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Abstract.  We study memory dependent binary-state dynamics, focusing on 
the noisy-voter model. This is a non-Markovian process if we consider the set 
of binary states of the population as the description variables, or Markovian 
if we incorporate ‘age’, related to the time spent holding the same state, as 
a part of the description. We show that, in some cases, the model can be 
reduced to an eective Markovian process, where the age distribution of the 
population rapidly equilibrates to a quasi-steady state, while the global state 
of the system is out of equilibrium. This eective Markovian process shares the 
same phenomenology of the non-linear noisy-voter model and we establish a 
clear parallelism between these two extensions of the noisy-voter model.
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1.  Introduction

Agent-based models can be understood as a theoretical tool to analyze the mechanisms 
that are relevant and give rise to the collective behavior of a system composed by many 
interacting units. Typical examples of real phenomena that can be explained using 
agent-based models include, for example: the spatial distribution of electoral results 
[1–3], the time evolution of the number of speakers of a given language [4, 5] and the 
evolution of prices in financial markets [6, 7].

The stochastic description of these models is usually followed by a Markovian 
assumption. This implies that the rate at which dierent events in the system take 
place depend only on the present state of the system, i.e. memoryless. One of the most 
important properties of Markovian processes is that they exhibit an exponential distri-
bution in the times for upcoming events and a Poissonian distribution in the number of 
events in a given time interval. Many real systems, however, show strong discrepancies 
with this Markovian assumption. Empirical evidence of this can be observed, for exam-
ple, when measuring inter-event time distributions of human activity, which happen to 
be heavy-tailed [8, 9], this is known in the literature as burstiness [10]. The relaxation 
of the Markovian assumption has been considered and explored, from both theoretical 
and numerical points of views, in several contexts and models [11–17]. Under certain 
circumstances and for specific models, a reduction of the non-Markovian to an eective 
Markovian process is possible [18, 19].

https://doi.org/10.1088/1742-5468/ab6847
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A well known technique to deal with non-Markovian processes is to extend the 
number of variables that describe the system to a level in which the system becomes 
Markovian [20, 21]. Take a binary-state, ‘spin’, model with N individuals as an exam-
ple with k = 1, ...,N being the label of the individuals and the set of states {sk}Nk=1 
with sk = ±1. If we incorporate to the set of states or spins the individual’s internal 
age [22], also called persistence time (the time spent in a particular state), {ik}Nk=1 with 
ik = 0, 1, 2, . . . (in arbitrary time units), we are including in our description a whole 
new variety of binary-state models. A Markovian model is defined by the rates, the 
probability per unit time, of individual k changing its spin β(sk → −sk), a rate which, 
in general, depends on the set of spins {sk}Nk=1 of the population. In a non-Markovian 
model, however, these rates depend additionally on the individual’s age βik(sk → −sk). 
This generalization obviously does not refer to all the possible non-Markovian models 
that can be defined, but to a significant part.

As a prototypical example of opinion dynamics, we will study the noisy-voter 
(Kirman) model [23–26]. This model considers noisy/idiosyncratic changes of state 
and a copying/herding mechanism as the fundamental forces that drive the dynam-
ics. Recent studies of the Markovian version of the model include: the eect of a net-
work structure [27, 28], external control of the system [29, 30], the role of zealots [31] 
and contrarians [32], more than two states [33, 34], and first-passage properties [35]. 
Dierent non-Markovian versions have been studied as well for the model without noise 
[36–39] and with noise [40] (see [41] for a recent review of the model, both Markovian 
and non-Markovian versions). As a prominent real feature that the non-Markovian 
version of the model can reproduce, while the Markovian version can not, we should 
highlight the power-law tails in the inter-event time distributions [37].

In this paper, we focus on the mathematical methods to deal with such non-Mar-
kovian systems. We show that, in some cases, we can define eective rates β(sk → −sk) 
that consider aging in an averaged way. This can be done when the age distribution 
of the population quickly reaches a quasi-steady state, where it only depends on the 
current set of spins {sk}Nk=1, and we can define thus an eective Markovian process 
with these rates. While the original rates βik(sk → −sk) of the noisy-voter model with 
aging are linear with respect to the spin variables {sk}Nk=1, the eective ones happen to 
be non-linear. We can expect then that some phenomenology of the noisy-voter model 
with aging could be equivalent to the one of the non-linear noisy-voter model. In fact, 
we find tristability and phase transitions, which are features of the non-linearity in the 
rates [42–44], also in the aging version of the model [40, 41].

The outline of the paper is as follows: in section  2 we define the ingredients of 
the noisy-voter model with and without aging and we review the main results in the 
existing literature. In section 3 we construct the general master equation of the noisy-
voter model with aging and, in section 4, the steady state solutions of its deterministic 
dynamics are determined. In section 5 we show that an adiabatic approximation of the 
stochastic dynamics is possible, exploring altogether its validity in the range of param
eter values of the noise. In section 6 it is argued how this adiabatic elimination cor-
responds to a Markovian reduction of the dynamics, and the equivalence between the 
aging and non-linear versions of the model is discussed. We end with the conclusions 
and some discussion in section 7. The technical details of the adiabatic elimination are 
explained in the appendix.

https://doi.org/10.1088/1742-5468/ab6847
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2. Model

The standard noisy-voter model considers a system formed by N individuals (or agents). 
They are located in the nodes of a single-connected network whose links define a neigh-
borhood relationship: two individuals are neighbors of each other if they are connected 
by a link. Each individual k = 1, . . . ,N holds a binary-state (spin) variable sk = ±1. 
The exact meaning of this binary-state variable depends on the interpretation of the 
model, e.g. the possible two languages A/B spoken by a bilingual person [4], the sus-
ceptible/infected state with respect to an illness, the selling/buying state of a stock 
market broker [24], the vote for republican/democrat in the USA election [1], etc, but 
its exact meaning does not concern us in this paper. The state variable can change over 
time by the following (stochastic) rules:

	 (i)	� A node k is selected at random amongst the N possibilities.

	 (ii)	� With probability a a new state sk = ±1 is chosen randomly.

	 (iii)	� Otherwise, hence with probability 1  −  a, the individual copies the state sk = sk′ 
of another individual k′ chosen at random between the set of neighbors of k.

Updates resulting of rule (ii) are called noisy updates, while those of rule (iii) reflect 
a herding or imitation mechanism. The parameter a is called the noise intensity. The 
(noiseless) voter model takes a  =  0. Every time an individual is chosen for updating, 
time t increases by one unit, while N updates constitute one Monte Carlo step (MCS).

The important question one wants to address is whether, by repeated iteration of 
the above rules, the system reaches a situation of dominance of one of the two possible 
states, s = ±1, or, on the contrary, each state is shared by approximately half of the 
total population. It turns out that the answer to this simple question is far from trivial.

