Ci←j(ρ) − ρ) + Γflip

∑
i

(XiρXi − ρ). (36)

Once the two qubits are driven into the steady state near the maximally-entangled consensus state

ρC ≡ 1

2

(
|00〉+ |11〉

) (
〈00|+ 〈11|

)
, (37)

by the fast copy processes, they convert heat absorbed from the bath to work; the flip noise accompanies a
heat absorption of 2J and the copy process extracts work of the same amount 2J into driving field which
operates the measurement and feedback operation (i.e. three controlled-NOT gates) [11].

Now, we calculate the work extraction rate Ẇ ext ≡ −Ẇ for the steady state ρst formed near the
maximally entangled state. The work extraction rate is equal to the heat absorption rate due to the first law
of thermodynamics,

Ẇ ext = Γflip

∑
i

[Tr(XiρstXiH) − Tr(ρstH)] . (38)

We find that the steady state of equation (36) satisfies

ρst = (1 − ε)ρC + ερFC, (39)

ρFC =
1

2

(
|01〉+ |10〉

) (
〈01|+ 〈10|

)
, (40)

ε =
Γflip

Γcopy + 2Γflip
, (41)

where ρFC is one-bit-flipped ρC, see appendix H for the derivation. After simple algebra using
equation (82), Tr(ρCH) = −J, and Tr(ρFCH) = J, we obtain the work extraction rate

Ẇext = 2JΓflip(1 − 2ε). (42)

We compare the work extraction rate, equation (42), with the upper bound Ẇext, ub = 2kTΓcopy(IQC − λfb)
dictated by the second law, equation (24). The information gain IQC = −ε ln ε− (1 − ε)ln(1 − ε) ≡ h(ε) is
the binary Shannon entropy in nats, because the initial state ρst has an entropy equal to h(ε) and the
post-measurement states are pure states with vanishing entropy. The absolute irreversibility λfb vanishes
according to equation (29); the feedback-operated states ρ(ij)

fin,k are all equal to ρC and

Tr

[
Π

null(ρ
(ij)
fin,k

)
ρ(lm)

fin,q

]
= 0 for any i �= j and k, q ∈ [0, 1]. Therefore, we obtain the upper bound dictated by

the second law,
Ẇ ext, ub = 2kTΓcopyh(ε). (43)

The second law, Ẇext � Ẇ ext, ub, is verified when examining the prerequisites of the above results. Using
Γflip/Γcopy = ε/(1 − 2ε), the relevant ratio becomes

Ẇ ext

Ẇ ext, ub
=

J

kT

ε

h(ε)
. (44)

The factor ε/h(ε) is smaller than 1 in the allowed range of ε ∈ [0, 0.5]. We examine the other factor by
further factorizing, J/kT = (J/�Γflip)(�Γflip/kT). The first factor J/�Γflip is much smaller than 1 due to the
condition that the bath induces the independent local dissipations. The second factor �Γflip/kT is also much
smaller than 1 as �Γflip = O[limω→0G(ω)(nB(ω) + 1)] = G′(0)kT [38], where G(ω) is the spectral coupling
density characterizing the qubit–bath coupling and G′(0) 
 1 due to the weak coupling condition.

4. Conclusion

We have introduced a generic class of Maxwell demon which generates and stabilizes a many-body
entanglement in the working substance. To understand the quantum dynamics, we introduced a quantum

9
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version of the classical noisy voter model used in the context of opinion dynamics. As a result, the GHZ
entanglement in the working substance was generated and stabilized against the bit-flip noises. A
non-monotonic behavior of the time-evolution of the purity and entropy could be understood in terms of a
competition between the information gain and the absolute irreversibility of the feedback control. We
discussed how the quantum voter model can be realized in the semiconductor quantum dots and AC
voltage-driven gates.

We have also formulated the second law of thermodynamics under the presence of the entangling
Maxwell demon. We have obtained that upper bounds of the entropy reduction and the work extraction
rates are determined by the competition between the information gain and the absolute irreversibility of the
feedback control. Our finding for the upper bound for the entropy reduction rate will be helpful for
stabilizing a many-body entangled state. The upper bound for the work extraction will be valuable for the
exploration of the quantum information engine whose working substance is in a many-body entangled
state. In these directions, our study suggests that an entangling demon is successful only when the
information gain is larger than the absolute irreversibility.

