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Binary-state dynamics on complex networks: Stochastic pair approximation and beyond
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Theoretical approaches to binary-state models on complex networks are generally restricted to infinite size
systems, where a set of nonlinear deterministic equations is assumed to characterize its dynamical and stationary
properties. We develop in this work the stochastic formalism of the different compartmental approaches, these
are the approximate master equation (AME), pair approximation (PA), and heterogeneous mean-field (HMF),
in descending order of accuracy. The stochastic formalism allows us to enlarge the range of validity and
applicability of compartmental approaches. This includes (i) the possibility of studying the role of the size of the
system in the different phenomena reproduced by the models together with a network structure, (ii) obtaining
the finite-size scaling functions and critical exponents of the macroscopic quantities, and (iii) the extension of
the rate description to a more general class of models.
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I. INTRODUCTION

Binary-state models on complex network are a very general
theoretical framework to study the effect of interactions in the
dynamics of a population of individuals. They are composed
by a set of nodes that are connected between them through a
particular random network, where each node holds a binary
(“spinlike,” two values) variable that evolves in time by some
given transition rates. Typical problems that can be mapped in
this scheme include models of epidemic spreading [1–4], lan-
guage competition [5–9], social interaction [10–15], financial
markets [16–21], among many others.

Recently, there has been a lot of effort in the develop-
ment of highly accurate mathematical descriptions of the
dynamics of these models. Typically, we can distinguish be-
tween two types of approaches depending on the variables
that one chooses to describe the system: (i) individual based-
approaches [22–26], where the “spin” or state of each node of
the network is considered as an independent variable, (ii) com-
partmental approaches [11,27–32], where nodes sharing the
same topological property such as, for example, the number
of neighbors in the network, are aggregated in a single vari-
able, being this an integer (occupation) number. Depending
on the level of description, i.e., the number of variables and its
nature, one distinguishes between different compartmental ap-
proaches: approximate master equation (AME) [30,31,33,34],
pair approximation (PA) [35–40], and heterogeneous mean
field (HMF) [27–29]. Only the individual node and AME
approaches can be considered as a complete description of the
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models, while the PA and HMF introduce constraints between
variables which may or may not be fulfilled, thus they are
generally a worse approximation.

Except in a few cases where stochastic effects are taken
into account at some extent [41,42] and in its completeness
[25,26], the approaches are usually followed by a determin-
istic type of description [23,27,29,43], where the stochastic
nature of the models defined by the individual transitions rates
is neglected. The deterministic approach enables one to obtain
some important quantities of the models such as the critical
point (e.g., the epidemic threshold), or the time evolution of
the global state of the system (e.g., the density of infected
individuals in the population). The accuracy and suitability
of the different approaches have been widely discussed in the
literature. For example, in the determination of the epidemic
threshold, it has been shown that the two approaches, individ-
ual and compartmental, may give contradictory results [44,45]
and a general recipe for choosing one or another was given in
Ref. [46].

Although the deterministic approach gives us relevant in-
formation in all situations, it is an accurate description only in
the strict infinite system size limit. Depending on the model,
the variables chosen, the values of the parameters and the
network, the difference between the deterministic approach
and the numerical results may be very important on finite net-
works [47]. Stochastic effects may become relevant even for
extremely large system sizes, specially if the system is close
to a critical point, or the network has high degree heterogene-
ity. Besides, there are some models where the deterministic
approach does not provide the relevant information sought.

For example, the noisy voter (Kirman) model [48–51] is an
opinion model that considers neighbor imitation and random
switching of opinion as basic ingredients. Different versions
of the model have been applied in many different contexts, the
most important in our perspective being the study price fluctu-
ation in financial markets [16,17] and vote share distributions
in electoral data [52–54]. In this context, the global opinion
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does not take a fixed deterministic value but shows heavy
fluctuations around the mean instead. The statistics of these
fluctuations is the most important feature of study, as it shows
deviations from the Gaussian behavior (the global variable
distributes as a Beta distribution [16,50]), with very similar
properties to financial series and vote share fluctuations. For
this reason a full stochastic treatment is necessary to study
the model, as carried out in Ref. [26] within the individual
approach and in Ref. [32] for the pair approximation. The
model has a finite-size critical point that vanishes in the ther-
modynamic limit and thus a stochastic approach is mandatory
in order to achieve the correct characterization [19,32]. Addi-
tionally, the noisy voter model is of major importance because
of its simplicity and the possibility of obtaining analytical
results, which are helpful to fully understand its properties.
Recent generalizations of the model include: the effect of non-
linear copying mechanisms [55–57], non-Markovian memory
effects [58–60], zealots [61], contrarians [62], more than two
states [53,63,64], the role of different noise and copying
mechanisms in the nature of the transition (continuous or
discontinuous) [65,66], etc.

A second example, which we will study in detail here, is
the contact process [67] epidemic model. In this case, a ran-
domly selected individual (if infected) transmits the disease
with a certain rate to a neighbor (also chosen at random).
Curiously, as pointed out in Ref. [47], the model on scale
free networks shows heavy fluctuations and finite-size effects
that never die out in practice (even for extremely large sys-
tem sizes). Thus, we have to resort to the finite-size scaling
functions to obtain a useful theoretical description, as it is
done with particular attention in Refs. [41,42] within a het-
erogeneous mean-field scheme, and in Ref. [40] for the pair
approximation.

A third model for which stochastic effects are of special
interest and that we will also study here is the threshold
model [31,68]. This models has a particular type of degen-
erate dynamics, where the stochastic effects are not just weak
fluctuations around a fixed deterministic value. Instead of that,
even a very weak fluctuation may eventually drive the system
to a completely different final state after some time steps. For
this reason, the model shows heavy finite size effects even for
large system sizes and a description of the stochastic dynamics
is of crucial important to understand it.

The main aim of this work is to give a general theoretical
approach to binary-state models on complex networks that
takes into account stochastic effects, going beyond incomplete
deterministic approaches. In a previous reference by some
of us [32], this was done but only for the pair approxima-
tion, what we called stochastic pair approximation (SPA),
and focusing mainly on the noisy voter model. In this work
we will consider the stochastic version of all compartmental
approaches (SAME, SPA, SHMF), in a more general formu-
lation and applying them to several models. We start finding
the general master equation of individual and compartmental
approaches. The master equation corresponds to a full charac-
terization of any Markovian process and one can derive easily
the deterministic equations from it [69,70]. The formulation in
terms of the master equation enables us to include a more gen-
eral individual rate form. In the original work [31], individual
rates only depend, for simplicity, on the number of neighbors

in one of the two states and on the total number of neighbors.
We will relax this assumption and include a more general class
of models in the description.

In order to approximately solve the master equation, we
will apply different expansion techniques. The first one is a
van Kampen-like system-size expansion [69,71–74], where
the variables are split between its deterministic value plus
finite-size corrections. This approach is accurate only far
from criticality with an increasing accuracy when the system
size increases [71]. For completeness we will also derive
the corresponding (continuous) Fokker-Planck and Langevin
stochastic differential equations from the original master
equation applying the Kramers-Moyal expansion [69], which
is accurate, in principle, in the whole parameter region.

Close to a critical point, the models are well described by
the finite-size scaling functions, see for example [56], which
can not be derived, a priori, from the deterministic descrip-
tion nor the traditional van Kampen expansion. The method
that we will use to obtain the theoretical scaling functions is
a similar system-size expansion of the master equation, but
with an anomalous scaling with system size [75,76]. These
techniques will be applied to several models of interest on dif-
ferent network types, comparing altogether the different levels
of approximation and accuracy of compartmental approaches.

The paper is organized as follows. In Sec. II, we introduce
the general definitions and notation of binary state models and
the main characteristics of the networks. In Sec. III, we define
which are the characteristics of the stochastic effects that we
will study. In Sec. IV, we construct the master equation for
the individual and compartmental approaches. In Sec. IV,
we apply the van Kampen expansion to the general master
equation. We re-derive the deterministic nonlinear equations
[31], together with a set of linear equations for the correlations
and average values of the stochastic corrections. In Sec. V B,
we compare the results of numerical simulations for small
systems in the stationary state with the theoretical results of
the van Kampen approach for different models and networks.
In Sec. VI, we apply the expansion of the master equation
close to a critical point, obtaining the finite-size scaling func-
tions, and comparing with numerical simulations. In Sec. VII,
we study the time dependence of the models. We end with
a summary and conclusions in Section VIII. In Appendix A,
we show the expressions of the matrices involved in the van
Kampen and Kramers-Moyal expansions, while Appendix B
contains the details of the expansion around the critical point.

II. GENERAL ASPECTS, MODELS, AND NETWORKS

A binary-state model is composed of a population of size
N , where each member of the population can be in two states
1, “adopter,” or 0, “nonadopter.” Depending on the model
and the context, the states may represent different properties
of the individuals, for example magnetic spin, opinion on
a topic, spoken language, infection state, etc. This is natu-
rally described by a set of time-dependent binary variables
n(t ) ≡ {ni(t ) = 0, 1}i=1,...,N . Each individual i = 1, . . . , N is
regarded as a node of a, single-connected, undirected network,
which can be mapped into the usual (symmetric) adjacency
matrix A = {Ai j}, with coefficients Ai j = 1 if nodes i and j
are connected and Ai j = 0 otherwise, where self-loops are
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avoided Aii = 0. The degree of node i is defined as the to-
tal number of nodes connected to it ki = ∑N

j=1 Ai j (number
of neighbors), taking values in between k ∈ [kmin, kmax]. The
degree k can be heterogeneous within the population and
one defines the number Nk of nodes with degree k, and the
associated fraction Pk = Nk/N called degree distribution. It
is also useful to define the moments of degree m as μm =∑

k∈[kmin,kmax] Pkkm, with short notation μ1 = μ, which corre-
sponds to the average degree. Networks are assumed to be
generated by the configuration model [77], with fixed de-
gree distribution Pk , which produces uncorrelated networks
if kmax � √

μN (no degree-degree correlations and no trian-
gles).

The dynamical model under study is defined by the individ-
ual rates r±

i , which determine the time evolution of the state
variables ni(t ). They are defined as the probability per unit
time that the transition ni = 0 → 1 occurs, with rate r+

i , and
ni = 1 → 0, with rate r−

i . The rates may depend, in general,
on the full set of states r±

i (n), however, most common models
assume a dependence only through the number of neighbors
in state 1, qi = ∑N

j=1 Ai jn j , in addition to the total number of
neighbors ki. For this reason, we will term the individual rates
as r±

i (n) ≡ R±
ki,qi

, depending only on ki, qi, although we will
relax this restriction to any rate dependence later in the next
sections.

In our study, we will focus on global quantities, such as
the total density of nodes in state 1, m ≡ 1

N

∑N
i=1 ni ∈ (0, 1).

For symmetrical models R+
k,q = R−

k,k−q, it is more natural to
define the magnetization as mS ≡ 2m − 1 ∈ (−1, 1) and we
will use one quantity or another depending on the symmetries.
The density of active links ρ, i.e., links connecting nodes in
different states, is computed as

ρ ≡
∑N

i, j=1 Ai j (ni(1 − n j ) + (1 − ni )n j )∑N
i, j=1 Ai j

. (1)

One of the interesting properties of ρ for binary-state models
is that it can be used as an alternative to m or mS to measure the
level of order or agreement on one of the options, a situation
in which ρ approaches zero, independently of the option.

III. STOCHASTIC EFFECTS

The stochastic dynamics produces variability across
realizations/trajectories of the stochastic process. For this rea-
son, one typically performs an average over realizations of
the macroscopic quantities 〈m(t )〉, 〈ρ(t )〉 to characterize the
global state of the system. A way to measure fluctuations and
variability across realizations is by calculating the variance of
the magnetization:

χ ≡ N (〈m2〉 − 〈m〉2), (2)

which is also traditionally called magnetic susceptibility in
spin models, as it also quantifies how the system responds
to an external perturbation such as a magnetic field. Usually,
one observes that in the thermodynamic limit N → ∞ the
susceptibility converges to a given fixed value. This is the case
when deviations of the magnetization (fluctuations) scale as
σ [m] ∼ N−1/2, we will explore this ansatz throughout Sec. V.
Some models have a special parameter value (critical point)

where the susceptibility is not well defined. In this case, we
must consider other, anomalous, N dependencies, which can
be captured using the finite-size scaling functions.

Assume that the rates of the model depend on a parameter
say T . If the model has a critical/bifurcation point T = Tc

where the dynamical properties change abruptly (e.g., the sus-
ceptibility is not well defined), the statistics over realizations
can be described using the finite-size scaling functions. For a
moment of order k of the magnetization (in the stationary state
t → ∞) that is

〈mk〉st = N−kβ/ν̄m̃k[N1/ν̄ (T − Tc)], (3)

where β and ν̄ are critical exponents to be determined and
m̃k[x] are the scaling functions. The scaling functions are
very useful to study the critical behavior of the system and
its N dependence. If we know β, ν̄ and Tc, the results for
different values of N collapse on a same curve when we
plot Nkβ/ν̄〈mk〉st vs N1/ν̄ (T − Tc). In the thermodynamic limit
N → ∞ we should recover the deterministic result in Eq. (3),
that is limx→∞ m̃k[x] ∝ xkβ . The scaling functions will be
discussed in more detail, theoretically and numerically, in
Sec. VI.