In the case of the noiseless voter model, a  =  0, the full consensus states, those in 
which all individuals share the same state, are absorbing configurations as no further 
evolution is possible once one of those states is reached. In a finite system, due to the 
stochastic nature of the dynamics, the full consensus state is always reached by the 
noiseless voter model in a finite time. However, for eective spatial dimensions greater 
than two (this includes most common complex networks and the all-to-all connectiv-
ity considered later in this paper), the theoretical analysis, supported by numerical 
simulations, indicates that the system gets trapped in a dynamically active metastable 
state, in which the fraction of individuals holding the same state fluctuates around a 
constant value with fluctuations that decrease and tend to zero with increasing system 
size N. The system is able to escape this metastable state towards the full consensus 
state by means of a rare, large fluctuation whose likelihood decreases with N. The 
average time to escape the metastable state diverges with increasing N and in the ther-
modynamic limit, N → ∞, the full consensus states are never reached. The somehow 
counterintuitive result of the noiseless voter model is that by increasing the spatial 
dimension, i.e. by increasing the connectivity of the agents, the time to reach consensus 
increases significantly and, eventually, diverges in the thermodynamic limit, while one 
could naively have expected the opposite conclusion from the imitation mechanism, 
namely, that a poorly-connected set of individuals is less prone to achieve a situation of 

https://doi.org/10.1088/1742-5468/ab6847
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consensus while a well-connected society where everybody can interact with everybody 
else, would easily reach consensus.

For the noisy-voter model, a  >  0, the main dierence is that the full consensus states 
are no longer absorbing configurations. The system becomes ergodic and it is able to 
reach any configuration starting from any other, so restoring the symmetry between 
the two possible states s = ±1. If, using the Ising-like terminology, we define the mag-
netization m = 2x− 1 ∈ [−1, 1] where x is the fraction of agents holding the state  +1, 
the stationary probability distribution P (m) is symmetric around m  =  0 but its shape 
depends on the value of the noise term a and the number of agents N. If the coecient 
a is greater than a critical value, a  >  ac(N), the noise term dominates and P (m) has 
its maximum value at m  =  0, the coexistence state. For a  <  ac(N), the maxima of the 
distribution are at m = ±1 (the full consensus states) and the most probable situation 
is one of consensus, although the consensus state fluctuates with time between the two 
values s = ±1 restoring the symmetry of the two possible states. The exact expression 
for the critical value ac(N) depends on the details of the network, for instance for the 
all-to-all connectivity one finds ac(N)  =  2/(N  +  2), but it is a general feature of most 
networks that ac(N) → 0 in the thermodynamic limit N → ∞. Therefore, in this limit, 
any finite noise term a is always above the critical value ac  =  0, and the most likely 
outcome of the model is that of coexistence of states, instead of the consensus found in 
the noiseless version.

There have been several attempts to modify the model in order to make consensus 
possible or even the most likely outcome in the presence of noise. Some of them include 
a modification of the rule by which the probability of an agent to change its state by 
imitation depends on the absolute value, rather than on the fraction, of agents holding 
the opposite state [45], or by structuring the network of connectivities in a particular 
highly hierarchical star-like configuration [46]. These seem rather arbitrary for most 
possible applications of the model. In this paper we consider the inclusion of a non-
Markovian feature in the dynamics, namely the internal age or inertia of the agents, as 
an ingredient that allows (imperfect) consensus state to be the most probable outcome 
of the dynamics in some circumstances.

The inertia of individuals aecting its willingness to change state by imitation was 
introduced in [36] in the context of the noiseless voter model and it was later general-
ized in [40] under the presence of noise. The basic idea is to introduce a mechanism, 
inertia or aging, by which agents are less prone to copy a neighbor’s state the lon-
ger they have been holding their current state. The exact origin of the inertia again 
depends on the details of the interpretation of the model. In Physics, aging appears 
when the relaxation towards the stationary state displays slow dynamics and the time-
translational invariance is broken. In the context of the binary-state models, it can 
refer to the increase of the resistance to an illness with increasing age (so making it 
more dicult to change the state from healthy to infected) or to the accommodative-
ness to a situation making it more dicult to change state.

Within the specific setup of the voter model, we introduce the internal age 
ik = 0, 1, 2, . . . of individual k as a variable that stands for the number of update 
attempts elapsed since its last change of state. In the aging version of the noisy-voter 
model the above rules are modified such that the herding mechanism occurs only 
with an activation probability pik that depends on the internal age ik of the selected 

https://doi.org/10.1088/1742-5468/ab6847
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individual. The evolution rules of the model are those of the noisy-voter model spelled 
out before modifying the last step as follows:

(iii) Otherwise, hence with probability 1  −  a, the individual copies with probability 
pik the state sk = sk′ of another individual k′ chosen at random between the set of 
neighbors of k. If, either due to the noisy update or the herding mechanism, the selected 
individual k has changed state sk → −sk, then its internal age resets to zero ik → 0; 
otherwise it increases in one unit ik → ik + 1. Initially, all internal times are set to zero.

The standard noisy-voter model is recovered taking p i  =  1 (or more generally, p i  =  p , 
a constant setting the time scale of the process). Consistently with our definition of 
aging, p i should be a decreasing function of the age i. It turns out that for the noise-
less voter model, the dynamical properties (e.g. whether or not the consensus state is 
reached asymptotically) depend on the detailed functional form of p i, specifically on the 
way it tends to its limiting value p∞ and on whether p∞ is strictly zero or positive [39].

In the context of the noisy-voter model, a  >  0, considered in this paper it turns out 
that those details are not so important and we present here results for a rational form 
for p i, for which, due to its mathematical simplicity, one can perform most analyti-
cal calculations in full. Still, we have considered three qualitatively dierent scenarios 
depending on the specific functional form of p i:

	 1.	� Aging: In this case p i is a strictly decreasing function, thus pi+1 < pi. As discussed 
before, this implies a reluctance to change state the longer an individual has 
been holding its current state. For the sake of concreteness and mathematical 
simplicity, we will be using the particular form

pagingi =
b

i+ c
,� (1)

		 where c � b > 0 are constants. As mentioned before, the specific form in which 
the copying probability depends on the internal age is not really relevant for 
the noisy-voter model. Nevertheless, the particular rational dependence given 
by equation (1) has been shown to induce features observed in several real-word 
systems, such as power-law inter-event time distributions [37]. Note that this 
rational form is a particular case of the more general case considered in [39] with 
p 0  =  b/c and p∞ = 0.