As a final remark, we compare our GHZ-entanglement stabilization protocol based on the two-particle
dissipations to others in the steady-state engineering. In the quantum optics community, another type of
steady-state engineering based on irreversible population transfer through optical pumping is studied in the
trapped ions and Rydberg atom setups [6, 21, 34, 45, 47], optionally aided by continuous feedback control
[12, 25, 39]. In comparison to this, our protocol has the merit of being broadly applicable to any quantum
system (not necessarily trapped ions or Rydberg atom setup) with the only requirement of the possibility of
a controlled-NOT gate operation, a most basic operation implementable in diverse experimental setups. On
the other hand, continuous error corrections [1, 30, 37] also have been proposed to stabilize an arbitrary
state against decoherence. In comparison to this, our protocol can be more useful in a system where the
number of qubits is limited, as it only requires one additional ancilla qubit for the quantum feedback
control.
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Appendix A. Nearest-neighbor connectivity in the quantum voter model

Here we present how the entanglement generation in the quantum voter model changes when the copy pair
selection occurs in the one-dimensional nearest-neighbor connectivity instead of the all-to-all scenario
considered in the main text. In this connectivity, a copy process Ci←j of randomly chosen pair i and j of
nearest neighbor is induced with rate Γcopy. We consider periodic boundary conditions, hence the allowed
choices for j are j = i ± 1 for i ∈ [2, . . . , N − 1], j = 2, N for i = 1, and j = 1, N − 1 for i = N.

Figure 5 shows the comparison of the GHZ entanglement generation for the two considered
connectivities, in the absence of noise and the symmetric initial state, the situation of figure 2. The result
shows that the all-to-all connectivity is more efficient for generating the GHZ entanglement, as the GHZ
witness (c) of the all-to-all connectivity approaches to −1 faster.

Appendix B. Derivation of equation (8) and its Lindblad form

Here we show the derivation of equation (8) and that it is in the Lindblad form.
We consider the evolution of the density matrix ρ(t) during a time step Δt which is smaller than

Γcopy
−1 and Γflip

−1 but larger than the operation time of a single copy process, i.e. the time for completing
three controlled-NOT gates in figure 1(b). During the time step Δt, the copy process Ci←j occurs with
probability ΓcopyΔt, the flip process Xi occurs with probability ΓflipΔt, and the state remains the same

10
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Figure 5. Comparison of the GHZ entanglement generation in the all-to-all (blue solid curves) and one-dimensional (green
dashed curves) connectivity. Here, Γflip = 0 and the initial state is the symmetric superposition, the situation of figure 2. The
time is measured in Γ−1

copy.

otherwise. Hence the time-evolved state is

ρ(t +Δt) = ΓcopyΔt
∑
i�=j

Ci←j(ρ) + ΓflipΔt
∑

i

XiρXi + (1 − NcopyΓcopy − NΓflip)ρ. (45)

Dividing this equation by Δt and collecting ρ̇ = ρ(t+Δt)−ρ(t)
Δt , we obtain equation (8). That equation is in the

Lindblad form,

ρ̇ = Γcopy

∑
i�=j

∑
k=0,1

(
L(ij)

k ρL(ij)†
k − 1

2

{
ρ, L(ij)†

k L(ij)
k

})
+ Γflip

∑
i

(
LiρL†

i −
1

2

{
ρ, L†

i Li

})
, (46)

where the Lindblad operators for the copy and flip processes are L(ij)
k = U(i)

k M(ij)
k and Li = Xi, respectively.

{. . . , . . .} is the anticommutator. This form is equivalent to equation (8) because∑
k L(ij)†

k L(ij)
k =

∑
k M(ij)

k U(i)†
k U(i)

k M(ij)
k =

∑
k M(ij)

k = 1, L†
i Li = X2

i = 1, and

∑
k

1

2

{
ρ, L(ij)†

k L(ij)
k

}
=

1

2
{ρ, 1} = ρ, (47)

1

2
{ρ, L†

i Li} =
1

2
{ρ, 1} = ρ. (48)

Appendix C. Quantum voter model with presence of noise and symmetric
the initial state