Note that after the average over the ensemble of
realizations/trajectories is produced, one usually performs
additional averages over the ensemble of networks generated
with the configuration model with the same degree distribu-
tion Pk . This is because we consider the degree distribution as
the only relevant characteristic of the network.

IV. THE MASTER EQUATION

The most detailed characterization of models whose dy-
namics comes defined by stochastic rules is achieved by the
knowledge of the probability P(x, t ) of finding the system
in state x at time t . The time-evolution of this probability is
governed by a master equation. In order to construct a general
master equation, we consider: (i) a set of integer variables
x ≡ (x1, . . . , xM ), and (ii) a set of processes ν = 1, . . . , K
characterized by the changes in the variables x j → x j + �

(ν)
j ,

j = 1, . . . , M, with rates W (ν)(x). Once we have these ingre-
dients the general master equation reads [71,73]:

∂P(x; t )

∂t
=

K∑
ν=1

(
M∏

j=1

E
−�

(ν)
j

j − 1

)
[W (ν)(x)P(x; t )], (4)

where Ej is the step operator acting on any function
f (x) of the variable x j as E �

j [ f (x1, . . . , x j, . . . , xM )] =
f (x1, . . . , x j + �, . . . , xM ). For example, if we choose to in-
clude in our description the full set of node-state variables
x = n, we have the following K = 2N processes: ν = (i,+)
where ni = 0 → 1, and ν = (i,−) where ni = 1 → 0, for
i = 1, . . . , N . The changes in the variables are �

(i,±)
j = ±δi, j

and the respective rates W (i,+) = δni,0r+
i and W (i,−) = δni,1r−

i
(δni,0 = 1 − ni, δni,1 = ni).

When the individual rates r±
i depend only on the number ki

of neighbors and the number qi of those in state 1, i.e., r±
i =

R±
ki,qi

, an alternative to the description based on the full set of
node-state variables is to consider a compartmental approach
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FIG. 1. Diagram of changes in the description variables {Nn,k,q} when a node with (k, q) = (4, 2) changes state in a particular given network
configuration, with neighborhood (k1, k2, k3, k4) = (3, 3, 2, 4) and (q1, q2, q3, q4) = (0, 1, 1, 2) � (1, 2, 2, 3). Ten total changes are produced
in the variables, two for the variables associated to the central node k, q and two additional changes for each one associated to the neighbors
{ki, qi}i=1,...,k .

also known as AME.1 This mesoscopic description in terms
of the number of nodes with the same transition rate, was
studied in detail in Refs. [30,31] and generalizations of this
approach have been developed for multi-state models [78,79]
and weighted networks [80]. The occupation numbers are
defined as the number of nodes x ≡ {Nn,k,q} that are in state
n = 0, 1 and have degree k = kmin, kmin + 1, . . . , kmax among
which q = 0, 1, . . . , k are adopter neighbor nodes (nodes in
state 1). The level of description consists of M = ∑

k,q 2 =
(1 + kmax − kmin)(2 + kmax + kmin) variables, which are not
all independent. The total number of nodes that have de-
gree k is fixed by the network, i.e., Nk = ∑

n,q Nn,k,q, which
constitutes a total of kmax − kmin + 1 constraints between vari-
ables. Another more subtle constraint is that in an undirected
network the number of 0-1 links is equal to the number of 1-
0, i.e.,

∑
k,q qN0,k,q = ∑

k,q(k − q)N1,k,q. Interestingly, in the

limit of uncorrelated networks kmax ∝ √
N it is M ∝ N , which

indicates that the number of variables is of a similar mag-
nitude compared to the node-state approach. Consequently,
the occupation number approach will correspond to a sig-
nificant decrease in the number of variables only when the
degree distribution extends over a limited range of degree
values kmax � √

N . The global variables of interest, used to
portray the macroscopic state of the system, are the total
number of adopter nodes N1 = ∑

k,q N1,k,q and the number of
active links (connecting nodes in state 0 to 1 or vice versa)
L = ∑

k,q qN0,k,q, and their respective densities m = N1/N ,
ρ = 2L/(μN ) defined in Sec. II.

In this occupation number approach {Nn,k,q}, however, the
construction of the master equation is more cumbersome as
we need to identify the possible processes ν and the associated
rates W (ν), and this will be our concern in the remainder of
this section. Still, the elementary process of the dynamic is
the state transition of a node i, compatible with the numbers
Nn,k,q, changing from ni = 0 to ni = 1 or vice versa, but all
processes that lead to the same change of the occupation
number variables are grouped under the same label ν. In an
elementary process, 2(k + 1) changes of the set of description
variables {Nn,k,q} are produced, two for the variables associ-
ated to the central node and two for each one of its neighbors,

1Note that in the acronym AME, or approximate master equation,
the word “master” has a different meaning than the one used in this
paper to describe an equation for the probability distribution.

see Fig. 1 as a schematic example. The variables that change
during this process depend on the values k, q of the chosen
node i, and additionally on the set {k j, q j} j=1,...,k of the k
neighbors of i. We adopt to order the list of neighbors such
that {k j, q j} j=1,...,k−q correspond to the neighbors in state 0,
and {k j, q j} j=k−q+1,...,k to the neighbors in state 1. Therefore
the characterization of a process ν requires of the knowledge
of the full set of variables, i.e., ν = (n, k, q, {k j, q j} j=1,...,k ).
The problem now is that, in principle, one is not able to
know from the variables {Nn,k,q} the set {k j, q j} j=1,...,k , and
consequently we need some approximation to attain a closed
treatment of the dynamics. We make the ansatz that the rate of
each process is calculated as the total change rate of the central
node Nn,k,qR±

k,q times the probability of having a particular
configuration of the neighborhood, this is

W (0,k,q,{k j ,q j } j=1,...,k )({Nn,k,q})

= N0,k,qR+
k,q

k−q∏
i=1

P0(0, ki, qi )
k∏

j=k−q+1

P0(1, k j, q j ), (5)

W (1,k,q,{k j ,q j } j=1,...,k )({Nn,k,q})

= N1,k,qR−
k,q

k−q∏
i=1

P1(0, ki, qi )
k∏

j=k−q+1

P1(1, k j, q j ). (6)

Here, we introduced P0(1, k j, q j ), defined as the probabil-
ity that an edge leaving a node in state 0 connects to a
node in state 1 with k j, q j , and equivalently for P0(0, ki, qi ),
P1(0, ki, qi ) and P1(1, k j, q j ). These probabilities can be cal-
culated using the description variables Nn,k,q as

P0(0, k, q) = (k − q)N0,k,q∑
k,q(k − q)N0,k,q

, (7)

P0(1, k, q) = (k − q)N1,k,q∑
k,q(k − q)N1,k,q

, (8)

P1(0, k, q) = qN0,k,q∑
k,q qN0,k,q

, (9)

P1(1, k, q) = qN1,k,q∑
k,q qN1,k,q

. (10)

For example, P0(1, k, q) is the fraction of edges coming out of
nodes in state 1 with k, q that go to nodes in state 0, divided
by the total number of 0-1 edges and similarly for the other
expressions. Note that the approximation in this method is that
we assume the probability of the neighborhood configuration
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of a node to be a product of independent single event probabil-
ities, which is of general validity for uncorrelated networks.

It is also important to understand that the rate formulation,
Eqs. (5) and (6), allows to consider a more general dependence
of the individual rates as R±

k,q,{k j ,q j } j=1,...,k
. This is a further

advantage of the stochastic formulation that the original de-
terministic approach did not consider. A relevant example that
this new formulation includes, and that we will explore in
Sec. VI, is the contact process, with rates: R+

k,q,{k j }k
j=k−q+1

=

λ
∑k

j=k−q+1 k−1
j ; R−

k,q = μ (the infection rate depends on the
degrees of the infected neighbors). This epidemic model can
be defined with two processes: (i) with rate λ a node transmits
the disease to a randomly selected neighbor, and (ii) with rate
μ the node recovers.

We now define �
(ν)
n,k,q as the change of the variable Nn,k,q →

Nn,k,q + �
(ν)
n,k,q in the process ν, which are computed as (see

Fig. 1 for a guide):

�
(0,k′,q′,{k j ,q j } j=1,...,k )
0,k,q = −δk,k′δq,q′ +

k′−q′∑
j=1

(−δk,k j δq,q j + δk,k j δq,q j+1
)
, (11)

�
(0,k′,q′,{k j ,q j } j=1,...,k )
1,k,q = δk,k′δq,q′ +

k′∑
j=k′−q′+1

(−δk,k j δq,q j + δk,k j δq,q j+1
)
, (12)

�
(1,k′,q′,{k j ,q j } j=1,...,k )
0,k,q = δk,k′δq,q′ +

k′−q′∑
j=1

(−δk,k j δq,q j + δk,k j δq,q j−1
)
, (13)

�
(1,k′,q′,{k j ,q j } j=1,...,k )
1,k,q = −δk,k′δq,q′ +

k′∑
j=k′−q′+1

(−δk,k j δq,q j + δk,k j δq,q j−1
)
. (14)

Once the processes ν, rates W (ν) and changes in the vari-
ables �

(ν)
n,k,q are defined, we can draw on the general theory

of stochastic processes [69–71,81] in terms of the master
equation (4).

Coarser levels of description are also possible. Let Nn,k =∑
q Nn,k,q be the number of nodes in state n with degree

k, and Ln,k = ∑
q qNn,k,q the number of links that connect

nodes of degree k and state n with nodes in state 1 (adopter
nodes). The next level of description is the pair approxima-
tion (PA) that considers the set x = {N1,k, L0,k, L1,k}, with
N0,k = Nk − N1,k , and k ∈ [kmin, kmax]. The pair approxima-
tion reduces the number of variables to M = 3(kmax − kmin +
1) with the conservation of the total number of 0-1 links∑

k L0,k = ∑
k (N1,kk − L1,k ) as the only constraint. The mas-

ter equation requires to write the rates W (ν) as a function
only of the description variables. To achieve this, one in-
troduces an approximation based on the ansatz that the
variable Nn,k,q appearing in the rates Eqs. (5) and (6) can be
expressed as

Nn,k,q = Nn,kBink,q

[
Ln,k

kNn,k

]
, (15)

where Bink,q[p] = (k
q

)
pq(1 − p)k−q is the binomial distribu-

tion. In this paper, we restrict our study to this version of the
pair approximation, but other variants exist in the literature,
such as the so-called heterogeneous pair approximation [38],
where one includes in the description the number of active
links Lk,k′ that join nodes of degree k and k′ that are in
different states, or the original version [37] (also called ho-
mogeneous pair approximation) that takes into consideration
just the global number L of active links.

An even cruder level of description is the heterogeneous
mean field (HMF), which considers the set of variables x =
{N1,k}, with N0,k = Nk − N1,k , reducing the number of vari-
ables to M = kmax − kmin + 1 with no constraints. The closure
of the rates W (ν) in terms of this set of variables is achieved
by a similar binomial ansatz but with a simpler single event
probability:

Nn,k,q = Nn,kBink,q

[∑
k kN1,k

μN

]
. (16)

The coarsest possible description is the mean field (MF)
in which a single description variable x = N1 is used with
closure ansatz N1,k,q = N1δq,kN1/N , N0,k,q = (N − N1)δq,kN1/N .

When we use the master equation with a compartmental
approach (AME, PA, HMF) to obtain results beyond the de-
terministic description, we will include a S in the abbreviation
(SAME, SPA, SHMF) to empathize that we are taking into
account the stochastic effects. We will use this terminology in
the figures of the next sections.

Note that the formulation of the node-state approach does
not need any approximations, in principle, while the different
occupation number approaches, whether AME, PA, HME or
MF, use approximations in the calculation of the rates that
limit the validity of their predictions. In particular, as dis-
cussed previously, we expect the AME to be accurate only
for uncorrelated networks. The fact that the master equation
for the node-state approach is free of approximations does not
mean in general that we are able to solve such equation, and
different approximations are then needed to obtain a solution
[25,26]. The advantage of the occupation number approach
is that it has some particularities that enables us to apply
accurate methods to solve the master equation. These different
techniques are explained and explored in the next sections.
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V. APPROXIMATE SOLUTION OF THE MASTER
EQUATION

A. Formulation

The main reason of the convenience of the occupation
number approach is that the description variables are exten-
sive. This means that for a fixed degree distribution Pk , if
we increase the system size N → λN , the variables scale in
the same way Nn,k,q → λNn,k,q and similarly for Nn,k , Ln,k ,
N1,k , and N1. This property is useful because it allows us to
apply the well known system-size expansions of the master
equation. Note that the rates Eqs. (5) and (6) are extensive
functions W (ν)(x) = Nw(ν)( x

N ), where N = ∑
n,k,q Nn,k,q is

the total number of nodes and w(ν) are the set of intensive rate
functions. In this case, following [32,71], we can use a van
Kampen type of system-size expansion, that we now explain
in detail.