	 2.	� Anti-aging: In this case p i is a strictly increasing function, pi+1 > pi. As an indi-
vidual spends more time in the same state, it is more likely to change state. A 
particular choice is

panti−aging
i =

i+ b

i+ c
,� (2)

		 where c � b > 0. This can be interpreted as individuals getting tired of their state 
and increasing the probability of copying another state the longer they have been 
holding theirs. We note the particular values p 0  =  b/c and p∞ = 1.

	 3.	� Delayed aging: In this case the aging mechanism only acts after a given internal 
age i0:

https://doi.org/10.1088/1742-5468/ab6847
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pdelayed aging
i =

{
1, for i < i0,

pagingi−i0
, for i � i0.

� (3)

		 This can be interpreted as a situation where young individuals behave very 
dierently than older ones. Young individuals get bored easily and they are not 
able to hold the same opinion a long period of time, until they exceed a certain 
age and become less open to changes.

As discussed in [40], the main result of the noisy-voter model in the presence of aging 
is that the system can sustain a consensus state up to a critical value of the noise, ac, 
which has a non-zero value in the thermodynamic limit. For a  <  ac, the majority of 
individuals share the same state and produce a non-null value of the magnetization m. 
In the thermodynamic limit, this partial consensus can occur in the state s  =  +1 or in 
s  =  −1 through a genuine symmetry-breaking second-order transition at a  =  ac. For 
a  >  ac the magnetization m fluctuates around zero with an amplitude that decreases 
with increasing N. Therefore, the absolute of the magnetization |m| behaves as an 
order-parameter and displays critical behavior at a  =  ac that can be classified in the 
same class of universality as the Ising model. As aging impedes imitation, we conclude 
that, maybe counterintuitively, the inclusion of some reluctance to change favors the 
appearance of consensus.

In the case of anti-aging, not surprisingly, the main result [47] is that the system 
does not reach consensus for any value of the noise intensity a and the magnetization 
m fluctuates around zero with an amplitude that decreases with increasing N. More 
interesting is the case of delayed aging in which we will show that the transition to 
consensus at ac can become first-order with the existence of a tricritical point.

In the next sections we review in detail this phenomenology for the all-to-all con-
nected network and we obtain explicit expressions that allows us to determine the criti-
cal value ac as a function of the parameters b, c, i0 of the model.

3. The master equation

Throughout the remainder of this paper we use the all-to-all (or fully connected) network 
in which all nodes are neighbors. The eect of a more complex network structure in the 
interactions between nodes is a further complication in the mathematical description 
[28] and it is left for future studies. In the all-to-all setup, all the information needed to 
implement the stochastic update rules is contained in the set S ≡ {n±

i }∞i=0 of the num-
bers of individuals with internal age i in states ±1, respectively [36]. The global variables 

for the total up and down spins are n =
∑∞

i=0 n
+
i  and N − n =

∑∞
i=0 n

−
i . Observe that 

not all variables of the state S are independent, since 
∑∞

i=0(n
+
i + n−

i ) = N . Hence, it is 

useful to consider an alternative representation of the system in terms of independent 

variables, for instance by using the variable n and obviating n±
0 , as Sn ≡

(
n, {n±

i }∞i=1

)
. 

In this representation n±
0  are given by n+

0 = n−
∑∞

i=1 n
+
i  and n−

0 = N − n−
∑∞

i=1 n
−
i .

https://doi.org/10.1088/1742-5468/ab6847
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The stochastic update rules of the model induce four independent processes that 
modify the values of the set S and whose respective probabilities can be computed as 
follows [39, 40]:

	 (1)	� Consider that at time t the chosen individual k is in state sk  =  +1, has age ik  =  i 
and it switches to sk  =  −1 such that its age is reset to ik  =  0. The occurrence 

of this process demands first choosing, with probability 
n+
i

N
, an individual with 

age i and state  +. Then this individual, with probability a can undergo a noisy 
update and choose the state ik  =  −1 with probability 1/2. Alternatively, with 
probability 1  −  a, the herding mechanism acts with a probability that results of 

multiplying the age-dependent probability, p i, by the probability N−n
N

 that the 
randomly selected neighbor is in the opposite state. Altogether, the probability 

is 
n+
i

N

[
a
2
+ (1− a) pi

N−n
N

]
≡ 1

N
Ω1,i. When the switching of state occurs, we have 

n+
i → n+

i − 1 and n−
0 → n−

0 + 1.

	 (2)	� This is similar to the previous case but now the chosen individual is initially in 

state sk  =  −1. The probability of switching is 
n−
i

N

[
a
2
+ (1− a) pi

n
N

]
≡ 1

N
Ω2,i. When 

the switching of state occurs, we have n−
i → n−

i − 1 and n+
0 → n+

0 + 1.

	 (3)	� Consider that at time t the chosen individual k has sk  =  +1 and age ik  =  i, but 
that now it keeps its current state sk  =  +1. This event happens with a prob-
ability equal to the probability of choosing an individual in state  +1 with age i, 
n+
i

N
, multiplied by the probability that it does not switch, which can arise either 

because the noisy update, of probability a, generated, with probability 1/2, the 
same state sk  =  +1 or, alternatively, with probability 1  −  a, either the copying 
mechanism was not activated, with probability 1  −  p i, or it was activated, prob-
ability p i, but the selected neighbor was also in the state  +1, with probability n

N
. 

Altogether, the probability is 
n+
i

N

[
a
2
+ (1− a)

(
1− pi + pi

n
N

)]
≡ 1

N
Ω3,i. In this case 

the variables change as n+
i → n+

i − 1 and n+
i+1 → n+

i+1 + 1.

	 (4)	� Finally, we consider a similar case to the previous one but the chosen individual sk  =  −1  

keeps its state. The switching probability is now n
−
i

N

[
a
2
+ (1− a)

(
1− pi + pi

N−n
N

)]
≡ 

1
N
Ω4,i. The changes in the state S are n−

i → n−
i − 1, n−

i+1 → n−
i+1 + 1.

The derivation has considered a discrete-time process in which time increases by 
dt = 1/N  after each trial. We can consider instead a continuous-time process whose 
rates are obtained by dividing the corresponding probabilities by the time step dt:

n+
i → n+

i − 1, n−
0 → n−

0 + 1 : Ω1,i(S) = n+
i βi(1− x),� (4)

n−
i → n−

i − 1, n+
0 → n+

0 + 1 : Ω2,i(S) = n−
i βi(x),� (5)

n+
i → n+

i − 1, n+
i+1 → n+

i+1 + 1 : Ω3,i(S) = n+
i αi(1− x),� (6)

https://doi.org/10.1088/1742-5468/ab6847
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n−
i → n−

i − 1, n−
i+1 → n−

i+1 + 1 : Ω4,i(S) = n−
i αi(x),� (7)

where x  =  n/N and we have defined the functions

αi(x) =
a

2
+ (1− a) (1− pix) , βi(x) = 1− αi(x) =

a

2
+ (1− a) pix.� (8)

In this context, βi(1− x) is the rate that an individual of age i in state  +1 changes 
state to  −1 and similar interpretations for βi(x), αi(x) and αi(1− x). This model is said 
to be linear because the functions αi and βi depend linearly on the fraction x  =  n/N or 
1− x = (N − n)/N of individuals in the opposite state.