Here, we present a supplemental result in addition to figures 2 and 3, the dynamics of the quantum voter
model in the presence of bit-flip noises for the initial state of the symmetric superposition,∑

s1,...sN=0,1|s1 . . . sN〉.
Figure 6 shows that GHZ entanglement is generated and stabilized for this case when Γcopy 	 Γflip,

namely WGHZ < −0.5 is achieved at the stationary value when Γcopy > 10Γflip.
In addition, we show that GHZ entanglement is generated and stabilized even when the initial state

deviates from the symmetric superposition. We consider two types of deviations which are relevant in the
experimental preparation of the symmetric state using an external magnetic field in the x direction (see
appendix D). First, the magnetic field can be tilted from the x direction by a azimuthal angle θ/2. Then, the
initial (pure) state of [(|0〉+ eiθ/2|1〉)]⊗N is prepared. Second, a spin can be directed toward the negative x
direction due to thermal fluctuations with probability px,down ≡ e−Ex/kT . Then, the initial (mixed) state of
[(1 − px,down)|+〉〈+| + px,down|−〉〈−|]⊗N is prepared.

11
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Figure 6. GHZ entanglement generation and stabilization in the quantum voter model with the presence of noise and the
symmetric initial state. The time is measured in Γ−1

flip.

Figure 7. Quantum consensus dynamics for the initial state [(|0〉+ eiθ/2|1〉)/
√

2]⊗N . Time is measured in Γ−1
copy.

Here, Γflip = 0.1Γcopy.

Figures 7 and 8 show that GHZ-entanglement is also generated even for these two types of initial states,
if the deviation is sufficiently small. Figure 7 shows that WGHZ < −0.5 is achieved at the stationary value
when θ < 0.1π. Figure 8 shows that WGHZ < −0.5 is achieved at the stationary value when px,down < 0.1.

Appendix D. Experimental realization of quantum voter model

Here we discuss the experimental realization of the quantum voter model. Let us consider that the qubit
states 0 and 1 are realized by the 1/2-spin up and down state in the z direction, respectively. The initial state
of the symmetric superposition

∑
s1,...,sN=0,1|s1 . . . sN〉 = (|0〉+ |1〉)⊗N can be prepared by applying a

magnetic field in the x direction for a sufficiently large period so that the spins align to the x direction.
The Zeeman splitting Ex due to the magnetic field should be much larger than the thermal energy
broadening kT, as the spin is directed toward the negative x direction with probability e−Ex/kT . After the
preparation of the initial state, a quantum feedback control Ci←j operates in a randomly chosen qubit pair
(e.g. using a random number generator), in repetitions with a frequency of Γcopy. This quantum feedback
control Ci←j can be performed experimentally, as it requires the C-NOT operation that has been recently
implemented between two electron spins by resonantly driving them in a inhomogeneous Zeeman field
[46]. Our system can be realized by applying the scheme to N + 1 quantum dots, where one quantum dot
plays the role of the ancilla. The regime of the fast copy processes, Γcopy > Γflip, can be reached in the
experiments, i.e. reference [46], as Γcopy ∼ 5 MHz (according to the operation time ∼200 ns of C-NOT
gate) and Γflip ∼ 0.1 MHz (according to the spin decoherence time of 10 μs). As detailed in appendix C, we

12
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Figure 8. Quantum consensus dynamics for the initial state [(1 − px,down)|+〉〈+|+ px,down|−〉〈−|]⊗N . Time is measured in
Γ−1

copy. Here, Γflip = 0.1Γcopy.

find that GHZ-entanglement is also generated when the initial state deviates from the symmetric
superposition, e.g. WGHZ < −0.5 when the initial spins are tilted from the x direction by an azimuthal angle
less than 0.1π, or when they are directed toward negative x direction by a probability less than 0.1.

Appendix E. Copy processes by classical feedback controls

Here we show another type of feedback control (which we called classical feedback control in the main
text), which also assimilates the copy processes.

