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Abstract
We consider a general model in which there is a coupled dynamics of node states and link states in
a network. This coupled dynamics coevolves with dynamical changes of the topology of the
network caused by a link rewiring mechanism. Such coevolution model features the interaction of
the local dynamics of node and link states with the nonlocal dynamics of link rewiring in a
random network. The coupled dynamics of the states of the nodes and the links produces by itself
an absorbing phase transition which is shown to be robust against the link rewiring mechanism.
However, the dynamics of the network gives rise to significant physical changes, specially in the
limit in which some links do not change state but are always rewired. Firstly a network
fragmentation occurs at the critical line of the absorbing-state transition, and only at this line, so
that fragmentation is a manifestation of criticality. Secondly, in the active phase of the
absorbing-state transition, finite-size fluctuations take the system to a single network component
consensus phase, while other configurations are possible in the absence of rewiring. In addition,
this phase is reached after a survival time that scales linearly with system size, while the survival
time scales exponentially with system size when there is no rewiring. A social interpretation of our
results contribute to the description of processes of emergence of social fragmentation and
polarization.

1. Introduction

Modeling a complex system of interacting agents requires specifying the network of interactions and the
state of the agents, represented as nodes of the network. The links of the network can also have a state,
representing for instance attractive or repulsive interactions. In addition, the network might not be fixed,
but adaptive with a time dependent topology. A general dynamical model includes the coupled dynamics of
the states of the nodes, the states of the links and the topology of the network. In terms of social collective
emergent properties a key question is if the asymptotic state of the dynamics describes some sort of
consensus or alternatively, group formation with social fragmentation and/or polarization.

A first class of models are those that do not include link states, other than existence or non-existence of
the link between two nodes. Among these, there are models that describe dynamics on the network:
evolution of the states of the nodes in a fixed network, while other describe dynamics of the network, as for
example dynamics of network formation with no reference to the state of the nodes. We use the term
coevolution models [1, 2] for those describing a coupled evolution of these two dynamics: node state
dynamics and network topology dynamics, so that the structure of the network is no longer a given, but a
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variable. An important parameter in these models is the network plasticity which measures the ratio of the
time scale of the network evolution to the time scale of the evolution of the states of the nodes. In many
cases coevolution models feature a network fragmentation transition [3, 4], associated with an absorbing
phase transition: for a critical value of the plasticity parameter a single component network fragments into
several disconnected components. Coevolution models have been analyzed in the context of social
differentiation [5], voter model and opinion formation [3, 6–8] or cultural polarization [9]. They have also
been used to describe empirical data on community structure of online games [10] and more recently
twitter data on echo chambers and polarization dynamics [11] as well as echo chambers on political
parliamentary voting [12].

A different class of models are those that focus on the state of the link [13]. While the existence of a link
in the context of opinion formation has been often interpreted as a positive interaction like friendship, trust
or collaboration, it has also been argued that negative interactions are a major driving force in collective
social behavior [14, 15]. Therefore, considering positive and negative links should be an essential ingredient
of interacting agents models. Link states were pioneered in Heider’s social balance theory [16–21].
Coevolution of link states and network topology, with no node state dynamics, has also been considered
[22]. More attention has been paid recently to the coupled dynamics of node and link states in a time
independent network (fixed topology) in different contexts [23–27]. In particular, in [27], inspired by
processes of opinion formation, we considered an interacting agents model in which each node can be in
either of two states and links can also be in either of two states associated with a friendly or unfriendly
relation. Two nodes in a different state linked by a friendly relation or two nodes in the same state linked by
an unfriendly relation are considered as unsatisfying pairs and they evolve to satisfying pairs by changing
the state of one of the nodes or by changing the state of the link. This model exhibits an absorbing phase
transition from a dynamically active state with persistent dynamics to a frozen absorbing configuration.
The transition occurs for a critical value of the relative time scale for node and link state updates, that
depends on the average degree of the network. The system also shows a finite-size topological transition
associated with group splitting. Groups are here defined as a set of nodes in the same state connected by
friendly links among themselves and by unfriendly links to the nodes in other groups. The existence of these
groups, when they are poorly connected among them, reflects social fragmentation, with each group acting
as an echo chamber. While [27] considers dyadic interactions, a related model in [26] implements an
optimization dynamics of social balance triangular relations.

In this paper we go beyond the model of [27] by also considering adaptive dynamics of the network, so
that we have a full dynamical model including dynamical evolution of the states of the nodes and the states
of the links as well a time dependent network topology. This is a coevolution model, in the sense that the
coupled dynamics of node–link states coevolves with dynamical changes of the topology of the network
caused by a link rewiring mechanism. Note also that this model includes a coupling between the local
mechanism of changes of node and link states and the nonlocal mechanism of random rewiring in the
network. We find in this model an absorbing phase transition which is rather independent of the network
dynamics. However, network dynamics gives rise to significant new phenomena. In particular, link rewiring
can produce a network fragmentation transition on the critical line of the absorbing-state transition and it
modifies essentially the nature of the active phase: a consensus phase can be reached by finite-size
fluctuations.