By means of a standard probabilistic balance, and in the continuous time limit, we 
can construct the master equation [48, 49] for the probability P (S; t) of the state of the 
system being S = {n±

i }∞i=0 at time t (measured in MCS):

∂P (S; t)

∂t
=

∞∑
i=0

[(
E+

n+
i

E−
n−
0

− 1
)
[Ω1,iP ] +

(
E+

n−
i

E−
n+
0

− 1
)
[Ω2,iP ]

+
(
E+

n+
i

E−
n+
i+1

− 1
)
[Ω3,iP ] +

(
E+

n−
i

E−
n−
i+1

− 1
)
[Ω4,iP ]

]
,

�
(9)

where E±
n+
i

 are step operators defined as E±
n+
i

f(. . . ,n+
i , . . . ) = f(. . . ,n+

i ± 1, . . . ) and 

E±
n−
i

f(. . . ,n−
i , . . . ) = f(. . . ,n−

i ± 1, . . . ) for any function f  defined on the state S.
We also mention the master equation satisfied in the Sn representation, obtained 

taking into account explicitly the eect of the i  =  0 terms of equation (9) on the vari-

ables 
(
n, {n±

i }∞i=1

)
:

∂P (Sn; t)

∂t
=

∞∑
i=1

[(
E+

n+
i

E+
n − 1

)
[Ω1,iP ] +

(
E+

n−
i

E−
n − 1

)
[Ω2,iP ]

+
(
E+

n+
i

E−
n+
i+1

− 1
)
[Ω3,iP ] +

(
E+

n−
i

E−
n−
i+1

− 1
)
[Ω4,iP ]

]

+
(
E+

n − 1
)
[Ω1,0P ] +

(
E−

n − 1
)
[Ω2,0P ]

+
(
E−

n+
1

− 1
)
[Ω3,0P ] +

(
E−

n−
1

− 1
)
[Ω4,0P ]

�

(10)

where E±
n f(n,n

±
1 ,n

±
2 , . . . ) = f(n± 1,n±

1 ,n
±
2 , . . . ) for any function f  defined on the state 

Sn. Here, the rates Ω�,0 must be written in terms solely of the variables of Sn using the 
functional relation between n±

0  and {n,n±
i }∞i=1. In the next section we obtain the steady-

state average values of this stochastic process.

4. Mean-field analysis: steady states

From the master equation (10) we can obtain the evolution equations for the ensemble 
average of the fraction of nodes with a given state and age x±

i = 〈n±
i 〉/N , as well as 

for x = 〈n〉/N . We use the mean-field approximation which neglects correlations as 
〈n±

i n〉 � 〈n±
i 〉〈n〉 and we end up with a closed infinite system of equations:

https://doi.org/10.1088/1742-5468/ab6847
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dx+
i

dt
= −x+

i + x+
i−1αi−1(1− x), i � 1,� (11)

dx−
i

dt
= −x−

i + x−
i−1αi−1(x), i � 1,� (12)

dx

dt
=

∞∑
i=0

x−
i βi(x)−

∞∑
i=0

x+
i βi(1− x).� (13)

In these equations, variables x±
0 , whenever they appear, should be expressed in terms 

of the independent variables,

x+
0 = x−

∞∑
i=1

x+
i , x−

0 = 1− x−
∞∑
i=1

x−
i .� (14)

The explicit time evolution of these variables is

dx+
0

dt
= −x+

0 +
∞∑
i=0

x−
i βi(x),� (15)

dx−
0

dt
= −x−

0 +
∞∑
i=0

x+
i βi(1− x).� (16)

By equating all time derivatives to zero, we can identify the steady-state solutions 
for the mean-field description. From equations (11), (12) and (14) we find

x+
0,st =

xst

f(xst)
, x−

0,st =
1− xst

f(1− xst)
,� (17)

x+
i,st =

xst

f(xst)

i−1∏
k=0

αk(1− xst), x−
i,st =

1− xst

f(1− xst)

i−1∏
k=0

αk(xst), i � 1,� (18)

where3

f(x) ≡ 1 +
∞∑
i=1

i−1∏
j=0

αj(1− x).� (19)

An obvious diculty appears when the series equation (19) defining f(x) is not conv
ergent, but this is never the case for a  >  0 (the only one considered in this paper), since 

αj � 1− a/2 < 1 and it follows f(x) � 2
a
. We realize that possible diculties may arise 

for the case a  =  0, specially for pi→∞ → 0, when d’Alembert’s criterion does not ensure 
convergence as limi→∞ αi(x) = 1, see [39].

Using equations (13), (15) and (16) in the steady state, one obtains easily x+
0,st = x−

0,st, 
or

3 In [40] we used the notation f(a, x) to stress the dependence on a of this function.
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xst

f(xst)
=

1− xst

f(1− xst)
.� (20)

The solutions to this equation provide the possible steady-state values of xst = 〈n〉/N  
and those values of xst determine the other quantities, through equations (17) and (18). 
It is clear that xst = 1/2 is always a trivial solution that corresponds to a symmetric 
steady state, with the same mean number of nodes with a given age having opposite 

states x+
i,st = x−

i,st for i � 0. Other non-trivial solutions xst(a) might appear depending 
on the function f(x) and its dependence with the parameters of the system, e.g. the 
noise intensity a. Note that if xst(a) is a solution, then 1− xst(a) is a solution as well. 

In any case, the steady-state solutions describe situations where x±
i,st are decreasing 

functions of the age.
Let us now give explicit expressions for f(x) for the three possible cases introduced 

before.

	 1.	� Aging: General analytical expressions can be obtained for arbitrary b and c in 
terms of hypergeometric functions4 but we reproduce here the simple expressions 
for the particular case b = 1, c = 1:

f aging(x) = (2/a)1−κ(1−x) , κ ≡ 1− a

1− a/2
.� (21)

	 2.	� Anti-aging: Again, general analytical expressions can be obtained for arbitrary 
b and c in terms of hypergeometric functions, but we reproduce here the simple 
expression valid for the case b  =  0, c  =  1:

f anti−aging(x) = [1− g(x)]
−1

1−κ(1−x) ,� (22)

		 with g(x) = a
2
+ (1− a)x and κ as in equation (21).