In the case of the AME, the expansion splits the variables
as x = Nφ + N1/2a + N0b, in components Nn,k,q = Nφn,k,q +
N1/2an,k,q + N0bn,k,q, where φn,k,q are a set of deterministic
variables, while an,k,q and bn,k,q are random variables. This
is an expansion which is assumed to be of general validity
in the thermodynamic limit N → ∞ and which yields the
first stochastic correction terms to the deterministic approach
[30,31]. The deterministic evolution of the system fulfills a set
of nonlinear differential equations

dφn,k,q

dt
= �n,k,q, (17)

characterized by the drift term defined as �n,k,q(φ) =∑
ν �

(ν)
n,k,qw

(ν)(φ) which leads, after some algebra using
Eqs. (5)–(14), to

�0,k,q = −φ0,k,qR+
k,q + φ1,k,qR−

k,q − φ0,k,q(k − q)βs

+φ0,k,q−1(k − q + 1)βs − φ0,k,qqγ s

+φ0,k,q+1(q + 1)γ s, (18)

�1,k,q = φ0,k,qR+
k,q − φ1,k,qR−

k,q − φ1,k,q(k − q)β i

+φ1,k,q−1(k − q + 1)β i − φ1,k,qqγ i

+φ1,k,q+1(q + 1)γ i. (19)

Here, βs, γ s, β i, and γ i are the individual rates R±
k,q at which

a neighbor of a central node changes state averaged with the
probabilities (7)–(10), where the symbol β, γ reflects the state
of the neighbor node 0, 1, while the super index s, i reflects the
state of the central node 0, 1, namely,

βs ≡
∑
k,q

P0(0, k, q)R+
k,q =

∑
k,q(k − q) φ0,k,qR+

k,q∑
k,q(k − q) φ0,k,q

, (20)

γ s ≡
∑
k,q

P0(1, k, q)R−
k,q =

∑
k,q(k − q) φ1,k,qR−

k,q∑
k,q(k − q) φ1,k,q

, (21)

β i ≡
∑
k,q

P1(0, k, q)R+
k,q =

∑
k,q q φ0,k,qR+

k,q∑
k,q q φ0,k,q

, (22)

γ i ≡
∑
k,q

P1(1, k, q)R−
k,q =

∑
k,q q φ1,k,qR−

k,q∑
k,q q φ1,k,q

. (23)

Note that, at the deterministic level, the set of differen-
tial equations (17)–(23) coincides with the original work of
Gleeson [30,31], as it is naturally expected. The advantage
of the stochastic formalism presented here Eqs. (4)–(14) is
that, in addition, we will be able to obtain results for the
average deviations 〈an,k,q〉, 〈bn,k,q〉 from the deterministic so-
lution, and also for the fluctuations/correlations Cn,k,q;n′,k′,q′ =
〈an,k,qan′,k′,q′ 〉 − 〈an,k,q〉〈an′,k′,q′ 〉. In the van Kampen expan-
sion, the set of differential equations for these quantities are
linear and read in vector notation [71]:

d〈a〉
dt

= −B〈a〉, (24)

d〈b〉
dt

= −B〈b〉 + �, (25)

dC
dt

= −BC − CB + G, (26)

where B is the Jacobian matrix Bi j (φ) = −∂φ j �i; the noise G
matrix is calculated as Gi j (φ) = ∑

ν �
(ν)
i �

(ν)
j w(ν)(φ) and �i =

1
2

∑
j,k〈a jak〉∂2

φ j ,φk
�i is related to the Hessian matrices of �.

For reason of space, the explicit expressions of these matrices
are written down in Appendix A.

Note that Eqs. (18) and (19) are valid as long as the
individual rates can be written in the form R±

k,q. For a
more general dependence R±

k,q,{k j ,q j } j=1,...,k
, the form of the

deterministic drift functions �n,k,q changes. For the contact
process with rates R+

k,q,{k j }k
j=k−q+1

, similar equations apply after

replacing: R+
k,q → R̃+

k,q = ∑
{k j ,q j } R+

k,q,{k j }
∏

j P0(1, k j, q j ),

and β i → β i
k = ∑

k′,q′ P1(0, k′, q′)R̃+
k′,q′,k with R̃+

k′,q′,k =∑
{k j ,q j } R+

k′,q′,k,{k j }
∏

j P0(1, k j, q j ). Here R+
k′,q′,k,{k j } is just the

rate R+
k′,q′,{k j} where one of the degrees (no matter which) is

fixed to be k.
In the case of the pair approximation and proceed-

ing with the general theory, we split the variables like
N1,k = Nφk + N1/2ak + N0bk and Ln,k = Nφn,k + N1/2an,k +
N0bn,k . The evolution equations at the deterministic level
are

dφk

dt
= �k, (27)

dφn,k

dt
= �n,k . (28)

In order to obtain the deterministic drift functions �, we have
to perform sums in Eqs. (18) and (19) as �k = ∑

q �1,k,q and
�n,k = ∑

q q�n,k,q, which leads to

�k =
∑

q

[φ0,k,qR+
k,q − φ1,k,qR−

k,q], (29)

�0,k =
∑

q

[−qφ0,k,qR+
k,q + qφ1,k,qR−

k,q]

+βs(kPk − kφk − φ0,k ) − γ sφ0,k, (30)

�1,k =
∑

q

[qφ0,k,qR+
k,q − qφ1,k,qR−

k,q]

+β i(kφk − φ1,k ) − γ iφ1,k, (31)
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where one must replace φn,k,q by the binomial ansatz φ0,k,q =
(Pk − φk )Bink,q[p0,k], φ1,k,q = φkBink,q[p1,k] and p0,k =
φ0,k/(k(Pk − φk )), p1,k = φ1,k/(kφk ). The corresponding Ja-
cobian B and G matrices of this Pair Approximation can be
found in Appendix A.

In the case of the heterogeneous mean field, the variable
splitting is N1,k = Nφk + N1/2ak + N0bk , and the determin-
istic equation dφk

dt = �k , where the drift functions � are
obtained by summing Eqs. (18) and (19) like �k = ∑

q �1,k,q,
which leads also to

�k =
∑

q

[φ0,k,qR+
k,q − φ1,k,qR−

k,q], (32)

but now φn,k,q are given by φ0,k,q = (Pk − φk )Bink,q[p],
φ1,k,q = φkBink,q[p] with p = ∑

k kφk/μ (independent of k).
Again, the corresponding Jacobian B and G matrices can be
found in Appendix A.

In a previous work [71], we explained how to solve equa-
tions (24)–(26) and we developed a very stable and fast
convergent implicit Euler method to find the numerical so-
lution of the correlation matrix C. It is worth mentioning
that a general result of the van Kampen expansion is that the
stationary probability distribution �st(a) of the first stochastic
correction a is Gaussian [69,71] with zero mean 〈a〉st = 0:

�st(a) =
√

|Cst|
(2π )M

e− 1
2 aᵀ·C−1

st ·a. (33)

Besides, if the initial condition �(a, t = 0) is Gaussian, then
the time-dependent �(a, t ) is also a Gaussian (33) replacing
the stationary correlation matrix Cst → C(t ) by the time-
dependent one.

The van Kampen expansion will be accurate in the thermo-
dynamic limit N → ∞, for example in the determination of
the magnetic susceptibility, this is

χ =
∑

k,q,k′,q′
C1,k,q;1,k′,q′ . (34)

According to the van Kampen approach, the susceptibility
defined as Eq. (2) does not depend on system size N , which is
obviously not true for a finite system N . What we are obtain-
ing in this approach is the thermodynamic limit limN→∞ χN .
With respect to the average values of the macroscopic quanti-
ties 〈m(t )〉, 〈ρ(t )〉 they are computed as

〈m(t )〉 =
∑
k,q

φ1,k,q + 1

N

∑
k,q

〈b1,k,q〉, (35)

〈ρ(t )〉 =
∑
k,q

qφ0,k,q + 1

N

∑
k,q

q〈b0,k,q〉. (36)

This is nothing but the deterministic solution plus a correcting
factor of order O(N−1) [note that 〈a〉 = 0, Eq. (24)].

An alternative less restrictive system size expansion is
the Kramers-Moyal expansion, which transforms the mas-
ter equation (4) into a continuous PDE for the intensive
variables ϕ. If we define the densities ϕ = x/N , the Kramers-
Moyal expansion [69] leads to the Fokker-Planck equation
[82] for the probability density �(ϕ; t ) of the intensive

variables:

∂�(ϕ; t )

∂t

=
K∑

i=1

∂

∂ϕi

[
−�i(ϕ)� + 1

2N

K∑
j=1

∂

∂ϕ j
[Gi j (ϕ)�]

]
, (37)

where �i and Gi j are the same functions defined previously.
We can also derive the equivalent Langevin stochastic differ-
ential equations for the trajectories ϕ(t ), in the Itô convention,
it is

dϕi

dt
= �i(ϕ) + N−1/2

K∑
j=1

gi j (ϕ)ξ j (t ), (38)

with Gi j = ∑K
k=1 gikg jk , in matrix form G = g · gT , and

ξ j (t ) are white noise variables with zero mean and corre-
lations 〈ξi(t )ξ j (t ′)〉 = δi jδ(t − t ′). A simple way of obtain-
ing the matrix g from G is by diagonalizing both sides
of equation G = g · gT , and then it is straightforward to
solve.

The problem with the Kramers-Moyal expansion is that,
in most occasions, it is as complicated to solve as the orig-
inal master equation (4), while the van Kampen expansion
corresponds to a linearization of Eq. (37) (this is why it is
also called linear noise approximation) where we assume ϕ

to weakly fluctuate around the deterministic value φ, this is
ϕ ≈ φ + N−1/2a. In the next subsection we apply the van
Kampen expansion method to several models of interest and
check its accuracy and validity.

B. Comparison with numerical simulations

We will now compare the results of the theory explained
in the previous section to the numerical simulations. We will
focus on stationary quantities in order to study how the results
change with the parameters of the models.

1. Susceptible infected susceptible

The first model that we consider is the SIS (susceptible-
infected-susceptible) epidemic model [1,83] on a scale-free
network with rates R+

k,q = ε + λq and R−
k,q = μ. Here λ is the

transmission rate, μ is the recovery rate, and ε is the rate at
which an outbreak appears in the system. Note that we in-
corporate the parameter ε in order for the system to have a
properly defined stationary result, in principle one recovers
the traditional SIS model by letting ε → 0. In Fig. 2, we
see that the van Kampen approach predicts accurately the
stationary susceptibility for a small system size N = 100 with
increasing accuracy as it increases to N = 400. The finite-size
corrections to the average value 〈ρ〉st are plotted in Fig. 2, with
an improvement in the deterministic solution. If we focus on
the comparison between the different approximations we ob-
serve, as expected, an increase in accuracy as AME > PA >

HMF. Although the difference between the AME and the PA
is small with respect to the deterministic φ and fluctuations
χ , the finite size corrections of the average values N−1〈b〉 are
well captured only by the AME. This indicates that the PA is a
good approximation at the deterministic and linear (Jacobian)
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FIG. 2. (a) Stationary susceptibility χst and (b) average density of
active links 〈ρ〉st as a function of the transmission rate λ for the SIS
model. We choose as parameters ε = 10−2 and μ = 1 on a scale free
network Pk ∼ k−2.5 with kmin = 2 and kmax = 10. Points correspond
to numerical simulations of the model with N = 100 (solid squares)
and N = 400 (empty squares) averaged over an ensemble of 100
networks. Lines of different colors are the theoretical prediction of
the different approximations. In the top panel (a), the solid lines
are the van Kampen result (34), while in the bottom panel (b), the
dashed lines are the deterministic approaches and the solid lines the
corrected average values (35).

level Eqs. (24) and (26) but not for the second-order correction
(Hessian) level (25).