The paper is organized as follows. First, we discuss our general coevolution model and its rate equation
formulation. Next, we describe the absorbing-state transition predicted by the rate equations, as well as
results on this transition obtained by Monte Carlo simulations. In the following sections we focus on the
special case of largest rewiring probability, the approach to the absorbing states and calculation of survival
times, and the topological transitions among the final frozen states. The final section summarizes our main
results. Appendix A discusses the derivation of the rate equations.

2. Coevolution model: coupling of node–link states local dynamics and non-local
network dynamics

We consider initially an uncorrelated random network with N nodes and an average degree μ [28]. Each
node is endowed by a binary state value 1 or −1. Each link also holds a binary state variable + or −
representing, respectively, attractive or repulsive interactions. In an opinion formation model, the state of
the nodes represent two different opinions and attractive or repulsive interactions stand for friendly or
unfriendly relations. The states of the nodes are represented in the figures by filled-in blue and white circles,
while the states of the links are represented by solid (+) or dashed (−) lines. We consider repulsive links
connecting nodes with different (resp. the same) state and attractive links connecting nodes with the same
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Figure 1. All six possible configurations of pairs and the associated update events including update of states of nodes and links
(rightward arrows) as local dynamics and rewiring the links (leftward arrows) as non-local dynamics. The pairs labeled by a, c
and e are unsatisfying, while pairs b, d and f are satisfying. p is the probability of update of state of links and 1 − p is the
probability of node state update. r is the probability of rewiring once the pair e has been selected for link update.

(resp. different) state as satisfying (resp. unsatisfying) relations. In figure 1, we show all six possible types
of pairs and identify a, e and c as unsatisfying pairs and b, d and f as satisfying ones [27].

We implement a dynamical model that tends to minimize the number of unsatisfying pairs. The change
from unsatisfying pairs to satisfying ones is done through two different mechanisms, (i) Flipping node or
link states or (ii) link rewiring as described below in detail. The first mechanism does not change the
network topology and changes either the state of one node, or the state of a link, to transform an
unsatisfying pair into a satisfying pair. The second mechanism accounts for the dynamics of the network: an
unsatisfying pair is destroyed and a new satisfying pair is created by deleting a link and establishing a new
one in the network.

(i) Flipping node or link states (rightward arrows in figure 1): this is a local mechanism in which an
unsatisfying pair is turned into a satisfying one by changing the state of one of the nodes or the state of the
link. With probability p a link state is changed, and with the complimentary probability (1 − p) a node state
is changed. This gives rise to a coupled dynamics of node and link states in which p measures the ratio of
time scales of node and link evolution. The pair a is turned into a satisfying pair b via a link update with
probability p or it is turned into a satisfying pair f through a node update with complimentary probability
(1 − p), as shown in figure 1. Note that in the node update a to f , it does not matter which of the nodes in
the pair a changes its state, both result in f . The pair c is similarly transformed into a satisfying pair: a link
update transforms it into the pair d and a node update (from any side) transforms it into the pair f . For the
case of the unsatisfying pair e, a link update with probability p transforms it into the satisfying pair f . With
complimentary probability (1 − p), a node update takes place on pair e; either its white node with
probability 1−p

2 flips its state and e becomes d, or alternatively the blue node with probability 1−p
2 changes

its state and e becomes b.
(ii) Link rewiring (leftward arrows in figure 1). In this nonlocal mechanism [3], one of the two nodes,

chosen at random, of an unsatisfying pair of type e breaks the existing link and reconnects to another node
of its own type, again chosen randomly amongst all possible nodes. Hence the unsatisfying pair of type e
can either become a satisfying pair of type b or of type d according to which one of the two nodes (white or
blue, respectively) is selected to find a matching node in the network. Summing up, when an e-type pair has
been chosen, the following actions can occur: (i) change the state of the link from attractive to repulsive,
with probability (1 − r)p; (ii) the node holding the blue opinion turns into white, with probability 1−p

2 ; (iii)
the node holding the white opinion turns into blue, with probability 1−p

2 ; (iv) the node holding the white
opinion breaks the link and binds to another white node in the network, with probability rp

2 , (v) the node
holding the blue opinion breaks the link and binds to another blue node in the network, with probability
rp
2 .

The parameter r is the probability of rewiring once the pair e has been selected for link update. In this
model it is the parameter that allows for the evolution of the network topology. In principle one could also
think of a rewiring mechanism that does not change link state, but instead turns pairs a and c into a
satisfying pair f . We do not include this possibility here: in terms of an opinion formation model it
corresponds to a search in the network to establish an unfriendly relation with an agent with an opposite
opinion. It can be socially argued that this process would occur with a much smaller probability than
the one considered here of searching to establish a friendly relation with an agent with the same
opinion.
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The three parameters of the model, in addition of system size N, are the probabilities p and r and the
average degree of the network μ. The limiting case r = 0 was considered in [27]. In that case there is
coupled evolution of node and link states by local dynamics, but there is no network dynamics. In our
coevolving case, the network evolves by a nonlocal mechanism coupled to the evolution of node and link
states. In the limiting case p = 0, there is only dynamics of the states of the nodes and no network
dynamics. Still this limit does not correspond to the well known voter model in a fixed network [29] where
updates from pairs a and c to pair f do not occur. In the case p = 1 there is only link dynamics (including
rewiring).