	 3.	� Delayed aging: A detailed calculation leads to the general expression:

fdelayed aging(x) =
1− [g(1− x)]1+i0

1− g(1− x)
+ [g(1− x)]i0f aging(x).� (23)

It is now possible to find the solutions to equation (20) and obtain the steady states 
xst as a function of the parameters of the model. Except in the case of anti-aging for 
which the only solution is xst = 1/2, several solutions are possible and we need to estab-
lish their stability in order to derive the phase diagram. We postpone the discussion to 
section 6.1 where we write the stationary distribution function in terms of a potential 
function whose absolute minima determine the stable phases.

4 The expression is f aging(x) = 1 +
(
1− a

2

)
v(x)2F1

(
1, 1 + cv(x), 1 + c, 1− a

2

)
 with v(x) ≡ 1− 1−a

1−a/2
b
c
(1− x).
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5. Adiabatic elimination

In the previous section we have been able to find the steady state value of the average 
number of nodes n in the  +  state using as a starting point a description in terms of the 

infinite set of variables Sn =
(
n, {n±

i }∞i=1

)
. The necessity of such a complicated descrip-

tion arises, obviously, from the non-Markovian nature of the aging process. However, 
due to the mathematical diculties, it does not seem to be possible to derive from 
this detailed description other properties such as the time evolution of 〈n(t)〉 nor its 
fluctuations σ2

n(t) = 〈n(t)2〉 − 〈n(t)〉2.
It is indeed hypothetically possible, at the mean-field level, to obtain a closed evo

lution equation for the variable x(t) = 〈n(t)〉/N . However, this equation depends on 
the whole range of previous states of the variable x(s � t), as it is characteristic of 
non-Markovian processes. The equation can be obtained integrating first equations (11) 
and (12), which leads to integral expressions for x±

i�1(t) as a function of x±
0 (s � t) and 

x(s � t). Introducing this in equation (13) we obtain the time evolution of x(t) as func-
tion of x(s � t) and x±

0 (s � t). After eliminating, if possible, x±
0 (s � t) in this equa-

tion using the constraints equation  (14), we find an integro-dierential equation  for 
x(t). This can be done in detail for the noiseless a  =  0 case [39], but an extension to 
a  >  0 seems to be impeded again by mathematical diculties.

Our aim in this section is to derive an approximate closed description of the sto-
chastic process in terms of the global variable n. To this end we use an adiabatic 
approximation in which n(t) is considered to be a slow variable to which the other 
variables {n±

i (t)}∞i=1 are enslaved to. The problem of adiabatic elimination of fast vari-
ables in stochastic processes has been considered in a large class of problems [50–53]. 
We follow here closely the approach by Haken [54]. First we present the derivation of 
a closed master equation for the stochastic variable n and next we justify the use of the 
adiabatic elimination.

5.1. Derivation of a closed master equation for n

We split the probability as

P (Sn; t) = H({n±
i }∞i=1; t|n)G(n; t),� (24)

with H({n±
i }∞i=1; t|n) the conditional probability of the set {n±

i }∞i=1 to a value of n, and 
G(n; t) the probability function of the global variable n. Inserting this in the master 
equation (10) and summing over {n±

i }∞i=1 we find

∂G

∂t
=

(
E+

n − 1
)
[Ω̂1G] +

(
E−

n − 1
)
[Ω̂2G],� (25)

with rates

Ω̂� =
∞∑
j=1

∑

{n±
i }∞i=1

Ω�,j(Sn)H({n±
i }∞i=1, t|n), � = 1, 2.� (26)

The equation  for the conditional probability H({n±
i }∞i=1; t|n) can be obtained from 

equation  (10) using an adiabatic approximation that assumes that variables {n±
i }∞i=1 
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are enslaved to the evolution dictated by n(t). In practice [54], this means to consider 
that transitions between the {n±

i }∞i=1 variables occur for fixed n. This is tantamount to 
replacing E±

n  by the identity operator. The resulting equation for H is not written out 
in full, but we note that the equations for the time evolution of the conditioned mean 
values 〈n±

i |n〉 are identical to equations (11) and (12) fixing the value of x  =  n/N.
According to this analysis, the evolution of the system takes place in two stages. A 

first one where the probability H({n±
i }∞i=1, t|n) of a given set of values {n±

i } conditioned 
to a value of n rapidly evolves to its steady-state form, and a second stage where the 
probability of the set {n±

i } is slaved to a value of n. That is, after a short transient, 
the dynamics is completely given by the time evolution of the global variable n. Hence, 
at the last stage of the dynamics, we can consider the dynamics of n(t) with trans

itions n → n± 1 and respective rates Ω̂1,2 of equation (25) after replacing n±
i  by the 

stationary average value 〈n±
i |n〉st. Note that the rates equations (4) and (5) are linear 

with n±
i  conditioned to n and we only need the average value 〈n±

i |n〉 to compute the 

rates Ω̂1,2. As we mentioned before, the equations for the time evolution of 〈n±
i |n〉 are 

equations (11) and (12) with x  =  n/N regarded as a parameter. The stationary average 
values are then equivalent to equations (17) and (18) in its extensive version, this is:

〈n+
i |n〉st =

n

f(x)

i−1∏
k=0

αk(1− x), i � 1,� (27)

〈n−
i |n〉st =

N − n

f(1− x)

i−1∏
k=0

αk(x), i � 1,� (28)

with 〈n+
0 |n〉st = n/f(x) and 〈n−

0 |n〉st = (N − n)/f(1− x). Thus we can compute the 
rates as:

Ω̂1 =
∞∑
i=0

[
Ω1,i

]
n+
i =〈n+

i |n〉st
=

n

f(x)
,� (29)

Ω̂2 =
∞∑
i=0

[
Ω2,i

]
n−
i =〈n−

i |n〉st
=

N − n

f(1− x)
,� (30)

where we have used the property β0 +
∑∞

i=1 βi

∏i−1
k=0 αk = 1, as βi = 1− αi.

In section 6 we will analyze the predictions of the master equation (25) with the 
above rates. Now we elaborate on the validity of the adiabatic approximation.