2. Ising Glauber

The second model to which we apply our theory is the
Ising model defined on an Erdős-Rényi network with Glauber

rates [84] R+
k,q = (1 + e

2J
T (k−2q) )

−1
and R−

k,q = R+
k,k−q, where

J is the coupling strength and T the temperature. Note that
it is a symmetric model and thus, as discussed in Sec. II,
we choose mS = 2m − 1 to calculate the susceptibility. It is
well known that the Ising model has a critical point Tc such
that limN→∞〈|mS|〉st = 0 if T > Tc and limN→∞〈|mS|〉st ∝
(Tc − T )β if T < Tc, while 〈mS〉st = 0 always for symmetry.
For this reason, following the standard procedure, we compute
the susceptibility numerically as χst = N (〈m2

S〉st − 〈|mS|〉2
st ) if

T < Tc, and χst = N〈m2
S〉st if T > Tc. In principle, we can

not know the position of the critical point numerically for a

FIG. 3. (a) Stationary susceptibility χst and (b) average density
of active links 〈ρ〉st as a function of the temperature T for the Ising
model with Glauber rates. We choose as parameter J = 1 on an
Erdős-Rényi network with average degree μ = 5. Points correspond
to numerical simulations of the model with N = 100 (solid squares)
and 400 (empty squares) averaged over an ensemble of 100 networks.
Lines of different colors are the theoretical prediction of the different
approximations (the curves that do not appear are superposed). In
the top panel (a), the solid lines are the van Kampen result Eq. (34),
while in the bottom panel (b), the dashed lines are the deterministic
approaches and the solid lines the corrected average values Eq. (35).

single finite system size, we thus plot both quantities χst =
N (〈m2

S〉st − 〈|mS|〉2
st ) and χst = N〈m2

S〉st and eliminate those
points to the right of the peak of the first expression. In
Fig. 3, we see a good prediction of the stationary suscepti-
bility for the small system N = 100 with increasing accuracy
for N = 400. Note that the theory predicts the divergence of
the susceptibility at the critical point Tc, as χst ∝ |T − Tc|−γ ,
which can be strictly true only in the thermodynamic limit
N → ∞. For a finite system it can be shown, see Section VI,
that if we approach the critical point as an inverse power of
the system size |T − Tc| ∝ N−r , the susceptibility scales as a
positive power χst ∝ N2υ−1, with appropriate exponents r > 0
and υ > 1/2 determined in Sec. VI. This implies that the van
Kampen expansion presents discrepancies with the numerical
results that are important, for a finite system N , in a region
of the critical point whose width decreases with system size.
Similarly, we see in Fig. 3 that the stochastic correction to the
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density of active links 〈ρ〉st is only accurate outside the critical
region, while it diverges at the critical point, at odds with
the numerical result. In the comparison between the different
approximations we observe again an increase in accuracy as
AME > PA > HMF. As proven in Ref. [31], the determin-
istic part of the PA and AME are completely equivalent for
all models fulfilling the microscopic reversibility condition
R+

k,q/R−
k,q = cqR+

k,0/R−
k,0 where c is a constant, for the Ising

Glauber this is the case with c = e4J/T . We also observe that
the AME and the PA offer results for the susceptibility which
are indistinguishable at the resolution of the figure. Although
the AME and PA agree at the deterministic and fluctuation
level, the finite size corrections to the average values N−1〈b〉
are only accurate for the AME, confirming the results obtained
for the SIS model.

3. Majority vote

The third model is the majority-vote model [85] on a z-
regular network with rates R+

k,q = Q if q < k/2, R+
k,q = 1/2 if

q = k/2, R+
k,q = 1 − Q if q > k/2, and R−

k,q = R+
k,k−q, where

Q is the rate of spontaneous opinion switching. It is also a
symmetric model and it has similar phenomenology to the
Glauber model with a critical point Qc, see Fig. 4. The most
notorious difference is that in this case the AME and PA
results are very different even at the deterministic level, and
thus for this model only the AME gives more accurate results.
The reason for this difference is that the rates do not fulfill the
microscopic reversibility condition, see Ref. [31]. Note also in
Fig. 4 that the AME and PA predict similar critical points Qc,
but the scaling 〈|mS|〉st ∝ (Qc − Q)β is β = 1/2 for the AME
and β = 1/4 for the PA. In fact, according to our discussion in
the next section, the scaling behavior of the magnetization and
susceptibility around a critical point depends on the normal
form of the bifurcation. For example, for a typical continu-
ous phase transition as in the Ising model we have β = 1/2
and γ = 1 which corresponds to mean-field exponents. This
justifies the common knowledge that critical exponents in
complex networks coincide with those of mean-field theory,
see [86] where the critical exponent of the heat capacity is
determined to be α = 0 (discontinuous heat capacity, which
is the mean-field result) for the Ising model in a small-world
network.

Note that this is true as long as the deterministic solution
depends on degree moments μm that are well defined in the
thermodynamic limit N → ∞. This may not be the case on
scale free networks [31], where the deterministic solution
may depend on the μ2,3,4,... degree moments that diverge,
depending on the value of the exponent of the power law
degree distribution, as N → ∞. In this case, this may imply
that the critical exponents depend on the details of the degree
distribution [87]. As explained in the next section, one may
redefine the finite-size scaling functions and critical exponents
to take into account the N dependence of the degree moments.

In the next section, we propose a different method for
solving the master equation close to a critical region, where
the van Kampen expansion fails. We also show how to de-
termine the exponents and scaling properties of the models
close to a critical point, for a finite-system and also in the
thermodynamic limit N → ∞.

FIG. 4. (a) Stationary susceptibility χst and (b) average mag-
netization 〈|mS|〉st as a function of Q on a three-regular random
network for the majority-vote model. Points correspond to numer-
ical simulations of the model with N = 100 (solid squares) and
400 (empty squares) averaged over an ensemble of 100 networks.
Lines of different colors are the theoretical prediction of the different
approximations (the curves that do not appear are superposed). In the
top panel (a), the solid lines are the van Kampen result (34), while in
the bottom panel (b), the dashed lines are the deterministic approach
and the solid lines the corrected average values (35).

VI. THE EXPANSION AROUND A CRITICAL POINT

A. Formulation

Usually, the rates of the model depend on a set of param-
eters. Take, for example, a single parameter T for simplicity.
It may happen that at a determined value T = Tc, one of the
eigenvalues of the linearized deterministic dynamics becomes
equal to zero D1 = 0, this is called critical or bifurcation point.
The proposed system size expansion x = Nφ + N1/2a + N0b
in this case leads to singular, divergent, results for the correla-
tions and average value corrections [71]. The mathematical
divergence of the correlations near the critical point is an
accurate description only in the strict thermodynamic limit
N → ∞. When N is finite, near the critical point, we have
an anomalous scaling with system size, which implies that
we have to consider a different ansatz for the system size
expansion [32].

In order to deal with such situations, we start by find-
ing the linear transformation that diagonalizes the Jacobian
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matrix Bst = PDP−1 being D the diagonal matrix composed
by the eigenvalues and P the matrix of change of basis whose
columns are the corresponding eigenvectors, all evaluated at
the critical point T = Tc. We define the transformed variables
in the eigenvector basis u = P−1φ, such that the deterministic
dynamics of the new variables is

du
dt

= U ≡ P−1�(Pu). (39)

At the critical point we have Ui(Tc, ust ) = 0 and
∂u jUi(Tc, ust ) = −Diδi j with D1 = 0. The center manifold
theory [88–90] states that, in this case, there exists a special
trajectory or center manifold ui = hi(T, u1) for i �= 1 with
ust

i = hi(T, ust
1 ) and ∂u1 hi(Tc, ust

1 ) = 0, that describes locally
the dynamics of u close to the critical point Tc and near the
fixed point ust. This implies that the time dependence of the
fast variables ui>1(t ) is enslaved to the slow variable u1(t ). We
can write the dependence of hi(T, u1) as a series expansion

hi(T, u1) = ust
i + α

(10)
i (T − Tc) + α

(02)
i

(
u1 − ust

1

)2

+α
(11)
i (T − Tc)

(
u1 − ust

1

) + . . . , (40)

where the other terms of the expansion are neglected, for
example, (T − Tc)2, (T − Tc)(u1 − ust

1 )2, etc. The coefficients
α

(10)
i , α

(11)
i , α

(02)
i can be determined expanding the dynamical

equation u̇i = ∂u1 hi · u̇1 = Ui(T, u1, h2, h3, . . . ), the expres-
sions are displayed in Appendix B.

The dynamics of u1 inside the center manifold is u̇1 =
U1(T, u1, h2, h3, . . . ) whose series expansion reads

u̇1 = β (0m)
(
u1 − ust

1

)m

+β (1n)(T − Tc)
(
u1 − ust

1

)n + . . . , (41)

where β (0m), m � 2, and β (1n), n � 0, are the lowest nonzero
terms in the expansion in powers of (u1 − ust

1 ) and higher-
order terms are neglected. The expressions of the first
coefficients β (10), β (11), β (02), β (03) are given in Appendix B.

Equation (41) is called the normal form of the bifurcation
[90] and depending on the value of the coefficients it charac-
terizes three types of critical points/bifurcations. If β (10) �= 0
the bifurcation is a saddle node; while if β (10) = 0, but β (11) �=
0, the bifurcation is said to be transcritical for m even, or
pitchfork for m odd.

From the normal form one can determine the critical
exponent β. Setting the time derivative of Eq. (41) equal

to zero and keeping in mind that ust
1 refers to the fixed

point at the critical point ust
1 (Tc). For the saddle node, with

normal form 0 = β (0m)(ust
1 − ust

1 )m + β (10)(T − Tc), we ob-
tain ust

1 (T ) − ust
1 (Tc) ∝ |T − Tc|1/m, while for the transcritical

and pitchfork bifurcations, with normal form 0 = β (0m)(ust
1 −

ust
1 )m + β (11)(u1 − ust

1 )(T − Tc), we have ust
1 (T ) − ust

1 (Tc) ∝
|T − Tc|1/(m−1) (m even for the transcritical and odd for the
pitchfork).

Thus β = 1/m for the saddle and β = 1/(m − 1) for the
transcritical and pitchfork bifurcations. Note that in Eq. (41),
we only keep the two most important terms of the expansion
to study the behavior of the stable fixed point close to the tran-
sition, and the others can be neglected. This can be checked
introducing the first-order result ust

1 (T ) − ust
1 (Tc) ∝ |T − Tc|β

in the expansion Eq. (41) and evaluating the order of each
term.

Once this is understood, we propose the following system-
size expansion based on the results of Refs. [32,75,76]. If we
approach the critical point as (T − Tc) ∼ N−r , 0 < r < 1 and
we define the transformed yi variables as yi = ∑

j P−1
i j x j , then

yi follows the center manifold with small deviations of order
N1/2, while the stochastic part of y1 has an anomalous scaling
Nυ , 1/2 < υ < 1, namely,

T = Tc + N−rξ0, (42)

y1 = Nust
1 + Nυξ1, (43)

yi = Nhi

(
T,

y1

N

)
+ N1/2ξi. (44)

Note that r and υ are parameters to be determined and that
fluctuations inside the slow center manifold are assumed to
scale differently than fluctuations outside it. Using this change
of variables (T, y1, yi>1) → (ξ0, ξ1, ξi>1), we can expand the
master equation (4) in powers of N , this is done in detail in
Appendix B. During the expansion we determine that for a
saddle node, β (10) �= 0, it is r = υ = m

m+1 , while for the tran-
scritical or pitchfork bifurcations, β (10) = 0, it is υ = m

m+1 ,
r = m−1

m+1 . After the expansion of the master equation we obtain
a Fokker-Planck equation for the probability �(ξ1; t ) of the
slow variable ξ1, which for the transcritical and pitchfork
bifurcation reads

∂�(ξ1; t )

∂t
= N− m−1

m+1
∂

∂ξ1

[
−(

β (11)ξ0ξ1 + β (0m)ξm
1

)
� + 1

2
F11

∂�

∂ξ1

]
, (45)

with a noise intensity F11 = ∑
i, j P−1

1i P−1
1 j Gi j . For the saddle

node, we obtain the same equation but replacing β (11)ξ0ξ1 by
β (10)ξ0. Note that the equation evolves at a slow time scale τ =
N (m−1)/(m+1), this is known in the literature as critical slowing
down. In the stationary state for the transcritical and pitchfork
bifurcations, we have

�st(ξ1) ∝ exp

(
β (11)ξ0

F11
ξ 2

1 + 2β (0m)

(m + 1)F11
ξm+1

1

)
. (46)

This corresponds to a Gaussian distribution with a saturation
term that the van Kampen approach does not take into ac-
count. For the saddle node one should replace β (11)ξ0ξ

2
1 by

2β (10)ξ0ξ1 and the distribution is no longer Gaussian. Note
that if m is even we can not integrate the probability (46) in the
entire range of ξ1 and we have to restrict it to the “stable” zone,
where fluctuations are not big enough to drive the dynamics
to a zone where the deterministic dynamics is unstable and
evolves towards infinity.
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Any moment of the y1 variable can be computed integrating
the distribution Eq. (46), for example, the variance:

σ 2[y1] ≡ N−1(〈y2
1

〉 − 〈y1〉2)
= N2υ−1 · σ̃ 2[Nr (T − Tc)], (47)

where σ̃ 2[ξ0] is the variance of the ξ1 variable. Now, the aver-
age values and correlations of the x variables can be related to
the transformed variables y as

〈xi〉
N

= φst
i + Nυ−1Pi1〈ξ1〉, (48)

N−1[〈xix j〉 − 〈xi〉〈x j〉] = Pi1Pj1σ
2[y1], (49)

and from this it is straightforward to determine 〈m〉st, 〈ρ〉st,
and χst with the definitions given in Sec. II.