In a Monte Carlo implementation of this coevolution model, the system evolves asynchronously. A
single pair is selected at random at each time step: if it is satisfying, nothing happens. If it is unsatisfying, it
adapts according to the dynamics described in figure 1. A Monte Carlo step is counted after a sequence of
time steps equal to the total number of links in the network. In an Erdős–Rényi network [30] with N nodes
and average degree μ the total number of links is L = 1

2μN, a quantity that is kept constant during the
evolution. Defining Li, i ∈ {a, b, c, d, e, f } as the number of pairs of type i, the associated densities are
ρi = Li/L, satisfying the obvious normalization condition ρa + ρb + ρc + ρd + ρe + ρf = 1.

The dynamical rules are such that the unsatisfying pairs (ρa, ρc and ρe) are turned into satisfying. An
absorbing configuration of the system [31] is reached when there are no unsatisfying pairs,
ρa = ρc = ρe = 0. The system is then in a frozen state where there can be no further evolution. Note that,
although at each step of the dynamics an unsatisfying pair becomes a satisfying pair, this does not mean that
the total number of unsatisfying pairs decreases, because an update that converts a pair from unsatisfying to
satisfying by changing an individual node state might also change the status of another pair, to which the
node involved in the update also belongs to, from satisfying to unsatisfying. The main question is when and
how an absorbing or frozen configuration is reached. To answer this question we will analyze the dynamical
evolution of the densities ρi(t), i ∈ {a, b, c, d, e, f }. This dynamics is analyzed by Monte Carlo (MC)
simulations and by a set of rate equations (RE).

3. Mean-field analysis: rate equations

The densities {ρa, ρb, ρc, ρd, ρe, ρf} obey six coupled differential RE describing the model sketched in
figure 1. These equations are derived in the appendix A. Each equation indicates the time evolution of one
of the densities and contains both linear and nonlinear terms. The linear terms describe the change of
densities due to the direct update of pairs shown in figure 1, while the nonlinear terms are the outcome of
the node update causing a change in the densities of the pairs linked to the updated node. There are two
main assumptions in the derivation of these equations to be taken into account when comparing their
predictions with Monte Carlo simulations. First, they are derived in the thermodynamic limit (N →∞), so
that they cannot describe finite-size fluctuations. Second, they assume a random regular network in which
all nodes have exactly μ random neighbors at all times.

The RE have two sets of fixed points or stationary solutions. The first solution is given by

ρst
a = ρst

c =
1 − r

2
ρst

e , ρst
b = ρst

d =
ρst

f

2(1 − r)
, (1)

ρst
e =

−3 + q(2 − r) + 2r

(2 − r)(2q(2 − r) + r)
, (2)

ρst
f =

1 − r

2 − r
− (1 − r)ρst

e , (3)

where q = (μ− 1)(1 − p). This satisfies the normalization condition ρst
a + ρst

b + ρst
c + ρst

d + ρst
e + ρst

f = 1.
The second set of solutions is

ρst
a = 0, ρst

c = 0, ρst
e = 0, (ρst

b , ρst
d , ρst

f ) → arbitrary, (4)

i.e. there are no unsatisfying pairs, and the relative fractions of satisfying pairs are arbitrary, but still need to
fulfill the normalization condition ρst

b + ρst
d + ρst

f = 1.
The first solution (equations (1)–(3)), described by generally non-vanishing values of the densities that

depend on on r, p and μ, is approached asymptotically on time and it is independent of initial conditions.
Given that in this solution there exist unsatisfying pairs, it corresponds to a dynamically active state. The
second set of solutions, equation (4), includes a continuous of solutions which depend on initial conditions.
However, in all of them there are no unsatisfying pairs, and therefore they correspond to absorbing states
with frozen dynamics.
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Figure 2. Order parameter, 〈ρe〉st, as a function of μ for fixed p = 0.8, in panel (a), and as a function of p for fixed μ = 6, in
panel (b), in both cases for three values of the rewiring probability (r = 0, 0.5, 1). The solid lines are the results of the RE while
the dashed lines come from the Monte Carlo simulations on an Erdős–Rényi network. Initial conditions for the densities x0 of
white nodes and �0 of attractive links are (x0, �0) = (0.25, 0.5). The system size is N = 500 nodes, and averages are taken over 250
realizations. The resolution of μ is Δμ = 2.