5.2. Justification of the validity of the adiabatic elimination

In order to justify the adiabatic approximation, we perform in this section an analysis 
based on the dynamics of the mean field description equations (11)–(13). First of all, 
we identify a special solution of equations (11)–(13) where all time dependence of {x±

i } 
occurs through x(t). This solution, which is labelled with a subindex s, will be identified 
as slow and to be an attractor, or center manifold, of the dynamics. Introducing this 

proposed solution x±
i,s(t) = x±

i,s(x(t)) in equations (11)–(13) we find:

https://doi.org/10.1088/1742-5468/ab6847
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dx+
i,s

dx
=

−x+
i,s + x+

i−1,sαi−1(1− x)∑∞
i=0 x

−
i,sβi(x)−

∑∞
i=0 x

+
i,sβi(1− x)

, i � 1,� (31)

dx−
i,s

dx
=

−x−
i,s + x−

i−1,sαi−1(x)∑∞
i=0 x

−
i,sβi(x)−

∑∞
i=0 x

+
i,sβi,s(1− x)

, i � 1,� (32)

where x±
0,s should be written in terms of x±

i,s with i � 1 and x. As it becomes appar-
ent, equations  (31) and (32) are not easy to solve. They even represent a challenge 
from the numerical point of view, as the solution must satisfy the boundary conditions 

x+
i,s(x = 0) = x−

i,s(x = 1) = 0. Note also the additional property x+
i,s(x) = x−

i,s(1− x).
The evolution of x(t) within the attractor is then obtained by solving the equa-

tion resulting from using the solution of the latter system x±
i,s(x) in equation (13), this 

is:

dx

dt
=

∞∑
i=0

x−
i,s(x)βi(x)−

∞∑
i=0

x+
i,s(x)βi(1− x).� (33)

The exact trajectory x±
i,s(x) and its rigorous analysis is based on the centre manifold 

theory [51, 55, 56], which in this context of equations (31), (32) and (33) is too compli-
cated to carry out. In the appendix we calculate the first terms of the expansion of the 
attractor around a fixed point to illustrate the diculties found. A crude simplification 

is the bare adiabatic elimination which assumes that x±
i,s(x) are determined by setting 

the numerator of equations (31) and (32) to zero, this is:

0 � −x+
i,s + x+

i−1,sαi−1(1− x); 0 � −x−
i,s + x−

i−1,sαi−1(x); i � 1,� (34)

whose solution reproduces equations (17) and (18), namely

x+
i,s(x) =

x

f(x)

i−1∏
k=0

αk(1− x), x−
i,s(x) =

1− x

f(1− x)

i−1∏
k=0

αk(x), i � 0,� (35)

with f(x) given by equation  (19) and the convention 
∏−1

k=0 αk ≡ 1. Note that this 
approximate solution does satisfy the correct conditions x+

i,s(x = 0) = x−
i,s(x = 1) = 0, 

x+
i,s(x) = x−

i,s(1− x). Furthermore, it predicts x+
i,s(x = 1) = x−

i,s(x = 0) = a
2

(
1− a

2

)
i, i.e. 

a geometric distribution.
Replacing equations  (35) in (33), and using the property αk(x) + βk(x) = 1, we 

obtain:

dx

dt
= F (x) = C

[
1− x

f(1− x)
− x

f(x)

]
,� (36)

with C = 1. The derivation of this simple, explicit, form for the attractor is probably not 
completely satisfactory. Nevertheless, it is possible to improve this approximate equa-
tion by imposing that the first two coecients of the expansion of F (x) around the fixed 
point x̃ = 1/2, F (x) = ε1(x− x̃) + ε3(x− x̃)3, coincide with the first two coecients of 
the exact expansion of the attractor around the same point, as computed in the appen-
dix. It turns out that this can be achieved by including a constant C of order 1 in the 
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definition of F (x) in equation (36). The appendix provides an explicit expression for 
this multiplicative constant. For example, for the aging probability p i  =  1/(i  +  2) it is 
C = 0.316 . . .

We consider next the time evolution of the mean values close to the attractor. In 
order to show this evolution explicitly, we look for a solution of the set of independent 
equations  (11) and (12) where the variables x±

i  are split into their slow (within the 
attrator) and fast (out of the attractor) parts as

x±
i (t) = x±

i,s(t) + x±
i,f (t), i � 0.� (37)

In order to ensure that the exact relation between x and x±
i  holds, namely equa-

tion (14), we also impose
∞∑
i=0

x+
i,f (t) =

∞∑
i=0

x−
i,f (t) = 0.� (38)

Using the fact that x±
i,s are solutions to equations (11) and (12), we have

dx+
i,f

dt
= −x+

i,f + x+
i−1,fαi−1(1− x), i � 1,� (39)

dx−
i,f

dt
= −x−

i,f + x−
i−1,fαi−1(x), i � 1,� (40)

which form a closed set of (linear) equations, provided the conditions (38) are used and 
x is taken as a parameter.

The proposed splitting between slow and fast is justified as far as the characteristic 
time scale evolution to zero of the system of equations (39) and (40) is much smaller 
than the typical time evolution of x(t), say ts � 1 (in MCS) close to the fixed point. 
In order to estimate the characteristic time evolution of the fast parts tf , we analyze 
equation (39). A similar conclusion can be reached using equation (40). The solution to 
this equation is of the form

x+
i,f (t; x) = e−t

∞∑
k=0

ξ
(k)
i (x)

tk

k!
,� (41)

with ξ
(0)
i = x+

i,f (0). The rest of the coecients ξ
(k)
i (x) for k  >  0 can be obtained introduc-

ing the proposed solution equations (41) in equation (39) which leads to the recurrence 

relations ξ
(k+1)
i (x) = αi−1(1− x)ξ

(k)
i−1(x) for i � 2, ξ

(k+1)
1 (x) = −α0(1− x)

∑∞
i=1 ξ

(k)
i (x) 

and ξ
(k)
0 (x) = −

∑∞
i=1 ξ

(k)
i (x). In principle, it does not seem possible to find a closed 

solution of these recurrence relations for the coecients ξ
(k)
i , and consequently we are 

not able to obtain the full solution x+
i,f (t; x).

As the analysis of the convergence of x+
i (t) → x+

i,s(t), and the time scale of the 
fast part x+

i,f (t; x), is too detailed, we will use an auxiliary aggregated variable, 

the mean internal age of the nodes in state  +, i.e. τ+(t) =
∑∞

i=0 ix
+
i (t) and a simi-

lar definition for τ−(t). With the proposed variable splitting equation  (37) we have 

τ+(t) = τ+s (x(t)) + τ+f (t), with τ+s (x) =
∑∞

i=0 ix
+
i,s(x) and τ+f (t) =

∑∞
i=0 ix

+
i,f (t). We then 
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study the approach τ+(t) → τ+s (x(t)), instead of the full x+
i (t) → x+

i,s(t), and assume 

that it is a good indicator of the time dependence. τ+s (x) can be readily found from 

equation  (35), and the advantage is that a closed expression for τ+f (t) can be found 

using the following relations, that are obtained from the above recurrences for ξ
(k)
i :

∞∑
i=0

iξ
(k+1)
i =

∞∑
i=0

[
(i+ 1)αi − α0

]
ξ
(k)
i ,� (42)

(i+ 1)αi − α0 =
(
1− a

2

)
i− (1− a) (1− x)

(
pi(i+ 1)− p0

)
.� (43)

In the case that x = 1 or pi = p0/(i+ 1) the solution is very simple as 
∑∞

i=0 iξ
(k)
i =(

1− a
2

)
k
∑∞

i=0 iξ
(0)
i  and thus τ±f (t) = τ±f (0)e

−at/2. The time scale of the fast part is then 

directly related to the noise intensity tf   =  2/a, and we expect time scale separation as 
long as a is big enough, as discussed below.