In the thermodynamic limit N → ∞, one can show that the
van Kampen result is recovered naturally. Take, for example, a
pitchfork bifurcation with 〈mS〉st = 0. In this case, according
to Eqs. (48) and (49) the scaling properties of 〈|mS|〉st and χst

with N are

〈|mS|〉st = Nυ−1m̃[Nr (T − Tc)], (50)

χst = N2υ−1χ̃[Nr (T − Tc)], (51)

where m̃(ξ0) and χ̃ (ξ0) are the respective scaling functions
determined from Eqs. (46)–(49). In the limit N → ∞ of
Eqs. (50) and (51), the argument ξ0 = Nr (T − Tc) → ∞ (for
T �= Tc) and if we assume the scaling relations m̃ ∼ ξ

β

0 and
χ̃ ∼ ξ

−γ

0 , with appropriate exponents β and γ such that
〈|mS|〉st and χst are N-independent, we obtain consistently
β = 1−v

r = 1
m−1 and γ = 2v−1

r = 1. Another quantity that is
of great interest and that we will use in the next section is
the Binder cumulant, defined as the ratio of moments U4 ≡

1 − 〈m4
S〉

3〈m2
S〉2 . It is easy to show that the scaling of this function

is given by

U4 = ũ[Nr (T − Tc)], (52)

where ũ(ξ0) = 1 − 〈ξ 4
1 〉st

3〈ξ 2
1 〉2

st
is nothing but the Binder cumulant

of the ξ1 variable, that can be determined using the probability
(46) (note that this is independent of the eigenvector coeffi-
cients Pi1, since they cancel out when computing the ratio of
moments).

The scaling functions m̃ and χ̃ generally depend on the
degree moments μm which may scale with system-size N in
a nontrivial way for certain types of highly heterogeneous
networks, such as scale-free. It is possible, depending on the
model, to reabsorb this N dependence by redefining the scal-
ing functions (50) and (51), see Ref. [56], and this may imply
network dependent critical exponents β, γ , see Ref. [87].

In the next section, we apply this method to the models
studied in Sec. V B and we check if it corrects the problems
of the van Kampen expansion in the critical zone.

1. Epidemic models (contact process)

Most epidemic models cannot be studied simply applying
the previous techniques and some extra considerations have to
be taken into account. The basic problem is that the models
have an absorbing state for ε = 0, and the noise intensity
becomes equal to zero in this case, F11 = 0 (evaluated at the
absorbing state and at the critical point ε = 0, λ = λc) and
thus, the stationary probability Eq. (46) is ill-defined. In order
to solve this problem let us consider that the deterministic
analysis reveals a transcritical transition with β (01) = 0 and
β (02) �= 0. Additionally, due to the existence of the absorbing
state we have F11 = 0 and we must consider a second-order
term. In this case, Eq. (45) transforms into (see Appendix B):

∂�(ξ1; t )

∂t
= N−1/2 ∂

∂ξ1

[
−(

β (11)ξ0ξ1 + β (02)ξ 2
1

)
� + γ

2

∂

∂ξ1
[ξ1�]

]
, (53)

with γ = ∂F11
∂u1

(evaluated at the absorbing state and at the crit-
ical point ε = 0, λ = λc). The stationary solution of Eq. (53)
is

�st(ξ1) ∝ ξ−1
1 exp

[
2

γ

(
β (11)ξ0ξ1 + β (02)

2
ξ 2

1

)]
, (54)

which is singular around ξ1 = 0, i.e., the absorbing state.
This is a problem in the simulation too, when averaging over
realizations of the stochastic process, and different solutions
to avoid the absorbing state can be found in Ref. [4]. In this
case, the scaling function follows the relation:

〈m〉st = N−1/2m̃[N1/2(λ − λc)]. (55)

In order to check if the theory is correct we will compare it
with the numerical results in Ref. [47] for the contact process
on scale free networks.

The rates of the contact process are R+
k,q,{k j }k

j=k−q+1
=

λ
∑k

j=k−q+1 k−1
j and R−

k,q = 1. The averaged rate then reads

R̃+
k,q = λq

∑
k φk∑

k φkk and the deterministic equations in the HMF
description are

dφk

dt
= λ

Pkk

μ
φ − φk − λ

φkk

μ
φ, (56)

with φst
k = 0 as the trivial (absorbing state) fixed point.

Linearizing around the absorbing state we find that the
critical point (in the HMF) is λc = 1. The eigenval-
ues are: D1 = λc − λ with associated eigenvector v1 =
(Pkmin kmin, . . . , Pkmax kmax)/μ and D2 = 1 with any vector v2 in
the plane nᵀ · v2 = 0 with nᵀ = (1, . . . , 1).

Trajectories in the center manifold fulfill φk = Pkk
μ

φ +
O((λ − 1)φ) + O(φ2), thus we can obtain a closed equation
for the global (slow) variable φ:

dφ

dt
= (λ − 1)φ − μ2

μ2
φ2 + O((λ − 1)φ2) + O(φ3). (57)

From this we conclude that the bifurcation is transcriti-
cal with coefficients β (11) = 1 and β (02) = −μ2/μ

2. The
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FIG. 5. Prefactor g ≡ ∑
i Pi1 for the contact process at the AME

compartmental approach description level as a function of the system
size N with a power law degree distribution Pk ∼ k−η, kmin = 2,
kmax = √

N . The solid lines are linear regressions of the last four
points.

prefactor from Eq. (48) to obtain the scaling function of m
is g ≡ ∑

i Pi1 = ∑
k

Pkk
μ

= 1.
Now assume that the degree distribution is power law

Pk ∼ k−η and that we have the scaling for the moments as
μ2/μ

2 ∼ N
3−η

2 [28] when N → ∞. If we replace the average
value with the maximum of the probability Eq. (54) in order to
avoid the absorbing state problem, we have 〈ξ1〉st ≈ − 2β (11)ξ0

β (02) .
We can rewrite Eq. (55) reabsorbing the N dependence of the
coefficient β (02) as

〈m〉st = N−β/ν̄˜̃m[N1/ν̄ (λ − λc)], (58)

with a new scaling function ˜̃m and exponents β/ν̄ = 1/2 and
ν̄ = 2/(η − 2) and β = 1/(η − 2), which coincide with the
theoretical results obtained in Ref. [47].

The advantage of the method presented here is that it can
be applied to all compartmental approaches. In the same refer-
ence [47], the exponents obtained from numerical simulation
show deviation from the heterogeneous mean-field prediction.
For example, β/ν̄ does depend on the exponent of the power
law η as: β/ν̄ = 0.76(5) for η = 2.25, β/ν̄ = 0.70(3) for
η = 2.50 and β/ν̄ = 0.63(4) for η = 2.75. These deviations
are well captured by the stochastic AME approach. In Fig. 5,
we showed that the prefactor g ≡ ∑

i Pi1 of the scaling func-
tion depends on system size as g ∼ N1/2−β/ν̄ at the AME
description level, we obtain β/ν̄ = 0.73 for η = 2.25, β/ν̄ =
0.71 for η = 2.50, and β/ν̄ = 0.67 for η = 2.75, in perfect
agreement with the numerical results in Ref. [47].

B. Comparison with numerical simulations

1. Ising Glauber

We will start with the Ising model with Glauber rates for
the network and parameter specifications in the caption of
Fig. 3. The critical point predicted by the AME and PA ap-
proximations is Tc(AME/PA) = 4.93 . . . , while for the HMF,
it is Tc(HMF) = 4.96 . . . In order to determine the critical
point numerically from the Monte Carlo (MC) simulations,
we use a standard technique of statistical mechanics [91],
which consists in computing the Binder cumulant defined as

FIG. 6. Binder cumulant as a function of the temperature T
(a) and as a function of the rescaled temperature N1/2(T − Tc ) (b), for
the Ising Glauber model with different system sizes N , specified in
the figure. The parameters are J = 1 on an Erdős-Rényi network with
average degree μ = 5 and the results were averaged over an ensem-
ble of 100 networks. Points correspond to numerical simulations of
the model with different system sizes N specified in the legend, while
lines are the theoretical scaling functions determined from Eqs. (46)
and (52).

U4 ≡ 1 − 〈m4
S〉

3〈m2
S〉2 for different system sizes N , such that all the

different curves cross at the critical Tc, see Fig. 6. We obtain
in this case Tc(MC) = 4.93 ± 0.01 in perfect accordance to
the AME/PA results. After computing the coefficients of the
normal form of the bifurcation Eq. (41), we obtain for all
three approaches AME/PA/HMF that β (10) = 0, β (11) < 0,
β (02) = 0 and β (03) < 0 which indicates that, according to
our discussion in Sec. VI, we have a pitchfork bifurcation
with m = 3, r = 1/2, and υ = 3/4. If the theory is correct,
and the scaling properties Eqs. (50)–(52) are valid, if we
rescale 〈|mS|〉st, χst, U4 by N1/4, N1/2, and N0, respectively,
and the temperature by N1/2, all the curves should collapse
on a single universal one m̃(ξ0), χ̃ (ξ0) and ũ(ξ0). In Figs. 6
and 7, we compute this numerically and compare it with
the theoretical scaling functions derived from Eq. (46). The
matching between numerical and theory is very good which
proves the validity of the method. Note also that the scaling
functions of the AME and PA coincide, while the HMF shows
some deviations. This indicates that there is a strong relation
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FIG. 7. (a) Rescaled stationary susceptibility N−1/2χst =
N1/2(〈m2

S〉st − 〈|mS|〉2
st ) and (b) average magnetization N1/4〈|mS|〉st as

a function of N1/2(T − Tc ) on an Erdős-Rényi network with average
degree μ = 5 for the Glauber Ising model with J = 1. Points
correspond to numerical simulations of the model with different
system sizes N specified in Fig. 6, while lines are the theoretical
scaling functions determined from Eqs. (46), (50), and (51).

between the validity of the deterministic solution and the
scaling functions.

2. Majority vote

The next model that we study is the majority-vote model
with the same specifications of Fig. 4. The critical point pre-
dicted by the AME is Qc(AME) = 0.099 . . . , for the PA it is
Qc(PA) = 0.100 . . . and the HMF is Qc(HMF) = 0.167 . . . .
The numerical critical point obtained from the Binder cumu-
lant in Fig. 8 is Qc(MC) = 0.10 ± 0.01, compatible with the
results of the AME and PA but not with the HMF. When
we compute the coefficients of the normal form of the bi-
furcation Eq. (41) we obtain β (10) = 0, β (11) < 0, β (02) = 0,
and β (03) < 0 for the AME and HMF, which corresponds
again to a pitchfork bifurcation with m = 3, r = 1/2, and
υ = 3/4. Surprisingly, for the PA, we obtain instead β (03) =
0 which suggests a different type of pitchfork with m = 5,
r = 2/3, and υ = 5/6. This could be already seen in Fig. 4,
as 〈|mS|〉st ∝ (Qc − Q)1/2 for the AME but for the PA is
more abrupt 〈|mS|〉st ∝ (Qc − Q)1/4. As a consequence, we
conclude that the PA is not able to capture correctly the scaling

FIG. 8. Binder cumulant as a function of Q (a) and as a function
of the rescaled N1/2(Q − Qc ) (b), for the majority-vote model with
different system sizes N specified in the legend on a three-regular
random network, and results were averaged over an ensemble of 100
networks. Points correspond to numerical simulations of the model
with different system sizes N specified in the legend, while lines are
the theoretical scaling functions determined from Eqs. (46) and (52).
The finite-size scaling for the PA result is not displayed as it predicts
incorrect scaling properties.

properties in this case. In Figs. 8 and 9, we compared the
theoretical scaling functions with the numerical simulations,
where we see that the theoretical scaling of the AME offers a
reasonable agreement. Note, however, how the convergence
to the theoretical scaling is very slow for Q < Qc. This is
because for the AME β (03) is small, and the other higher-order
terms of the normal form Eq. (41) may be important, unless
N is extremely large. This also explains the failure of the PA
that actually predicts β (03) = 0.

VII. TIME DEPENDENCE

In the previous sections, we have focused on stationary
averages. The methods, however, are straightforwardly gen-
eralized for time dependent results. For the van Kampen
approach, we have to solve the deterministic dynamics dφ

dt =
� and, at the same time, the dynamics of the average values
and correlations Eqs. (24)–(26). On the other hand, if we are
close to a critical point in the parameter space, we assume
that dynamics evolve following the center manifold and we
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FIG. 9. (a) Rescaled stationary susceptibility N−1/2χst =
N1/2(〈m2

S〉st − 〈|mS|〉2
st ) and (b) average magnetization N1/4〈|mS|〉st

as a function of N1/2(Q − Qc ) on a three-regular random network for
the majority-vote model. Points correspond to numerical simulations
of the model with different system sizes N specified in Fig. 8,
while lines are the theoretical scaling functions determined from
Eqs. (46), (50), and (51). The finite-size scaling for the PA result is
not displayed as it predicts incorrect scaling properties.

have to solve Eq. (45), obtaining �(ξ1; t ). This corresponds to
a separation of time scales, which implies that the dynamics
outside the manifold is very fast compared to the dynamics
inside and thus negligible. If neither of these two methods
capture correctly the stochastic dynamics, we can still resort
to the Langevin or Fokker-Planck Eqs. (37) and (38).

We will apply the methods to two different models of
interest, not considered in the previous sections, the SI
(susceptible-infected) epidemic model and the Threshold
model. We chose these models because their dynamics are
more interesting than the stationary properties.