4. Absorbing-state transition

The condition ρst
e � 0 determines that the first solution (equations (1)–(3)), only exists for

−3 + (μ− 1)(1 − p)(2 − r) + 2r � 0 or, for given r and μ, for p � pc(μ, r) with

pc(μ, r) = 1 − 3 − 2r

(2 − r)(μ− 1)
. (5)

The condition ρst
e � 0 ensures that all other densities are non-negative as well. Therefore p = pc is the

critical value for an absorbing-state transition with order parameter ρst
e : for p � pc(μ, r) the system reaches

a stationary dynamically active phase in which ρst
e is nonzero for all values of r, μ and p. In this regime a

linear stability analysis indicates that this solution is linearly stable. On the other hand, for p > pc(μ, r) the
system reaches an absorbing or frozen state which turns out to be marginally stable. This analysis shows that
the absorbing phase transition found in [27] for r = 0 is robust under rewiring network dynamics.

In order to check our theoretical predictions of the active to absorbing-state transition we have
conducted extensive Monte Carlo simulation of our coevolution model. The simulations have been carried
out taking as initial condition a single component Erdős–Rényi network with the desired average
connectivity μ. Initial conditions for the states of the nodes and states of the links are chosen randomly
distributed with initial densities x0 and l0, respectively, of white nodes and attractive links (see the appendix
A). Results of the simulations and the numerical integration of the RE are shown in figure 2 for three values
of the rewiring probability (r = 0, 0.5, 1) as a function of μ for p = 0.8 fixed (left panel), and as a function
of p for μ = 6 (right panel). The Monte Carlo simulations confirm the predicted absorbing-state transition,
but quantitative agreement for the order parameter ρst

e in the active phase is better far from the transition
point, that is, for large values of μ or small values of p. In addition, the transition point is shown to be
rather independent of r. This fact is not captured by the approximate RE that neglect dynamical
correlations. A comparison of the MC and RE results for the critical line in the (p,μ) plane for different
values of r is also shown in figure 3, indicating a better overall agreement for small values of the probability
r. This figure also shows in a color scale the values of ρst

f , the density of repulsive links connecting nodes in
different states. This is a relevant quantity to monitor the effect of the network dynamics as measured by r:
its value for all points in plane (p,μ) decreases when increasing the rewiring parameter r in such a way that
in the active phase it becomes zero at r = 1. Moreover, the analytical solution of the RE (equations (1)–(4)),
predicts that the value of ρst

f at the critical line p = pc is independent of μ and it is only a function of r
(although the critical line does depend on μ). At the critical value of p, we find

qc = (μ− 1)(1 − pc(μ, r)) =
3 − 2r

2 − r
, (6)

independent of μ. Replacing this value of qc in the expression for ρst
f in equation (3) we find the specially

simple relation

ρc
f (r) =

1 − r

2 − r
. (7)
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Figure 3. Critical line for the active to absorbing-state transition in the (p,μ) plane for r = 0, panel (a); r = 0.5, panel (b); and
r = 1, panel (c). The red solid lines are the critical lines predicted by equation (5). Dashed lines are obtained from Monte Carlo
simulations: 〈ρe〉st = 0 in panels (a) and (b) and 〈ρf 〉st = 0 in panel (c). The values of 〈ρf 〉st, obtained from the simulations are
shown in a color scale. Initial conditions for the density x0 of white nodes and �0 of attractive links are (x0, �0) = (0.25, 0.5). The
system size is N = 500 nodes, and averages are taken over 250 realizations. Resolution of μ is Δμ = 2.

Figure 4. The solid line is the value of ρst
f at the critical line of the absorbing-state transition as a function of r, obtained from the

analytical solution equation (7) coming from the RE. The markers for r = 0, 0.5, 1 are obtained from Monte Carlo simulations in
an Erdős–Rényi network with N = 500. The sets of μ and p are associated with some different points on the critical line of
absorbing-state transition (red dashed line in figure 3): the value of ρst

f is shown to be independent of the value of μ at the critical
line.

This result, well confirmed by the MC simulations, is shown in figure 4, and it indicates a special behavior
of the system for r = 1. To be more precise, as we will discuss later the mechanism of network
fragmentation transition is rooted in the absence of pairs of type f at r = 1 where ρc

f |r=1 = 0.
In figure 5 we show numerical results to address the question of system-size effects in the determination

of the transition point for the absorbing-state transition. As shown in figures 5(a)–(c), the transition point
determined by 〈ρe〉st = 0 depends on system size for N � 500. However, the transition point for r = 1.0
(panel (d)) becomes independent of system. This is also seen in figure 13. Note that in the case r = 1.0, to
discriminate between the absorbing and active phases we monitor the value of ρst

f instead of ρst
e . This is

because in this case, ρst
f is much smoother than ρst

e (figures 6(a) and (c)) and in the active phase ρst
f = 0.