In order to check these results, we compare in figures 1(a) and (b) the above pre-
dicted time evolution of x(t) and τ(t) ≡ τ+(t) + τ−(t) with the results of direct numer
ical simulations of the process given by equations (4)–(7) using the aging probability 
pi = (2 + i)−1 for dierent initial conditions x±

i (0). We also plot in figure  1(c) the 
approximate adiabatic attractor τs(x). One can clearly see in figures 1(b) and (c) the slow 
and fast contributions to the solution. When x(t) starts at the fixed point x(0) = 1/2 
there is only fast part, while when x(0) = 0 there is a fast transient and, as x(t) → 1/2 
approaches the fixed point, trajectories follow the theoretical slow part. Finally, we con-
clude that the adiabatic hypothesis is expected to be accurate in the range of parameter 
values a where tf � ts, where ts is the time scale of the slow variable x(t), which strongly 
depends on the type of aging probability p i. For example, as shown in [40], the case 
pi = (2 + i)−1 has a critical point ac = 0.075 56..., thus we will have time scale separation 
for noise intensities in a window around the critical value a ∼ ac, where ts → ∞. From 
the normal form of equation (36) dx/dt � ε′1(ac)(a− ac)(x− 1/2) + ε3(ac)(x− 1/2)3 we 
can identify the slow time scale around the stable fixed points of the dynamics as 
t−1
s ≡ ε′1(ac)(a− ac) for a  >  ac and t−1

s ≡ 2ε′1(ac)(ac − a) for a  <  ac. For the mentioned 
aging case it is ε′1(ac) � 0.372..., thus we have that ts > tf as long as 0.045 < a � 1.

Although the adiabatic elimination may not give us a perfect accurate dynamical 
evolution of the variables in the whole parameter region, it is a very good phenomeno-
logical approach. Among other properties, it reproduces correctly all critical exponents 
and finite-size scaling functions of the average value and fluctuations of the global vari-
able, as we will show in the next section.

6. Markovian reduction

In this section we analyze the predictions of the approximated, Markovian, descrip-
tion of the aging voter model based on the master equation (25) for the global vari-
able n with the eective rates given by equations (29) and (30). From a formal point 
of view, the master equation represents a one-step process [48] in which the variable 

https://doi.org/10.1088/1742-5468/ab6847


Reduction from non-Markovian to Markovian dynamics: the case of aging in the noisy-voter model

17https://doi.org/10.1088/1742-5468/ab6847

J. S
tat. M

ech. (2020) 024004

n can decrease n → n− 1 at a rate Ω̂1 or increase n → n+ 1 at a rate Ω̂2. Given the 

form of the eective rates, the process becomes then isomorphic to a voter model 
without aging in which a randomly selected individual can change its state −1 → +1 
with rate β(x) = 1/f(1− x), or change +1 → −1 with rate β(1− x) = 1/f(x), depend-
ing in each case on the fraction, x  =  n/N or 1− x = (N − n)/N, of individuals in the 
opposite state. Therefore, the noisy-voter model with linear rates and aging can be 
approximately replaced by a noisy-voter model without aging and with non-linear 
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Figure 1.  Time evolution of the global variable x(t) and mean internal time 
τ(t), as defined in the main text. Color lines are trajectories coming from 
direct numerical simulations of the process given by equations  (4)–(7) using 

a = ac � 0.075 56, pi = (2 + i)−1 and N  =  105, and the following initial conditions: 

(red) x+
i (0) = x−

i (0) =
1
2
δi,25; (green) x+

i (0) = x−
i (0) =

1
2
δi,0; (blue) the geometric 

distribution x−
i (0) =

a
2

(
1− a

2

)
i, x+

i (0) = 0; (purple) x−
i (0) = δi,0, x

+
i (0) = 0; (yellow) 

x−
i (0) = δi,30, x

+
i (0) = 0. The dashed black line of panel (a) corresponds to the 

solution x(t) of equation (36) with C = 0.316... and x(0) = 0. The dashed black lines 
of panel (b) follow the functional form τ(t) = τs(x = 1/2) + (τ(0)− τs(x = 1/2))e−at/2 
with the two initial conditions τ(0) = 0 (matching the red curve) and τ(0) = 25 
(matching the green curve). The black solid line of panel (c) corresponds to the 
approximate adiabatic attractor τs(x), where the dashed part of the curve indicates 
the zone where the discrepancies between the approximate and exact attractors is 
more significant.
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rates. The precise form of the individual rate for changing state β(x) = 1/f(1− x) 
depends on the activation probability p i. For the non-aging voter model with p i  =  1 it 
follows β(x) = a

2
+ (1− a)x, whereas the expression for β(x) in the aging, anti-aging 

and delayed aging cases follow readily from the expressions given, respectively, in 
equations  (21), (22) and (23). In figure 2 we plot the eective non-linear rates β(x) 
in these dierent situations. There is a clear qualitative dierence between the three 
cases: while βaging(x) is a convex function with positive second derivative, βanti−aging(x) 
is concave with negative second derivative and βdelayed aging(x) has an inflection point, 
such that is convex for small x and becomes concave for large x.

The voter model with non-linear rates has been extensively studied in the literature 
and it has appeared in several contexts, see [43] and references therein. Typical rates 
used are of the form β(x) = a+ hxσ with a non-linearity parameter σ, and h being an 
additional parameter. A possible interpretation, suitable when σ = q is an integer num-
ber is that an agent changes state by imitation if q of its neighbors selected at random 
hold the opposite state. This so-called q-voter model has been the subject of intense 
research [57]. In other applications, σ is considered as an adjustable parameter to fit 
some data and some evidence has been given in problems of language competition that 
σ > 1 [4], whereas values of σ < 1 corresponding to a probability of imitation above 
random or a situation of preference for change, have been considered in social impact 
theory [58]. Whatever the interpretation, for σ > 1 individuals are more reluctant to 
follow the opinion of the neighbors holding the opposite state, while the opposite is true 
for σ < 1. The case σ > 1 is somehow reminiscent of the interpretation given to aging 
as a factor that decreases the likelihood of switching state. The main conclusion of the 
non-linear voter model with σ > 1 is that partial consensus appears for noise values 
smaller than a critical value a < ac = 2−σ(σ − 1) through a second-order phase trans
ition. If the non-linearity is very strong, e.g. for σ > 5, the transition between consensus 
and coexistence becomes first-order with the appearance of a tricritical point. Due to 
the aforementioned mapping between the aging and non-linear models it is natural to 
ask if such a phenomenology also appears for the dierent aging versions. This is dis-
cussed in the next subsection.
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Figure 2.  Eective non-linear rate β(x) = 1/f(1− x) for the three dierent 
cases considered in equations  (21), (22) and (23), namely aging, anti-aging and 
delayed aging with i0  =  5. In all cases we have set the noise parameter to a  =  0.02. 
For comparison, we also include the non-aging linear noisy-voter model p i  =  1, 
β(x) = a/2 + (1− a)x.
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6.1. Phase diagram