For the copy process that the qubit i copies j, the feedback controller first measures all four possible
states (si, sj) = (0, 0), (0, 1), (1, 0), (1, 1) of the qubits. Let the measurement outcomes be k = 0, 1, 2, 3,

respectively. The measurements are described by the projection operators M̃(ij)
0 = |00〉〈00|, M̃(ij)

1 = |01〉〈01|,
M̃(ij)

2 = |10〉〈10|, and M̃(ij)
3 = |11〉〈11|. Then, according to the measurement outcome, the feedback

operations Ũ(i)
0 = 1, Ũ(i)

1 = Xi, Ũ(i)
2 = Xi, and Ũ(i)

3 = 1 occur. The copy process maps the qubits from
ρ to C̃i←j(ρ)

C̃i←j(ρ) =
∑

k=0,...,3

Ũ(i)
k M̃(ij)

k ρM̃(ij)
k

(
Ũ(i)

k

)†
. (49)

Figure 9 shows the consensus dynamics by C̃i←j in the absence of noise and the initial state of the
symmetric superposition, situation of figure 2. Although the consensus probability reaches the value 1, the
GHZ entanglement is not generated as WGHZ → 0. This is because the state approaches the classical
ensemble |00〉〈00|+ |11〉〈11|, as evidentiated by the consensus probability of 1 and purity of 0.5. The
decoherence appears as the measurements of the feedback control C̃i←j destroy the coherence of the qubits
i and j in the opinion basis {|0i0j〉, |0i1j〉, |1i0j〉, |1i1j〉}.

Appendix F. Upper bound of the entropy reduction rate

Here we derive the upper bound of the entropy reduction rate by the entangling Maxwell demon, −Ṡcopy. To
this purpose, we first formulate the integral quantum fluctuation theorem (IQFT) for the entropy change,
see equation (69). The formulation is based on the approach of reference [13] on the IQFT for a single
quantum feedback control. Then, by applying Jensen’s inequality to the obtained IQFT, we derive the upper
bound for the entropy reduction rate, equation (20). The notations in the derivations are presented in the
case of the quantum voter model, but they are straightforwardly generalized for a generic entangling
Maxwell demon.

To obtain the IQFT, let us consider a thought experiment monitoring the time evolution during a small
time Δt which is much smaller than the repetition period Γ−1

copy but larger than the operation time of a
feedback control (i.e. the time for completing three C-NOT gates in the case of the quantum voter model).

(a) The initial state ρ is measured in the basis {|x〉} which diagonalizes ρ.

(b) We monitor, if any, which particles were selected for a quantum feedback control.

If a pair of qubits i and j are selected,

13
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Figure 9. Consensus dynamics by classical feedback controls in comparison with figure 2 of the main text. The time is measured
in Γ−1

copy.

(c) We monitor the measurement outcome k (which is 0 when si = sj and 1 otherwise) of the feedback
control applied to the selected qubits.

(d) We measure the post-measurement state in the basis {|y〉} which diagonalizes ρ(ij)
k defined by equation

(6).

(e) We measure the feedback-operated state in the basis {|z〉} that diagonalizes a reference state ρr [13].

A quantum transition is described by the record of all measurements (x, ij, k, y, z). The corresponding
transition probability P(x, ij, k, y, z) is the product of the probabilities of each monitoring (a)–(e),

P(x, ij, k, y, z) = pa(x)pcopypc(k|x, ij)pd(y|x, ij, k)pe(z|ij, k, y) +O(ΓcopyΔt)2, (50)

pa(x) = 〈x|ρ|x〉, (51)

pcopy = ΓcopyΔt, (52)

pc(k|x, ij) = |〈x|M(ij)
k |x〉|2, (53)

pd(y|x, ij, k) = |〈y|M(ij)
k |x〉|2/pc(k|x, ij), (54)

pe(z|ij, k, y) = |〈z|U(i)
k |y〉|2. (55)

The transition probability P is related to the probability P(ij) given that the particles i and j are selected,

P(x, ij, k, y, z) = pcopyP(ij)(x, k, y, z) +O(ΓcopyΔt)2, (56)

P(ij)(x, k, y, z) = pa(x)pc(k|x, ij)pd(y|x, ij, k)pe(z|ij, k, y). (57)

Following the approach of reference [13], we define the unaveraged entropy change σ by the feedback
controls and unaveraged quantum–classical mutual information iQC [13] for a transition (x, ij, k, y, z),

σ(x, z) = ln pa(x) − ln pr(z), (58)

iQC(x, ij, k, y) = −ln pa(x) + ln p(y|ij, k). (59)

Here pr(z) ≡ 〈z|ρr|z〉 is the probability distribution of the reference state, and p(y|ij, k) = 〈y|ρ(ij)
k |y〉 is the

probability distribution of the post-measurement state ρ(ij)
k . If no feedback control has occurred, σ = 0 and

iQC = 0 because we want to describe entropy reduction by the feedback controls.
The expectation value of σ provides an lower-bound for the entropy change by the feedback controls,