5. The case r = 1

When r = 1 the unsatisfying pair e only evolves by node state flipping or by link rewiring, but no link state
flipping is allowed. This turns out to be a singular situation in several aspects of our study. Firstly, we note
that equations (1)–(3) imply that in the active phase the densities ρst

a , ρst
c and ρst

f are zero. Therefore only

one density of unsatisfying pairs (ρst
e ) and two equivalent densities of satisfying pairs (ρst

b and ρst
d ) survive in

this active phase. These non-vanishing dynamical variables exhibit very large fluctuations as seen in 10
individual realizations of the process obtained by MC simulations (figure 6). Starting always from the same
fixed initial condition, fluctuations of ρb and ρe increase as time goes on. A quantitative measure of such
fluctuations is given by the standard deviation of ρb at stationary state, σ[ρst

b ]. We show in figure 7 the
dependence of this quantity on the rewiring probability, r, for two different system sizes. As illustrated, there
is an abrupt increase of these fluctuations at r = 1, rather independent of system size.

Secondly, we note that in the absorbing phase it is always ρst
a = ρst

e = ρst
c = 0. By continuity and on the

critical line for r = 1, ρst
e = ρst

f = 0. Therefore in these conditions of criticality and r = 1, the only

6
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Figure 5. Order parameter, 〈ρe〉st , as a function of μ and fixed p = 0.8 for diffrent systems. As shown, for r = 0 (panel (a)),
r = 0.5 (panel (b)), and r = 0.9 (panel (c)) the critical points depends on system size when N � 500, but for r = 1.0 (panel (d))
the critical point relatively independent of system size (also it is evident in figure 13). Initial conditions for the densities x0 of
white nodes and �0 of attractive links are (x0, �0) = (0.25, 0.5). The averages are taken over 200 realizations. The resolution of μ is
Δμ = 1.

Figure 6. Different realizations of the time evolution of ρe, ρb, ρf, and ρa in panels (a), (b), (c), and (d), respectively, in the active
phase for r = 1 coming from numerical simulations on an Erdős–Rényi network, with parameters p = 0.5, μ = 10 and N = 500
nodes. Initial conditions for the densities x0 of white nodes and �0 of attractive links are (x0, �0) = (0.25, 0.5). Time is measured
in MC steps.

non-vanishing densities are ρst
b and ρst

d , satisfying the normalization condition ρst
b + ρst

d = 1. Thus, there can
be two types of solutions in these special conditions: (i) either (ρst

b , ρst
d ) = (0, 1) or (ρst

b , ρst
d ) = (1, 0), a

situation with all nodes in the same state and only attractive links, or (ii) ρst
b �= 0 and ρst

d �= 0, which

7
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Figure 7. Standard deviation of ρb at the stationary active state as a function of the rewiring probability, r for two systems sizes
N = 600 and N = 1000. Parameters p = 0.5, μ = 10.

Figure 8. Time evolution, obtained from MC simulations, of 〈ρe〉 in a log–linear scale for different values of r as indicated.
System parameters p = 0.9, μ = 10 correspond to the absorbing phase. System size N = 500. Initial conditions
x0 = 0.25, l0 = 0.5. Averages taken over 240 MC realizations. Time measured in MC steps.

represents a fragmented network with disconnected groups, each of them with nodes in a given state
connected by attractive links. This second solution, predicted by the RE in the thermodynamic limit, is a
network fragmentation as a manifestation of criticality which occurs for r = 1 as discussed in the last
section on topological transitions.

6. Dynamics: approach to the absorbing states and survival times

In the absorbing phase the system approaches an absorbing state from given initial conditions by an
ordering process [27]. This process is described by the time evolution of 〈ρe〉 as shown in figure 8 for a set
of parameters in the absorbing phase and three different values of the rewiring parameter r. We observe an
exponential approach to the absorbing state, 〈ρe〉 ∼ e−t/τ0 . We also observe that τ 0 is independent of r, so
that the rewiring process does not modify the approach to the absorbing state. In a finite system of size N
the exponential approach lasts until 〈ρe〉 ∼ 1/N. This occurs at a characteristic time 〈τ 〉 ∼ log N. This
characteristic logarithmic dependence is shown in panels (a) and (c) of figure 9 for three values of the
rewiring probability and two sets of system parameters in the absorbing phase. Again, the logarithmic
dependence is not modified by the rewiring process, although the value of 〈τ 〉 decreases with increasing r,
indicating that the rewiring process accelerates the ordering process.

In the active phase of a finite system the dynamical state has a survival time because a finite-size
fluctuation will eventually take the system to an absorbing state. This survival time τ is a stochastic variable
whose average value is shown in panels (b) and (d) of figure 9 as a function of the system size for a set of
parameters in the active phase and different values of r. System size scaling of the survival time in this active
phase is computationally very demanding. Still, from the limited range of values of N that we have been able
to explore, we find that the curves for r = 0 can be well fitted by an exponential dependence 〈τ 〉 ∼ eαN,
while for r = 1 we have data compatible with a linear dependence 〈τ 〉 ∼ βN. For intermediate values of r
the scaling of 〈τ 〉 with N interpolates between these two extreme dependencies. For given r, we conjuncture
that the system size scaling of the survival time can be fitted by a phenomenological function as
〈τ〉 = α1(α2N)r e(1−r)α3N . The chosen points (system parameters) of panels (b) and (d) in the plane (p,μ)
have the same distance from the critical line, and for both of them we find common fitting coefficients,
α1,α2,α3. Therefore, in the active phase, as compared with the absorbing phase, the rewiring process