A. Susceptible infected

We start with the SI epidemic model with rates R+
k,q = λq

and R−
k,q = 0. This model does not have a critical point, and

it shows weak finite-size effects. Thus, we expect the van
Kampen expansion to work accurately. In Fig. 10, we compare
the results of numerical simulations for a very small system
of N = 25 nodes, with the results of integrating the dynam-

FIG. 10. (a) Density of active nodes 〈m(t )〉 and (b) susceptibility
χ (t ) as a function of time t , for the SI epidemic dynamics with λ = 1
on a scale free network with Pk ∼ k−2.5, kmin = 2 and kmax = 5, and
N = 25. Dots are numerical simulations averaged over 100 trajecto-
ries and 100 networks, while lines are (a) in the top panel it is the
result of solving the dynamical Eq. (26) for the different approaches,
(b) in the bottom panel the dashed lines are the deterministic results
φ(t ), while the solid lines are corrected by the second-order term
φ(t ) + 〈b(t )〉/N , Eq. (25).

ics of the van Kampen expansion Eqs. (17), (24), (25), and
(26). For the susceptibility χ (t ), the SAME and SPA give
a good approximation with slight differences between both
approaches, while the SHMF shows important discrepancies.
For the average value 〈m(t )〉, the deterministic AME and PA
give the same results, while HMF again shows discrepancies.
We observe that, similarly to what happens in the stationary
state Fig. 2, although the deterministic part of the AME and
PA part is equal, the stochastic corrections happen to be only
accurate for the SAME approach.

B. Threshold model

Next, we explore the threshold model [68,92], with rates
R+

k,q = 1 if q � Mk and R+
k,q = 0 if q < Mk (where Mk are a

set of integer parameters), and R−
k,q = 0. The results plotted

in Figs. 11 and 12 show some peculiarities. The model has an
absorbing state for m(t ) = 1 as the recovery rate is zero R−

k,q =
0. In Fig. 11, we show that the deterministic AME predicts
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FIG. 11. Average density of active nodes 〈m(t )〉 as a function of
time t for the threshold model with Mk = 2, ∀k on a five-regular
random network. Dots (N = 102 rhombuses, N = 103 pentagons,
N = 104 circles, and N = 105 squares) are numerical simulations
averaged over 100 trajectories and 100 networks, while dashed lines
are the deterministic result φ(t ) for the different approaches.

that the system reaches a frozen staten with m(t ) < 1 while
the PA and HMF approach the absorbing state m(t ) → 1. In
the same figure, we observe that numerical results for finite
N are closer to the AME prediction but show large deviations
from the deterministic value, even for large system sizes.

Curiously, finite-size corrections increase with system size
until a certain value around N = 103–104 and then start de-
creasing and approaching the deterministic value 〈m(t )〉 →
φ(t ). It can be proven that neither the van Kampen expansion
nor the expansion around a critical point work properly in
this case, and they do not capture correctly finite-size effects.
The van Kampen expansion of Sec. V does not work because
the deterministic dynamics have eigenvalues with zero real
part. The expansion around the critical point of Sec. VI nei-
ther does, because there are degenerate eigenvalues whose
multiplicity is greater than the dimension of the space of
eigenvectors of the corresponding eigenvalue, in other words
the Jacobian matrix is not diagonalizable.

In order to elucidate what is the issue with finite-size
effects in the Threshold model, we integrated directly the
Langevin Eq. (38) using an Euler-Maruyama method [70]
for the AME approach. We see that most trajectories evolve
towards a frozen state with m(t ) < 1, close to the determinis-
tic AME prediction, with some variability over realizations.
There are some trajectories, however, that eventually devi-
ate to the absorbing state m(t ) = 1 and this is the source
of error of the deterministic description. We check that the
stochastic description, in terms of a Langevin equation, is
able to reproduce perfectly these deviations. In the bottom
panel (b) of Fig. 12, we compare the average density of
active nodes 〈m(t )〉 with simulation of the model with a
good agreement as compared to the theoretical results of the
stochastic AME. The PA and HMF results are omitted as
they predict all trajectories to evolve towards the absorbing
state.

VIII. SUMMARY AND CONCLUSIONS

In this paper, we have introduced theoretical tools to
study stochastic effects in binary-state models on complex

5×104

FIG. 12. Trajectories (a) of the density of active nodes m(t )
obtained by numerical integration of the Langevin Eq. (38) for the
AME approach, with the same model specifications of Fig. 11. Solid
red lines are the average value 〈m(t )〉 of these trajectories for N =
5 × 104 (a) and (b) and N = 105 (b), while the dashed red line is the
deterministic AME approach (a) and (b). In the bottom panel (b) dots
correspond to the average value obtained from numerical simulations
(N = 5 × 104 circles and N = 105 squares).

networks. First, we constructed the general master equation of
the different compartmental approaches: approximate master
equation (AME), pair approximation (PA) and heterogeneous
mean field (HMF). After that, we elaborated on the different
approximate methods for solving the master equation, in par-
ticular we explored the van Kampen expansion, valid far from
a critical point, and a critical expansion, accurate at the critical
zone. From the van Kampen expansion, we were able to obtain
equations for the correlation matrix of the set of variables and
the corrections to their average values, while from the critical
expansion, we got their finite-size scaling functions.

We applied these techniques to characterize the station-
ary properties of the SIS and contact process epidemic,
Glauber Ising, and majority-vote models. When comparing
the performance of the different compartmental approaches
to numerical simulations we conclude that, if AME and PA
have equal or similar results at the deterministic level, the
same goes for the fluctuations of the van Kampen expansion
and the scaling functions of the critical expansion, but that
is not the case for the finite-size corrections to the average
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values which are only accurate for the AME. This is what
we observe for the Glauber model where PA and AME have
equivalent deterministic, fluctuations and scaling functions
but different finite-size corrections to the average values. This
is an indication that, although the PA may work very well in
the determination of certain quantities such as average values,
the binomial restriction between variables is not necessarily
fulfilled by the stochastic trajectories. For the majority-vote
model, the AME and PA give different results at all levels,
where the PA even predicts incorrectly the scaling coefficients
(critical exponents). For the contact process, we were able
to obtain the finite-size scaling functions and corresponding
critical exponents using the expansion around a critical point.
For the stochastic AME, it matches perfectly the numerical
results reported in Ref. [47].

In general, we can highlight that the probabilistic descrip-
tion using the AME gives very accurate results for stationary
and also time-dependent results (as it is shown in Sec. VII
for the SI epidemic model) within the range of validity of the
expansion methods. For some model like the threshold model
the van Kampen expansion or the expansion around a critical
point do not reproduce correctly the numerical results. In this
case, we resorted to the Kramers-Moyal expansion, in terms
of a Langevin stochastic differential equation. We showed that
the theoretical description, in terms of the stochastic AME,
predicts that some stochastic trajectories evolve towards a
frozen state while others towards an absorbing (consensus)
state. This is not the case of the deterministic AME, which
only predicts the evolution towards the frozen state.

The solutions of the equations for the average values and
the fluctuations have been performed numerically using an

efficient method developed in Ref. [71]. It is left for a future
work to explore the possibility of obtaining analytical results
of the models and the general conditions for the AME–PA
equivalence at the stochastic level. A particularly interest-
ing case that has not been considered in this work is the
noisy-voter (Kirman) model for which the linearity of the
rates allows one to close the equations for the moments and
correlations without the need to resort to the van Kampen
approximation. This was done for the homogeneous pair ap-
proximation in Ref. [32] and it would be interesting to extend
these results to the more complicated compartmental models
considered in this work. Initial results indicate that the AME
corrects the lacks of the PA in specific cases. The differences
being specially notorious for low dense—highly heteroge-
neous networks [93].
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APPENDIX A: EXPRESSIONS OF B, G, AND HESSIAN MATRICES

In this section, we will calculate all the necessary ingredients involved in the equations of the correlations and corrections
(24)–(26). This essentially includes the Jacobian B-matrix, G-matrix, and the set of Hessian matrices ∂2

φ j ,φk
�i that can be later

used to determine �i = 1
2

∑
j,k〈a jak〉∂2

φ j ,φk
�i. We will proceed for the different levels of description explained in the main text.

All the expressions developed here have been incorporated in a FORTRAN code that can be obtained from the authors upon
request.

1. Approximate master equation

Starting with the variables {Nn,k,q}, the B matrix can be calculated by taking the derivatives Bn,k,q;n′,k′,q′ = −∂φn′,k′ ,q′ �n,k,q,
with definitions Eqs. (18) and (19), this is

B0,k,q;0,k′,q′ = δk,k′δq,q′ (R+
k,q + (k − q)βs + qγ s) − δk,k′δq−1,q′ (k − q + 1)βs − δk,k′δq+1,q′ (q + 1)γ s

+ [(k − q)φ0,k,q − (k − q + 1)φ0,k,q−1]
∂βs

∂φ0,k′,q′
, (A1)

B0,k,q;1,k′,q′ = −δk,k′δq,q′R−
k,q + [qφ0,k,q − (q + 1)φ0,k,q+1]

∂γ s

∂φ1,k′,q′
, (A2)

B1,k,q;0,k′,q′ = −δk,k′δq,q′R+
k,q + [(k − q)φ1,k,q − (k − q + 1)φ1,k,q−1]

∂β i

∂φ0,k′,q′
, (A3)

B1,k,q;1,k′,q′ = δk,k′δq,q′ (R−
k,q + (k − q)β i + qγ i ) − δk,k′δq−1,q′ (k − q + 1)β i − δk,k′δq+1,q′ (q + 1)γ i

+ [qφ1,k,q − (q + 1)φ1,k,q+1]
∂γ i

∂φ1,k′,q′
. (A4)
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Here, the derivatives of the rates (20)–(23) are

∂βs

∂φ0,k,q
= (k − q)(R+

k,q − βs)∑
k,q(k − q)φ0,k,q

, (A5)

∂γ s

∂φ1,k,q
= (k − q)(R−

k,q − γ s)∑
k,q(k − q)φ1,k,q

, (A6)

∂β i

∂φ0,k,q
= q(R+

k,q − β i )∑
k,q qφ0,k,q

, (A7)

∂γ i

∂φ1,k,q
= q(R−

k,q − γ i )∑
k,q qφ1,k,q

. (A8)

The G-matrix can be calculated as Gn,k,q;n′,k′,q′ = ∑
ν �

(ν)
n,k,q�

(ν)
n′,k′,q′w

(ν)(φ), where �
(ν)
n,k,q are Eqs. (11)–(14) and w(ν)(φ) the

intensive version of Eqs. (5) and (6) evaluated at Nn,k,q → Nφn,k,q. This leads, after lengthy algebra, to

G0,k,q;0,k′,q′

= φ0,k,qR+
k,qδk,k′δq,q′ − φ0,k,qR+

k,q(k − q)(−P0(0, k′, q′) + P0(0, k′, q′ − 1))

− φ0,k′,q′R+
k′,q′ (k′ − q′)(−P0(0, k, q) + P0(0, k, q − 1)) + βnss[P0(0, k, q)P0(0, k′, q′) − P0(0, k, q − 1)P0(0, k′, q′)

− P0(0, k, q)P0(0, k′, q′ − 1) + P0(0, k, q − 1)P0(0, k′, q′ − 1)] + βns[δk,k′δq,q′P0(0, k, q) − δk,k′δq−1,q′P0(0, k, q − 1)

− δk,k′δq+1,q′P0(0, k, q) + δk,k′δq,q′P0(0, k, q − 1)]

+ φ1,k,qR−
k,qδk,k′δq,q′ + φ1,k,qR−

k,q(k − q)(−P1(0, k′, q′) + P1(0, k′, q′ + 1))

+ φ1,k′,q′R−
k′,q′ (k′ − q′)(−P1(0, k, q) + P1(0, k, q + 1)) + γ nss[P1(0, k, q)P1(0, k′, q′) − P1(0, k, q)P1(0, k′, q′ + 1)

− P1(0, k, q + 1)P1(0, k′, q′) + P1(0, k, q + 1)P1(0, k′, q′ + 1)] + γ ns[δk,k′δq,q′P1(0, k, q) − δk,k′δq−1,q′P1(0, k, q)

− δk,k′δq+1,q′P1(0, k, q + 1) + δk,k′δq,q′P1(0, k, q + 1)], (A9)

G0,k,q;1,k′,q′ = − φ0,k,qR+
k,qδk,k′δq,q′ − φ0,k,qR+

k,qq(−P0(1, k′, q′) + P0(1, k′, q′ − 1))

+ φ0,k′,q′R+
k′,q′ (k′ − q′)(−P0(0, k, q) + P0(0, k, q − 1)) + βnsi[P0(0, k, q)P0(1, k′, q′) − P0(0, k, q)P0(1, k′, q′ − 1)

− P0(0, k, q − 1)P0(1, k′, q′) + P0(0, k, q − 1)P0(1, k′, q′ − 1)] − φ1,k,qR−
k,qδk,k′δq,q′

+ φ1,k,qR−
k,qq(−P1(1, k′, q′) + P1(1, k′, q′ + 1)) − φ1,k′,q′R−

k′,q′ (k′ − q′)(−P1(0, k, q) + P1(0, k, q + 1))

+ γ nsi[P1(0, k, q)P1(1, k′, q′) − P1(0, k, q)P1(1, k′, q′ + 1)