Ṡcopy [see equation (18)], during the time Δt
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〈σ〉 = NcopyΓcopy {S(C(ρ)) − S(ρ)}Δt, (60)

� ṠcopyΔt, (61)

when choosing the reference state as the result of the stochastic feedback control without knowing which
particles were selected,

ρr = C(ρ). (62)

Equation (60) is derived by relating 〈σ〉 to a expectation value 〈σ〉(ij) given that the particles i and j were
selected, and using that 〈σ〉(ij) = −S(ρ) − Tr[Ci←j(ρ)ln C(ρ)] (see reference [13]).

〈σ〉 =
∑
i�=j

pcopy〈σ〉(ij)

=
∑
i�=j

pcopy

[
−S(ρ) − Tr

[
Ci←j(ρ) ln C(ρ)

]]

= −NcopypcopyS(ρ) − Ncopypcopy Tr [C(ρ) ln C(ρ)]

= Ncopypcopy[−S(ρ) + S(C(ρ))]

= NcopyΓcopy[−S(ρ) + S(C(ρ))]Δt. (63)

Equation (61) is derived when applying the concavity of the von Neumann entropy to the definition
of Ṡcopy,

Ṡcopy =
S
(
NcopypcopyC(ρ) + (1 − Ncopypcopy)ρ

)
− S(ρ)

Δt
. (64)

The expectation value of iQC is the average quantum–classical mutual information obtained in the feedback
controls during the time Δt,

〈iQC〉 =
∑
i�=j

pcopyI(ij)
QC, (65)

= NcopyΓcopyIQCΔt. (66)

To obtain the IQFT, we express 〈e−σ−iQC〉 by an expectation value 〈e−σ−iQC〉(ij) given that the particles i and j
were selected. We use the integral fluctuation theorem for a single feedback control [13],

〈e−σ−iQC〉(ij) = 1 − λ
(ij)
fb , (67)

and use that if no feedback control has occurred, σ = 0 and iQC = 0. Then, we obtain

〈e−σ−iQC〉 =
∑
i�=j

pcopy〈e−σ−iQC〉(ij) +

⎛
⎝1 −

∑
i�=j

pcopy

⎞
⎠

=
∑
i�=j

pcopy(1 − λ
(ij)
fb ) + (1 − Ncopypcopy),

= 1 − Ncopypcopyλfb. (68)

This leads to the IQFT during the small time Δt 
 Γ−1
copy (note that equations (50) and (56) are only valid

for such small time)
〈e−σ−iQC〉 = 1 − NcopyΓcopyλfbΔt +O(ΓcopyΔt)2. (69)

Figure 10 shows that equation (69) is indeed satisfied for the situations of figure 4.
Finally, we obtain the upper bound of the entropy reduction rate −Ṡcopy by applying Jensen’s inequality,

e〈X〉 � 〈eX〉, to equation (69) and taking the limit of ΓcopyΔt → 0,

Ṡcopy � 〈σ〉
Δt

� 1

Δt

[
−〈iQC〉 − ln

[
1 − NcopyΓcopyλfbΔt

]]

= NcopyΓcopy

[
−IQC + λfb

]
. (70)

In the last equality, we have used equation (66) and that ΓcopyΔt is small.
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Figure 10. Numerical verification of equation (69). The case (a) corresponds to the case of figures 4(a) and (b), and
(b) corresponds to figures 4(c) and (d). Here, Δt = 0.002 5Γ−1

copy for (a) and Δt = 0.01Γ−1
copy for (b).

Appendix G. Absolute irreversibility in the quantum voter model for the symmetric
initial state

Here we derive that the absolute irreversibility λfb in the quantum voter model for the symmetric initial
state ρ = (

∑
s1,...,sN=0,1|s1 . . . sN〉/

√
2N )(h.c.)

λfb =
3

4

[
1 − 2

N(N − 1)

]
. (71)

We use equation (31). We evaluate the overlap Tr[Ci←j(ρ)Cl←m(ρ)] by dividing the choices of i, j, l and m
in three cases.