8
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Figure 9. Panels (a) and (c): absorbing phase. Mean value of the characteristic time, 〈τ 〉 to reach the absorbing state, as a
function of system size for different values of rewiring probability, r, in a linear–log scale. Dots correspond to results of Monte
Carlo simulations and the continuous lines are a logarithmic dependence fitting. Panels (b) and (d): active phase. Mean value of
of the survival time, 〈τ〉, as function of system size in a log-linear scale for different value of r. Dots correspond to the results of
Monte Carlo simulations and the continuous lines are different fits: for r = 0 an exponential fit, 〈τ 〉 ∼ eαN, for r = 1 a linear fit,
〈τ〉 ∼ βN, and for intermediate values of r a phenomenological fit 〈τ 〉 = α1(α2N)r e(1−r)α3 N with α1 = 11, α2 = 0.08 and
α3 = 0.065. In all panels the initial conditions for the densities of white nodes and attractive links are: x0 = 0.5, l0 = 0.5.
Averages are taken over 5000 MC realizations. Time measured in MC steps.

has a more significant effect: While in the absorbing phase the system size scaling 〈τ 〉 ∼ log N is
independent of r, in the active phase the exponential scaling valid for r = 0 is modified by the rewiring
mechanism. In addition a special behavior, the linear system size scaling of the survival time is found for
r = 1.

7. Topological transitions

In a finite system, either in the absorbing phase or after the survival time in the active phase, the system
reaches a fully satisfying configuration in which ρa = ρc = ρe = 0. These configurations display a range of
different non-trivial topological structures depending on the system parameters (p,μ, r). In this section we
describe these configurations, the transitions among them and the relation with the active to
absorbing-state transition discussed before.

The final, dynamically frozen, configurations can be classified according to the vanishing or non
vanishing values of ρb, ρd, ρf. There are two main categories, fragmented and connected networks. The
connected networks can be organized into three subclasses: consensus, two-group and split configurations.
In the fragmented configurations it is ρf = 0, ρb �= 0, ρd �= 0: therefore the nodes organize in two disjoint
networks, one network containing all blue nodes and the other all white nodes. All links within the nodes of
each independent network are attractive and there are no links between nodes belonging to different
networks. An example of a fragmented configuration is shown in figure 10(a). In the connected consensus
configurations, still ρf = 0, but now either ρb = 0 or ρd = 0: all nodes are in the same state connected by
attractive links as shown in figure 11(b). Both two-group and split configurations are characterized by
ρb �= 0, ρd �= 0, ρf �= 0. We define a group as a set of nodes in the same state, connected by attractive links
among themselves and by repulsive links to the nodes of other groups. In a two-group configuration, two
groups of nodes, each group in a different state, are connected by some repulsive links, while the internal
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Figure 10. (a) Example of a fragmented configuration obtained for p = 0.80, μ = 12, r = 1 and N = 30. These parameters
correspond to the critical line of the absorbing-state transition obtained from MC simulations as shown in figure 13. (b) Final
two-group configuration obtained for the same parameters except for a slightly different rewiring probability, r = 0.98.

Figure 11. (a) Snapshot of a dynamically active network in the active phase. (b) Final consensus configuration obtained after the
survival time. Parameters values in the active phase p = 0.30, μ = 12, r = 1 and N = 30.

Figure 12. (a) Two-group configuration obtained in the absorbing for p = 0.90, μ = 12, r = 1 and N = 30. (b) Split
configuration obtained in the absorbing phase for p = 0.30, μ = 3, r = 1 and N = 30.

links of each group are attractive. An example is shown in figure 12(a). The split configurations are similar
to the two-group configurations except by the fact that some very small groups are attached to two large
groups by some repulsive links as shown in figure 12(b).

We first consider which configurations are obtained for the special case r = 1 for which we had
interesting predictions from the rate equation analysis. The solution of the RE for r = 1 in the active phase,
and also at the critical line, predicts that ρf = 0, which corresponds to either a consensus or a fragmented
configuration. Monte Carlo simulations indicate that the fragmented network solution is only found at the
critical line of the absorbing-state transition. An example of this configuration at the critical line is shown
in figure 10(a). Numerical evidence that the fragmented solution only exists at the transition line is given in
figure 13, where we plot, for different system sizes, the probability of occurrence of the fragmented structure
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Figure 13. Probability of finding a fragmented configuration (in color code) as a function of p and μ for r = 1 and different
system sizes: (a) N = 50, (b)N = 100, and (c)N = 300. The dashed red line indicates the critical line of the absorbing-state
transition as obtained from MC simulations for the corresponding system size. This probability vanishes for all values of p and μ
except at the critical line. Initial conditions x0 = 0.5, l0 = 0.5. Averages taken over 500 MC realizations.