− P1(0, k, q + 1)P1(1, k′, q′) + P1(0, k, q + 1)P1(1, k′, q′ + 1)], (A10)

G1,k,q;1,k′,q′

= φ0,k,qR+
k,qδk,k′δq,q′ + φ0,k,qR+

k,qq(−P0(1, k′, q′) + P0(1, k′, q′ − 1))

+ φ0,k′,q′R+
k′,q′q′(−P0(1, k, q) + P0(1, k, q − 1)) + βnii[P0(1, k, q)P0(1, k′, q′) − P0(1, k, q − 1)P0(1, k′, q′)

− P0(1, k, q)P0(1, k′, q′ − 1) + P0(1, k, q − 1)P0(1, k′, q′ − 1)] + βni[δk,k′δq,q′P0(1, k, q) − δk,k′δq−1,q′P0(1, k, q − 1)

− δk,k′δq+1,q′P0(1, k, q) + δk,k′δq,q′P0(1, k, q − 1)]

+ φ1,k,qR−
k,qδk,k′δq,q′ − φ1,k,qR−

k,qq(−P1(1, k′, q′) + P1(1, k′, q′ + 1)) − φ1,k′,q′R−
k′,q′q′(−P1(1, k, q) + P1(1, k, q + 1))

+ γ nii[P1(1, k, q)P1(1, k′, q′) − P1(1, k, q)P1(1, k′, q′ + 1) − P1(1, k, q + 1)P1(1, k′, q′) + P1(1, k, q + 1)P1(1, k′, q′ + 1)]

+ γ ni[δk,k′δq,q′P1(1, k, q) − δk,k′δq−1,q′P1(1, k, q) − δk,k′δq+1,q′P1(1, k, q + 1) + δk,k′δq,q′P1(1, k, q + 1)]. (A11)

The G-matrix is symmetric, so that G1,k,q;0,k′,q′ = G0,k′,q′;1,k,q. The probabilities (7)–(10) must be understood again as evaluated
at the deterministic Nn,k,q → Nφn,k,q, and we have defined the new averaged rates

βnss =
∑
k,q

(k − q)(k − q − 1)φ0,k,qR+
k,q, (A12)

βns =
∑
k,q

(k − q)φ0,k,qR+
k,q, (A13)
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γ nss =
∑
k,q

(k − q)(k − q − 1)φ1,k,qR−
k,q, (A14)

γ ns =
∑
k,q

(k − q)φ1,k,qR−
k,q, (A15)

βnsi =
∑
k,q

q(k − q)φ0,k,qR+
k,q, (A16)

γ nsi =
∑
k,q

q(k − q)φ1,k,qR−
k,q, (A17)

βnii =
∑
k,q

q(q − 1)φ0,k,qR+
k,q, (A18)

βni =
∑
k,q

qφ0,k,qR+
k,q, (A19)

γ nii =
∑
k,q

q(q − 1)φ1,k,qR−
k,q, (A20)

γ ni =
∑
k,q

qφ1,k,qR−
k,q. (A21)

Similarly as before, they can be interpreted as the total rate at which links, connecting the first and second neighbors of the
central node, change from being 0-0, 0-1, or 1-1 when the neighbor node changes state. Here, the symbol β, γ reflects the state
of the neighbor node, while the first super index s, i reflects the state of the central node and the second super index the sate of
the second neighbor.

The Hessians ∂2�n,k,q

∂φn′,k′ ,q′ ∂φn′′ ,k′′ ,q′′ can be calculated by taking the derivative of Eqs. (A1)–(A4) which leads to

∂2�0,k,q

∂φ0,k′,q′∂φ0,k′′,q′′
= δk,k′ [−δq,q′ (k − q) + δq−1,q′ (k − q + 1)]

∂βs

∂φ0,k′′,q′′

+ δk,k′′ [−δq,q′′ (k − q) + δq−1,q′′ (k − q + 1)]
∂βs

∂φ0,k′,q′

+ [−(k − q)φ0,k,q + (k − q + 1)φ0,k,q−1]
∂2βs

∂φ0,k′,q′∂φ0,k′′,q′′
, (A22)

∂2�0,k,q

∂φ0,k′,q′∂φ1,k′′,q′′
= δk,k′ [−δq,q′q + δq+1,q′ (q + 1)]

∂γ s

∂φ1,k′′,q′′
, (A23)

∂2�0,k,q

∂φ1,k′,q′∂φ1,k′′,q′′
= [−qφ0,k,q + (q + 1)φ0,k,q+1]

∂2γ s

∂φ1,k′,q′∂φ1,k′′,q′′
, (A24)

∂2�1,k,q

∂φ0,k′,q′∂φ0,k′′,q′′
= [−(k − q)φ1,k,q + (k − q + 1)φ1,k,q−1]

∂2β i

∂φ0,k′,q′∂φ0,k′′,q′′
, (A25)

∂2�1,k,q

∂φ0,k′,q′∂φ1,k′′,q′′
= δk,k′′ [−δq,q′′ (k − q) + δq−1,q′′ (k − q + 1)]

∂β i

∂φ0,k′,q′
, (A26)

∂2�1,k,q

∂φ1,k′,q′∂φ1,k′′,q′′
= δk,k′ [−δq,q′q + δq+1,q′ (q + 1)]

∂γ i

∂φ1,k′′,q′′

+ δk,k′′ [−δq,q′′q + δq+1,q′′ (q + 1)]
∂γ i

∂φ1,k′,q′

+ [−qφ1,k,q + (q + 1)φ1,k,q+1]
∂2γ i

∂φ1,k′,q′∂φ1,k′′,q′′
. (A27)

The second derivatives of the rates Eqs. (20)–(23) are

∂2βs

∂φ0,k′,q′∂φ0,k′′,q′′
= (k′ − q′)(k′′ − q′′)(2βs − R+

k′,q′ − R+
k′′,q′′ )(∑

k,q(k − q)φ0,k,q
)2 , (A28)

∂2γ s

∂φ1,k′,q′∂φ1,k′′,q′′
= (k′ − q′)(k′′ − q′′)(2γ s − R−

k′,q′ − R−
k′′,q′′ )(∑

k,q(k − q)φ1,k,q
)2 , (A29)

043370-18



BINARY-STATE DYNAMICS ON COMPLEX NETWORKS: … PHYSICAL REVIEW RESEARCH 2, 043370 (2020)

∂2β i

∂φ0,k′,q′∂φ0,k′′,q′′
= q′q′′(2β i − R+

k′,q′ − R+
k′′,q′′ )(∑

k,q(k − q)φ0,k,q
)2 , (A30)

∂2γ i

∂φ1,k′,q′∂φ1,k′′,q′′
= q′q′′(2γ i − R−

k′,q′ − R−
k′′,q′′ )(∑

k,q(k − q)φ1,k,q
)2 . (A31)

2. Contact process

For the rates of the contact process, the previous matrices slightly change. In Eq. (A9), we must replace R+
k,q → R̃+

k,q =∑
{k j ,q j } R+

k,q,{k j }
∏

j P0(1, k j, q j ). In Eq. (A10), in the first term of the sum R+
k,q → R̃+

k,q and in the second term R+
k,q → R̃+

k,q,k′ =∑
{k j ,q j } R+

k,q,k′,{k j}
∏

j P0(1, k j, q j ) with j = k − q + 2, . . . , k. In the third term, R+
k′,q′ → R̃+

k′,q′ . In the fourth term, βnsi → βnsi
k′ =∑

k,q q(k − q)φ0,k,qR̃+
k,q,k′ .

For Eq. (A11), in the first term of the sum, R+
k,q → R̃+

k,q, in the second term, R+
k,q → R̃+

k,q,k′ , and in

the third term, R+
k′,q′ → R̃+

k′,q′,k . The rates transform βnii → βnii
k,k′ = ∑

k′′,q′′ q′′(q′′ − 1)φ0,k′′,q′′ R̃+
k′′,q′′,k,k′ with R̃+

k′′,q′′,k,k′ =∑
{k j ,q j } R+

k′′,q′′,k,k′,{k j }
∏

j P0(1, k j, q j ); j = k − q + 3, . . . , k, and βni → βni
k = ∑

k′,q′ q′φ0,k′,q′ R̃+
k′,q′,k .

3. Pair approximation

The case of the pair approximation can be seen as a reduction and change of variables of the previous more complex case,
where φ0,k,q = (Pk − φk )Bink,q[p0,k], φ1,k,q = φkBink,q[p1,k] and p0,k = φ0,k/(k(Pk − φk )), p1,k = φ1,k/(kφk ). In this way, the

Jacobian matrix of the new variables can be calculated using the chain rule as, e.g., B0,k;0,k′ = ∑
q,q′′ qB0,k,q;0,k′′,q′′

∂φ0,k′′ ,q′′
∂φ0,k′ . This

procedure leads to the different matrix elements:

Bk;k′ = −δk,k′
∑

q

[
∂φ0,k,q

∂φk
R+

k,q − ∂φ1,k,q

∂φk
R−

k,q

]
, (A32)

Bk;0,k′ = −δk,k′
∑

q

∂φ0,k,q

∂φ0,k
R+

k,q, (A33)

Bk;1,k′ = δk,k′
∑

q

∂φ1,k,q

∂φ1,k
R−

k,q, (A34)

B0,k;k′ = δk,k′
∑

q

[
∂φ0,k,q

∂φk
qR+

k,q − ∂φ1,k,q

∂φk
qR−

k,q

]
− ∂βs

∂φk′
(kPk − kφk − φ0,k ) + ∂γ s

∂φk′
φ0,k + δk,k′kβs, (A35)

B0,k;0,k′ = δk,k′
∑

q

∂φ0,k,q

∂φ0,k
qR+

k,q − ∂βs

∂φ0,k′
(kPk − kφk − φ0,k ) + δk,k′ (βs + γ s), (A36)

B0,k;1,k′ = −δk,k′
∑

q

∂φ1,k,q

∂φ1,k
qR−

k,q + ∂γ s

∂φ1,k′
φ0,k, (A37)

B1,k;k′ = −δk,k′
∑

q

[
∂φ0,k,q

∂φk
qR+

k,q − ∂φ1,k,q

∂φk
qR−

k,q

]
− ∂β i

∂φk′
(kφk − φ1,k ) + ∂γ i

∂φk′
φ1,k − δk,k′kβ i, (A38)

B1,k;0,k′ = −δk,k′
∑

q

∂φ0,k,q

∂φ0,k
qR+

k,q − ∂β i

∂φ0,k′
(kφk − φ1,k ), (A39)

B1,k;1,k′ = δk,k′
∑

q

∂φ1,k,q

∂φ1,k
qR−

k,q + ∂γ i

∂φ1,k′
φ1,k + δk,k′ (β i + γ i ), (A40)

where

∂φ0,k,q

∂φk
= −Bink,q[p0,k] + Bin′

k,q[p0,k]p0,k, (A41)

∂φ1,k,q

∂φk
= Bink,q[p1,k] − Bin′

k,q[p1,k]p1,k, (A42)

∂φ0,k,q

∂φ0,k
= 1

k
Bin′

k,q[p0,k], (A43)

∂φ1,k,q

∂φ1,k
= 1

k
Bin′

k,q[p1,k], (A44)
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and the derivative of the binomial distribution is Bin′
k,q[x] = q−xk

x(1−x) Bink,q[x]. The derivatives of the rates βs, β i, γ s, γ i can be
calculated using the chain rule, e.g., ∂βs/∂φk = ∑

q(∂βs/∂φ0,k,q)(∂φ0,k,q/∂φk ).
Similarly, the G-matrix of the pair approximation can be obtained taking a partial sum of the previous one, e.g. Gk;0,k′ =∑
q,q′ q′G1,k,q;0,k′,q′ . This procedure reads for the different elements:

Gk;k′ = δk,k′
∑

q

[φ0,k,qR+
k,q + φ1,k,qR−

k,q], (A45)

Gk;0,k′ = −δk,k′
∑

q

[qφ0,k,qR+
k,q + qφ1,k,qR−

k,q] +
∑

q

(k − q)φ0,k,qR+
k,q

∑
q′

P0(0, k′, q′)

+
∑

q

(k − q)φ1,k,qR−
k,q

∑
q′

P1(0, k′, q′), (A46)

Gk;1,k′ = δk,k′
∑

q

[qφ0,k,qR+
k,q + qφ1,k,qR−

k,q] +
∑

q

qφ0,k,qR+
k,q

∑
q′

P0(1, k′, q′)

+
∑

q

qφ1,k,qR−
k,q

∑
q′

P1(1, k′, q′), (A47)

G0,k;0,k′ = δk,k′
∑

q

[q2φ0,k,qR+
k,q + q2φ1,k,qR−

k,q] (A48)

−
∑

q

q(k − q)φ0,k,qR+
k,q

∑
q′

P0(0, k′, q′) −
∑

q′
q′(k′ − q′)φ0,k′,q′R+

k′,q′
∑

q

P0(0, k, q)

−
∑

q

q(k − q)φ1,k,qR−
k,q

∑
q′

P1(0, k′, q′) −
∑

q′
q′(k′ − q′)φ1,k′,q′R−

k′,q′
∑

q

P1(0, k, q)