(a) When the qubit pair (i, j) does not share any common qubit with the pair (l, m), the overlap
Tr[Ci←j(ρ)Cl←m(ρ)] is 1/4. This is because the overlap is the same as Tr[C1←2(ρ)CN−1←N(ρ)] due to the
permutation symmetry of qubits, and it equals
|〈Φ+ + · · ·+ |+ · · ·+Φ+〉|2 = |〈Φ+ ++|++Φ+〉|2 = 1/4.

(b) When the qubit pair (i, j) shares one common qubit with the pair (l, m), the overlap Tr[Ci←j(ρ)Cl←m(ρ)]
is also 1/4. This is because the overlap equals Tr[C1←2(ρ)C2←3(ρ)] due to the permutation symmetry,
and it equals |〈Φ+ + · · ·+ |+Φ+ + · · ·++〉|2 = |〈Φ+ + |+Φ+〉|2 = 1/4.

(c) When the qubit pair (i, j) shares two common qubits with the pair (l, m), the overlap
Tr[Ci←j(ρ)Cl←m(ρ)] is 1, due to the permutation symmetry.

We count the number of the choices of i, j, l, and m in the cases (a)–(c). The total number of choices in
all the cases is [N(N − 1)]2, due to the all-to-all network connectivity, i �= j and l �= m. The number of
choices in the case (c) is 2N(N − 1). The number of choices in the cases (a) and (b) is
[N(N − 1)]2 − 2N(N − 1). Using these in equation (31)

λfb =
[N(N − 1)]2 − 2N(N − 1)

N2
copy

(
1 − 1

4

)
+

2N(N − 1)

Ncopy2
(1 − 1). (72)

Replacing Ncopy = N(N − 1), this is equivalent to equation (71).

Appendix H. Steady-state solution for the two-qubit information engine

Here we derive the steady-state solution near the maximally entangled state in situation of the two-qubit
information engine discussed in section 3.4. We try the following ansatz

ρst = (1 − ε)ρC + ερFC, (73)

to which we apply the steady-state condition ρ̇st = 0 with the master equation equation (36). The unitary
part of the Liouvillian vanishes,

[H, ρst] = 0. (74)

This is a consequence of the equalities

Z1 ⊗ Z2 ρC Z1 ⊗ Z2 = ρC, (75)

Z1 ⊗ Z2 ρFC Z1 ⊗ Z2 = ρFC, (76)

which can be easily proved using the definitions of equations (37) and (40).
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To calculate the other parts of the Liouvillian, we use

Ci←j(ρC) = ρC, (77)

Ci←j(ρFC) = ρC, (78)

XiρCXi = ρFC, (79)

XiρFCXi = ρC, (80)

for any i and j �= i. These lead to

Ci←j(ρst) − ρst = ε(ρC − ρFC), (81)

XiρstXi − ρst = (2ε− 1)(ρC − ρFC), (82)

ρ̇st = (ρC − ρFC)[2εΓcopy + 2(2ε− 1)Γflip]. (83)

Therefore, the steady-state condition is satisfied when

ε =
Γflip

Γcopy + 2Γflip
. (84)
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[33] Ptaszyński K and Esposito M 2019 Thermodynamics of quantum information flows Phys. Rev. Lett. 122 150603
[34] Reiter F, Reeb D and Sørensen A S 2016 Scalable dissipative preparation of many-body entanglement Phys. Rev. Lett. 117 040501
[35] Ribezzi-Crivellari M and Ritort F 2019 Large work extraction and the Landauer limit in a continuous Maxwell demon Nat. Phys.

15 660–4
[36] Sagawa T and Ueda M 2008 Second law of thermodynamics with discrete quantum feedback control Phys. Rev. Lett. 100 080403
[37] Sarovar M, Ahn C, Jacobs K and Milburn G J 2004 Practical scheme for error control using feedback Phys. Rev. A 69 052324
[38] Schaller G 2014 Open Quantum Systems Far from Equilibrium vol 881 (Berlin: Springer)
[39] Stevenson R N, Hope J J and Carvalho A R R 2011 Engineering steady states using jump-based feedback for multipartite

entanglement generation Phys. Rev. A 84 022332
[40] Ticozzi F and Viola L 2012 Stabilizing entangled states with quasi-local quantum dynamical semigroups Phil. Trans. R. Soc. A 370

5259–69
[41] Ticozzi F and Viola L 2014 Steady-state entanglement by engineered quasi-local Markovian dissipation Quantum Inf. Comput. 14

265–94
[42] Verstraete F, Wolf M M and Cirac I J 2009 Quantum computation and quantum-state engineering driven by dissipation Nat.