Figure 14. The three top panels plot (in a color code) for r = 1 the probability of the system reaching asymptotically (a) a
consensus configuration, (b) a two-group configuration, or (c) a split configuration. The three bottom panels plot the equivalent
results for r = 0.9. In all cases, the dashed red line indicates the critical line of the active-to-absorbing-state transition as obtained
from MC simulations for r = 1. System size N = 100. Initial conditions x0 = 0.5, l0 = 0.5. Averages taken over 500 MC
realizations.

in the (p,μ) parameter plane. We show that this probability is only non-zero at the critical line and it
increases with system size. An example of how this network fragmentation solution disappears as we move
away from r = 1 is shown in figure 10(b). On the other hand, the consensus configuration is the one found
in the active phase. An example of this configuration is shown in figure 11(b), together with a snapshot of
the dynamically active network before it falls into the consensus absorbing state by a finite-size fluctuation.
Evidence that, for r = 1, the consensus solution is the only one found in the active phase, and that it also
exists at the critical line, is given in figure 14(a) that shows results of Monte Carlo simulations for the
probability of occurrence of the consensus configuration in the (p,μ) parameter plane. As we move slightly
away from r = 1, as we move away from r = 1, e.g. figure 14(d) for r = 0.9, the consensus configuration
disappears for values of (p,μ) in the active phase close to the critical line.

In the absorbing phase for r = 1, as well as in the absorbing and active phases when r < 1, two-group
and split configurations are found. The probability of occurrence of these solutions in the (p,μ) parameter
plane are shown for r = 1 and r = 0.9 in figure 14. We observe a transition between two-group and split
configurations, named finite-size topological transition for r = 0 in [27]. Our results indicate that this
transition does not exist in the active phase for r = 1. In the absorbing phase and for a given value of r the
transition occurs for a value of the network average degree μsplit which depends slightly on the value of p (it
is independent of p for r = 0 [27]). A more precise description of this transition is given in in figure 15
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Figure 15. Probability density function of the number of groups in the final network configuration for fixed p but different
values of μ as indicated. Panel (a) r = 1 and panel (b) r = 0.9. System size N = 100. Initial conditions x0 = 0.5, l0 = 0.5.
Averages taken over 500 MC realizations.

looking at the distribution of the number of groups for different parameter values. From this figure we
estimate that for a network with large probability of rewiring (r = 0.9–1), μsplit ∼ 9–10 which, as compared
with values for r = 0 [27], indicates that μsplit decreases as a consequence of network dynamics.

8. Summary and discussion

We have analyzed, by an analytical rate equation approach and by Monte Carlo simulations, a general
dynamical model of interacting agents in a network in which nodes can be in two different states (blue or
white) and links are either in an attractive or repulsive state. Unsatisfying pairs with repulsive links joining
nodes in the same state, or with attractive links joining nodes in different states evolve to satisfying pairs by
two different coevolving processes: (i) coupled dynamics of the state of the nodes and the state of the links;
(ii) network dynamics by random rewiring of an attractive link between two nodes in different states (pair
e) to connect to a node in the same state (pairs b or d). The rewiring parameter 0 � r � 1 is such that there
is no dynamics of the topology of the network for r = 0, while for r = 1 pair e only evolves by updating the
state of the nodes or by link rewiring, but there is no change of the state of the link from attractive to
repulsive. We find a phase transition, predicted by the RE, between an active phase with persistent dynamics
and an absorbing phase in which the system has reached an absorbing configuration as steady state. This
phase transition is already found for r = 0 [27]. We show here that this transition is robust against the
introduction of the network dynamics: the origin of the transition and the critical line do not significantly
depend on the rewiring parameter r. However, the network dynamics in the limiting case r = 1 produces
very significant physical changes at criticality and in the active phase. As predicted by the RE, we find
network fragmentation on the critical line, and only on this line, so that fragmentation is a manifestation of
criticality. In the active phase only links in the attractive state survive and the fluctuations of the density of
attractive links connecting nodes in the same state diverges as r → 1 indicating the singularity of the case
r = 1. Finite-size fluctuations in the active phase take the system, after a survival time, to a consensus frozen
configuration with all nodes in the same state and connected by attractive links, while for r �= 1 there are
other possible configurations with a finite-size topological transition between two-group and split
configurations. In addition, the survival time scales linearly with system size N, while in the absence of link
rewiring it scales exponentially with N.

We have found four possible final frozen configurations of the system: fragmented, consensus,
two-group and split. When our model is understood as an opinion formation model, these configurations,
except the consensus one, can be interpreted as a manifestation of social polarization. Our results give
support to the claim that negative interactions are a major cause of social polarization. Indeed, our solution
for r = 1 in the active phase is such that repulsive links do not survive and the consequence is that the final
state is that of consensus.
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Appendix A

A.1. Rate equations for the coupled evolution of node and link states and rewiring process
The dynamical behavior of the different densities of pairs as a function of time can be obtained as a set of
so-called rate equations whose derivation we now sketch. The basic ingredient is the evolution rules
sketched in figure 1 as considered on a network in which each node has exactly μ links at all times. This
assumption is a clear approximation because in the rewiring process the degrees of the nodes change over
time. With this provision in mind, the RE are written as

dρa

dt
= −ρa + (1 − p)(μ− 1)
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χ = ρa + ρb + ρe + ρf ,

φ = ρc + ρd + ρe + ρf . (8)

The only pairs chosen by the update rule are a, c and e. However, the update of one of these pairs will also
change the number of pairs b, d and f, as in the process of node update, the states of links connected to the
updated node will also changed. The nonlinear terms in the rate equation account for this mechanism. In
the following we explain the derivation of the RE considering the linear and nonlinear terms separately.