+βnss
∑

q

P0(0, k, q)
∑

q′
P0(0, k′, q′) + γ nss

∑
q

P1(0, k, q)
∑

q′
P1(0, k′, q′)

+ δk,k′

[
βns

∑
q

P0(0, k, q) + γ ns
∑

q

P1(0, k, q)

]
, (A49)

G0,k;1,k′ = −δk,k′
∑

q

[q2φ0,k,qR+
k,q + q2φ1,k,qR−

k,q]

−
∑

q

q2φ0,k,qR+
k,q

∑
q′

P0(1, k′, q′) +
∑

q′
q′(k′ − q′)φ0,k′,q′R+

k′,q′
∑

q

P0(0, k, q)

−
∑

q

q2φ1,k,qR−
k,q

∑
q′

P1(1, k′, q′) +
∑

q′
q′(k′ − q′)φ1,k′,q′R−

k′,q′
∑

q

P1(0, k, q)

+βnsi
∑

q

P0(0, k, q)
∑

q′
P0(1, k′, q′) + γ nsi

∑
q

P1(0, k, q)
∑

q′
P1(1, k′, q′),

G1,k;1,k′ = δk,k′
∑

q

[q2φ0,k,qR+
k,q + q2φ1,k,qR−

k,q]

+
∑

q

q2φ0,k,qR+
k,q

∑
q′

P0(1, k′, q′) +
∑

q′
(q′)2φ0,k′,q′R+

k′,q′
∑

q

P0(1, k, q)

+
∑

q

q2φ1,k,qR−
k,q

∑
q′

P1(1, k′, q′) +
∑

q′
(q′)2φ1,k′,q′R−

k′,q′
∑

q

P1(1, k, q)

+βnii
∑

q

P0(1, k, q)
∑

q′
P0(1, k′, q′) + γ nii

∑
q

P1(1, k, q)
∑

q′
P1(1, k′, q′)

+ δk,k′

[
βni

∑
q

P0(1, k, q) + γ ni
∑

q

P1(1, k, q)

]
. (A50)

The Hessians can be obtained taking a second derivative of the Eqs. (A32)–(A40), which leads to

∂2�k

∂φk′∂φk′′
= δk,k′δk,k′′

∑
q

[
∂2φ0,k,q

∂φ2
k

R+
k,q − ∂2φ1,k,q

∂φ2
k

R−
k,q

]
, (A51)
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∂2�k

∂φk′∂φ0,k′′
= δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φk∂φ0,k
R+

k,q, (A52)

∂2�k

∂φk′∂φ1,k′′
= −δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φk∂φ1,k
R−

k,q, (A53)

∂2�k

∂φ0,k′∂φ0,k′′
= δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φ2
0,k

R+
k,q, (A54)

∂2�k

∂φ0,k′∂φ1,k′′
= 0, (A55)

∂2�k

∂φ1,k′∂φ1,k′′
= −δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φ2
1,k

R−
k,q, (A56)

∂2�0,k

∂φk′∂φk′′
= −δk,k′δk,k′′

∑
q

[
∂2φ0,k,q

∂φ2
k

qR+
k,q − ∂2φ1,k,q

∂φ2
k

qR−
k,q

]

+ ∂2βs

∂φk′φk′′
(kPk − kφk − φ0,k ) − ∂2γ s

∂φk′φk′′
φ0,k − δk,k′′k

∂βs

∂φk′
− δk,k′k

∂βs

∂φk′′
, (A57)

∂2�0,k

∂φk′∂φ0,k′′
= −δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φk∂φ0,k
qR+

k,q

+ ∂2βs

∂φk′φ0,k′′
(kPkk − kφk − φ0,k ) − δk,k′′

(
∂γ s

∂φk′
+ ∂βs

∂φk′

)
− δk,k′k

∂βs

∂φ0,k′′
, (A58)

∂2�0,k

∂φk′∂φ1,k′′
= δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φk∂φ1,k
qR−

k,q − ∂2γ s

∂φk′φ1,k′′
φ0,k, (A59)

∂2�0,k

∂φ0,k′∂φ0,k′′
= −δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φ2
0,k

qR+
k,q

+ ∂2βs

∂φ0,k′φ0,k′′
(kPkk − kφk − φ0,k ) − δk,k′′

∂βs

∂φ0,k′
− δk,k′

∂βs

∂φ0,k′′
, (A60)

∂2�0,k

∂φ0,k′∂φ1,k′′
= −δk,k′

∂γ s

∂φ1,k′′
, (A61)

∂2�0,k

∂φ1,k′∂φ1,k′′
= δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φ2
1,k

qR−
k,q − ∂2γ s

∂φ1,k′φ1,k′′
φ0,k, (A62)

∂2�1,k

∂φk′∂φk′′
= δk,k′δk,k′′

∑
q

[
∂2φ0,k,q

∂φ2
k

qR+
k,q − ∂2φ1,k,q

∂φ2
k

qR−
k,q

]

+ ∂2β i

∂φk′φk′′
(φkk − φ1,k ) − ∂2γ i

∂φk′φk′′
φ1,k + δk,k′′k

∂β i

∂φk′
+ δk,k′k

∂β i

∂φk′′
, (A63)

∂2�1,k

∂φk′∂φ0,k′′
= δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φk∂φ0,k
qR+

k,q + ∂2β i

∂φk′φ0,k′′
(φkk − φ1,k ) + δk,k′k

∂β i

∂φ0,k′′
, (A64)

∂2�1,k

∂φk′∂φ1,k′′
= −δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φk∂φ1,k
qR−

k,q − δk,k′′

(
∂β i

∂φk′
+ ∂γ i

∂φk′

)
− ∂2γ i

∂φk′φ1,k′′
φ1,k, (A65)

∂2�1,k

∂φ0,k′∂φ0,k′′
= δk,k′δk,k′′

∑
q

∂2φ0,k,q

∂φ2
0,k

qR+
k,q + ∂2β i

∂φ0,k′φ0,k′′
(φkk − φ1,k ), (A66)

∂2�1,k

∂φ0,k′∂φ1,k′′
= −δk,k′′

∂β i

∂φ0,k′
, (A67)

∂2�1,k

∂φ1,k′∂φ1,k′′
= −δk,k′δk,k′′

∑
q

∂2φ1,k,q

∂φ2
1,k

qR−
k,q − ∂2γ i

∂φ1,k′φ1,k′′
φ1,k − δk,k′′

∂γ i

∂φ1,k′
− δk,k′

∂γ i

∂φ1,k′′
, (A68)
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where

∂2φ0,k,q

∂φ2
k

= Bin′′
k,q[p0,k]

p2
0,k

Pk − φk
, (A69)

∂2φ0,k,q

∂φk∂φ0,k
= Bin′′

k,q[p0,k]
p0,k

k(Pk − φk )
, (A70)

∂2φ0,k,q

∂φ2
0,k

= Bin′′
k,q[p0,k]

1

k2(Pk − φk )
, (A71)

∂2φ1,k,q

∂φ2
k

= Bin′′
k,q[p1,k]

p2
1,k

φk
, (A72)

∂2φ1,k,q

∂φk∂φ1,k
= −Bin′′

k,q[p1,k]
p1,k

kφk
, (A73)

∂2φ1,k,q

∂φ2
1,k

= Bin′′
k,q[p1,k]

1

k2φk
, (A74)

and the second derivative of the binomial distribution is Bin′′
k,q[x] = −kx(1−x)+(q−xk)(q−xk−1+2x)

x2(1−x)2 Bink,q[x]. The second derivatives

of the rates βs, β i, γ s, γ i can be calculated using the chain rule again, e.g.,

∂2βs

∂φk∂φk′
=

∑
q,q′

∂2βs

∂φ0,k,q∂φ0,k′,q′

∂φ0,k,q

∂φk

∂φ0,k′,q′

∂φk′
+ δk,k′

∑
q

∂βs

∂φ0,k,q

∂2φ0,k,q

∂φ2
k

. (A75)

4. Heterogeneous mean field

This is the simplest of the approximations where we reduce variables following φ0,k,q = (Pk − φk )Bink,q[p], φ1,k,q =
φkBink,q[p] with p = ∑

k φkk/μ. The Jacobian in this case can be obtained taking the derivative of Eq. (32), this is

Bk;k′ = −
∑

q

[
∂φ0,k,q

∂φk′
R+

k,q − ∂φ1,k,q

∂φk′
R−

k,q

]
, (A76)

∂φ0,k,q

∂φk′
= −δk,k′Bink,q[p] + (Pk − φk )

k′

μ
Bin′

k,q[p], (A77)

∂φ1,k,q

∂φk′
= δk,k′Bink,q[p] + φkBin′

k,q[p]
k′

μ
. (A78)

The G-matrix is simply Gk;k′ = ∑
q,q′ G1,k,q;1,k′,q′ which leads to

Gk;k′ = δk,k′
∑

q

[φ0,k,qR+
k,q + φ1,k,qR−

k,q]. (A79)

The second derivatives can be computed as

∂2�k

∂φk′∂φk′′
=

∑
q

[
∂2φ0,k,q

∂φk′∂φk′′
R+

k,q − ∂2φ1,k,q

∂φk′∂φk′′
R−

k,q

]
, (A80)

∂2φ0,k,q

∂φk′∂φk′′
= −Bin′

k,q[p]

(
δk,k′

k′′

μ
+ δk,k′′

k′

μ

)
+ (Pk − φk )Bin′′

k,q[p]
k′

μ

k′′

μ
, (A81)

∂2φ1,k,q

∂φk′∂φk′′
= Bin′

k,q[p]

(
δk,k′

k′′

μ
+ δk,k′′

k′

μ

)
+ φkBin′′

k,q[p]
k′

μ

k′′

μ
. (A82)

APPENDIX B: THE CENTER MANIFOLD

The coefficients α
(10)
i , α

(11)
i , α

(02)
i of the center manifold ui = hi(T, u1), Eq. (40), are

Diα
(10)
i = ∂T Ui, (B1)

Diα
(02)
i = 1

2
∂2

u1
Ui, (B2)

Diα
(11)
i = −α

(02)
i ∂T U1 + ∂2

Tu1
Ui +

∑
j �=1

∂2
u1u j

Uiα
(10)
j . (B3)
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The coefficients β (10), β (11), β (02), β (03) of the normal form of the bifurcation Eq. (41) are

β (10) = ∂T U1, (B4)

β (02) = 1

2
∂2

u1
U1, (B5)

β (11) = ∂2
Tu1

U1 +
∑
j �=1

∂2
u1u j

U1α
(10)
j , (B6)

β (03) = 1

3!
∂3

u1
U1 +

∑
j �=1

∂2
u1u j

U1α
(02)
j . (B7)

Using the change of variables Eqs. (42)–(44), we can expand the master equation Eq. (4) in powers of N and derive a

Fokker-Planck equation for the probability of the new variable �(ξ1; t ). The step operator
∏M

i=1 E
−�

(ν)
i

i = e−�(ν)·∇x in the right hand
side of Eq. (4) for the y = P−1x variables with ∇x = P−1∇y transforms as −P−1�(ν) · ∇y + 1

2 (P−1�(ν) · ∇y)2 + . . . Taking into
account that the derivatives change like ∂yi = N−1/2∂ξi and ∂y1 = N−υ∂ξ1 − N−1/2 ∑

j (N−rα
(11)
j ξ0 + Nυ−12α

(20)
j ξ1 + . . . )∂ξ j ,

and integrating the full equation
∫

[
∏

i �=1 dξi] the only terms that remain are, (i) associated to the first derivative ∂ξ1 [. . . �(ξ1; t )]
we have

−N−υ
∑

ν

∑
j

P−1
1 j �

(ν)
j W (ν) = −N1−υ−rβ (10)ξ0 − N−rβ (11)ξ0ξ1 − N (m−1)(υ−1)β (0m)ξm

1 + . . . (B8)

and (ii) associated to the second derivative 1
2∂2

ξ1
[. . . �(ξ1; t )] we have

N−2υ
∑

ν

∑
i j

P−1
1i P−1

1 j �
(ν)
i �

(ν)
j W (ν) = N1−2υF11 + . . . , (B9)

with F11 = ∑
i, j P−1

1i P−1
1 j Gi j . Both terms must be of the same order of N , thus we must choose r and υ properly obtaining:

r = υ = m
m+1 if β (10) �= 0 and υ = m

m+1 , r = m−1
m+1 if β (10) = 0. Putting both terms together we obtain finally the Fokker-Planck

equation (45).
In the case of epidemic models with an absorbing state and F11 = 0, we must consider a further term in Eq. (B9), this is

N−2υ
∑

ν

∑
i j

P−1
1i P−1

1 j �
(ν)
i �

(ν)
j W (ν) = N−υγ ξ1 + . . . , (B10)

with ∂F11
∂u1

evaluated at the absorbing state and critical point. For a transcritical bifurcation with β (01) = 0 and β (02) �= 0, equating
both orders of N in Eqs. (B8) and (B10), we obtain r = υ = 1/2.
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