Phys. 5 633–6
[43] Wasilewski W, Jensen K, Krauter H, Renema J J, Balabas M V and Polzik E S 2010 Quantum noise limited and

entanglement-assisted magnetometry Phys. Rev. Lett. 104 133601
[44] Wintermantel T M, Wang Y, Lochead G, Shevate S, Brennen G K and Whitlock S 2020 Unitary and nonunitary quantum cellular

automata with Rydberg arrays Phys. Rev. Lett. 124 070503
[45] Wiseman H M and Milburn G J 2009 Quantum Measurement and Control (Cambridge: Cambridge University Press)
[46] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R R 2018 Resonantly driven CNOT gate for electron

spins Science 359 439–42
[47] Zhang J, Liu Y-x, Wu R-B, Jacobs K and Nori F 2017 Quantum feedback: theory, experiments, and applications Phys. Rep. 679

1–60

18

https://doi.org/10.1103/physrevlett.106.130506
https://doi.org/10.1103/physrevlett.106.130506
https://doi.org/10.1103/physrevlett.115.200502
https://doi.org/10.1103/physrevlett.115.200502
https://doi.org/10.1103/physrevlett.118.060601
https://doi.org/10.1103/physrevlett.118.060601
https://doi.org/10.1103/physreve.90.042110
https://doi.org/10.1103/physreve.90.042110
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1038/nphys3230
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1098/rspa.1998.0165
https://doi.org/10.1038/nphys3169
https://doi.org/10.1038/nphys3169
https://doi.org/10.1038/nphys3169
https://doi.org/10.1038/nphys3169
https://doi.org/10.1088/1367-2630/aae7f5
https://doi.org/10.1088/1367-2630/aae7f5
https://doi.org/10.1103/physrevlett.122.150603
https://doi.org/10.1103/physrevlett.122.150603
https://doi.org/10.1103/physrevlett.117.040501
https://doi.org/10.1103/physrevlett.117.040501
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1038/s41567-019-0481-0
https://doi.org/10.1103/physrevlett.100.080403
https://doi.org/10.1103/physrevlett.100.080403
https://doi.org/10.1103/physreva.69.052324
https://doi.org/10.1103/physreva.69.052324
https://doi.org/10.1103/physreva.84.022332
https://doi.org/10.1103/physreva.84.022332
https://doi.org/10.1098/rsta.2011.0485
https://doi.org/10.1098/rsta.2011.0485
https://doi.org/10.1098/rsta.2011.0485
https://doi.org/10.1098/rsta.2011.0485
https://doi.org/10.26421/qic14.3-4-5
https://doi.org/10.26421/qic14.3-4-5
https://doi.org/10.26421/qic14.3-4-5
https://doi.org/10.26421/qic14.3-4-5
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://doi.org/10.1103/physrevlett.104.133601
https://doi.org/10.1103/physrevlett.104.133601
https://doi.org/10.1103/physrevlett.124.070503
https://doi.org/10.1103/physrevlett.124.070503
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003
https://doi.org/10.1016/j.physrep.2017.02.003

	Quantum consensus dynamics by entangling Maxwell demon
	1.  Introduction
	2.  Quantum voter model
	2.1.  Model
	2.2.  Entanglement generation and stabilization

	3.  Second law of thermodynamics
	3.1.  Upper bounds of entropy reduction and work extraction rate
	3.2.  Absolute irreversibility
	3.3.  Competition between and 
	3.4.  Example of the work extraction by the entangling Maxwell demon

	4.  Conclusion
	Acknowledgments
	Data availability statement
	Appendix A.  Nearest-neighbor connectivity in the quantum voter model
	Appendix B.  Derivation of equation () and its Lindblad form
	Appendix C.  Quantum voter model with presence of noise and symmetric the initial state
	Appendix D.  Experimental realization of quantum voter model
	Appendix E.  Copy processes by classical feedback controls
	Appendix F.  Upper bound of the entropy reduction rate
	Appendix G.  Absolute irreversibility in the quantum voter model for the symmetric initial state
	Appendix H.  Steady-state solution for the two-qubit information engine
	ORCID iDs
	References