The linear terms are obtained by the variation of densities due to the direct update of the state of nodes
and links in a time step as

dρi

dt
= +

∑
j

dρi

dt
|i→j + [nonlinear terms], (9)

dρj

dt
= −

∑
i

dρi

dt
|i→j + [nonlinear terms], (10)

where dρi
dt |i→j is the direct effect of the update from pair i ∈ {a, c, e} to the j ∈ {b, d, f}.

As an example, we now we derive in detail the linear terms of the equation for ρe: in a given update step,
with probability ρe a pair e is randomly chosen and updated producing a density changes of Δρe = − 1

Nμ/2 .
According to the local adaptation rule in figure 1, with probability (1 − r)p, pair e turns into the pair f .
With probability 1−p

2 , the pair e becomes b and with probability 1−p
2 , it becomes d. In addition, according to

the rewiring update rule in figure 1, with probability rp
2 , the pair e becomes b and with probability rp

2 , it
becomes d. The time interval (measured in Monte Carlo steps) in any update step is given by Δt = 1

Nμ/2 .
Therefore, the variation of ρe due to the direct effect of update of the pair e is
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Figure 16. The pair f becomes c when a node update leading from pair e to pair d takes place.

Non-linear terms are an indirect effect of the node update. Blue nodes can be an end to any of the links
c, d, e and f while white nodes can be an end to any of the links a, b, e and f . Thus, node update will change
the state of the connected links to the updated node so that

dρv
dt

= [linear terms] +
∑

i,j

(
dρv
dt

∣∣∣∣
v→w

i→j

− dρw
dt
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)
,
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− dρv
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∣∣∣∣
v→w

i→j

)
, (12)

where dρv
dt |v→w

i→j and its negative value are the change in density of the pairs v ∈ {a, b, c, d, e, f} and

w ∈ {a, b, c, d, e, f}, respectively, due to the node update of the pair i to j. Note that some terms like dρe
dt |e→b

a→f

are zero.
As an example of a specific case of how to obtain the nonlinear terms, we derive the non linear term

−(1 − p)(μ− 1) 1
2

ρeρf

2χ in the equation for ρf. This term is the consequence of a node update from the pair
connection e to d. In a Monte Carlo step, with probability ρe a pair e is randomly picked and with
probability 1−p

2 a node update to became d takes place. Now, let us examine the change of the rate of ρf

under the update of e to d as presented in figure 16. The normalized number of whole pair connections
attached to the one side of a pair e is μ−1

Nμ/2 and from this portion, the fraction of the pair f that is attached

to the link e is
ρf

χ
μ−1

Nμ/2 . In addition, due to the asymmetry of pairs e and f , the update from any side of these
pairs would result in a different pair. For instance, if the white opinion in the pair f is flipped it converts to
c, while if the blue opinion is flipped, it turns to a. Thus, when we deal with pairs e and f , the contribution
of nonlinear terms appear with probability 1

2 . Thus, the global change in the density of pairs f due to the
node update from e to d is given by Δρf = − ρf

2χ
μ−1

Nμ/2 .
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A.2. Initial condition
In the numerical integration of equations (8) it is important to ensure that the initial conditions satisfy the
relations that hold at all time

ρa + ρb =
nμw

Nμ
= x

μw

μ

ρc + ρd =
(N − n)μb

Nμ
= (1 − x)

μb

μ

ρe + ρf =
Nμ− (N − n)μb − nμw

Nμ
= 1 − (1 − x)

μb

μ
− x

μw

μ
(14)

where μb and μw stand for the mean degree of the blue and white nodes, respectively. Here n is the number
of white nodes and x = n

N its fraction. Note that, μb and μw are functions of time but the total number of
links in the network, Nμ

2 , is a conserved quantity. In the numerical integration of the RE and the MC
simulation we choose regular random and Erdős–Rényi networks as initial configurations, respectively, with
equal number of neighbors for both types of nodes, μb = μw = μ. In both cases, requirements on initial
conditions are satisfied taking

ρa(0) = x2
0(1 − �0)

ρb(0) = x2
0�0

ρc(0) = (1 − x0)2(1 − �0)
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ρd(0) = (1 − x0)2�0

ρe(0) = 2x0(1 − x0)�0

ρf (0) = 2x0(1 − x0)(1 − �0) (15)

where �0 is the initial fraction of attractive links and x0 the initial fraction of white nodes.
Finally, in the numerical integration of the RE, we employed the predictor–corrector method.
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