The master equation (25) leads to a recurrence relation for the steady-state solution 
[48]

Gst(n) = Gst(0)
n−1∏
i=0

Ω̂2(i)

Ω̂1(i+ 1)
.

� (44)
Using the rates given by equations (29) and (30), it is easy to prove that in the ther-
modynamic limit N → ∞ the steady-state probability can be written in the large-devi-
ation form [59, 60] Gst(n) ∼ e−NV (n/N), where the potential function V (x) is given by

V (x) =

∫ x

dx log

[
xf(1− x)

(1− x) f(x)

]
.� (45)

Note that, as the extrema of V (x) coincide with the exact stationary states xst obtained 
from equation (20), the adiabatic approximation does not modify them or introduce 
new steady states. However, the advantage of considering this potential function is 
that, in the thermodynamic limit, the stable phases are associated to absolute minima 
of the potential V (x). Alternatively, the stable phases can be considered as fixed points 

of the dynamical equation dx
dt

= −dV (x)
dx

.
For the aforementioned cases of the activation probability, equations (21) and (22), 

we obtain the following potential functions:

V aging(x) = Φ1(x) + Φ1(1− x),� (46)

Φ1(x) = x

[
log(x)− κ

2
log

(
2

a

)
x

]
,

V anti−aging(x) = Φ2(x) + Φ2(1− x),

Φ2(x) = x log(x) + κ−1 (log [1− g(x)] log [g(x)] + Li2 [g(x)]) ,

� (47)

where Li2(z) is the polylogarithm function. For the delayed-aging case, we have not 
been able to obtain an analytically closed formula for V delayed aging(x) and we need to 
perform numerically the integral equation (45).

As, in all cases, the potential V (x) is symmetric around x  =  1/2, it seems conve-
nient to write it in terms of the magnetization m ≡ 2x− 1 ∈ [−1, 1] as a symmetric 
order parameter. The stability of the m  =  0 state is determined by the expansion of 
the potential

V (m) = V2m
2 + V4m

4 + . . . , Vk =
1

2kk!

dkV (x)

dxk

∣∣∣∣
x=1/2

.� (48)

Depending on the sign of the coecients, one can determine if the extremum is 
stable or unstable, if there is a critical point where stability changes, and the number 
of new extrema that appear at the transition. It is easy to show that the coecients 
can be determined as a function of f(x) as follows

Vn =
1

n!2n−1

(
2n−1(n− 2)! + dn

)
,� (49)
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where dn = (−1)n−1 dn−1 log f(x)
dxn−1

∣∣∣
x=1/2

. For the first two coecients we have V2 =
1
4
(2 + d2) 

and V4 =
1

192
(16 + d4). Moreover, for the particular case of aging given by equation (21), 

we find V2 =
1
2

[
1− 1−a

2−a
log

(
2
a

)]
, and dn>2  =  0. As the coecient V2 changes sign at 

a  =  ac, defined as 1−ac
2−ac

log
(

2
ac

)
= 1, or ac = 0.2081 . . ., we conclude5 that the extremum 

m  =  0 is stable if a  >  ac and unstable if a  <  ac. Since V4 = 1/12 > 0, two new stable 
solutions appear for a  <  ac at a pitchfork bifurcation. For the anti-aging case equa-

tion (22), it is V2 =
1
2
[1 + (log 2− 1)(1− a)(2− a)] > 0 for all values of a ∈ [0, 1], thus 

the symmetric solution m  =  0 is always stable [47]. In figure 3 we plot the phase dia-

gram for the aging case.
The delayed aging case is more complicated and we will not give explicit details 

of the analysis, as the resulting expressions are too long. What we obtain is that the 
coecient V2 also changes sign at a critical point ac for all values of i0, as in the aging 
case. The dierence is that the sign of the coecient V4 at the critical point ac depends 
on the value of i0. For i0 < ic0, we have V4 > 0 (supercritical pitchfork bifurcation), while 
for i0 > ic0, it is V4 < 0 (subcritical pitchfork bifurcation), see figure 4. The supercritical 
case is equivalent to the aging case, while for the subcritical one we have two critical 
points, the pitchfork one ac where V2 changes sign, and another one at > ac of a saddle 
node transition. This gives three zones: (i) for a  <  ac there are three fixed points, two 
stable and the symmetric unstable, (ii) for ac < a < at there are five fixed points, the 
previous symmetric point becomes stable and two additional unstable fixed points 
add to the case (i), (iii) for a  >  at the pairs of stable-unstable fixed points disappear in 
a saddle node transition, leaving only one fixed point, the symmetric which remains 
stable, see figure 4. This phenomenology is similar to the one observed in the non-linear 
voter model for σ > 5 [43].

Figure 3.  Stable steady states xst of the fraction of agents holding the  +1 state 
in the case of aging probabilities given by equation (1), coming from the absolute 
minima of the potential equation (45). The solid curve to the right corresponds 
to b  =  c  =  1, as indicated, where f aging(x) is given in equation (21), and the solid 

curve to the left to b = 1, c = 2 for which one can obtain f aging(x) = (2/a)
1−(1−a)x
1−a/2 −2

a+2(1−a)x
. 

The dashed black line corresponds to the unstable symmetric solution x  =  1/2. 

Note the continuous phase transition at a  =  ac.

5 In [40] we used b = 1, c = 2 and obtained a critical value ac = 0.075 56 . . .
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6.2. Fluctuations around fixed points

Given the form Gst(n) ∼ e−NV (n/N), the dependence with system size N of the moments 

of the magnetization 
〈
mk

〉
st
 near the critical point a  =  ac can be obtained [43] from the 

expansion of the coecients of V (m):

V2(a) � c(a− ac), V4(a) � c4,� (50)

as 
〈
mk

〉
st
= N−k/4φk

[
N1/2(a− ac)

]
 with a scaling function φk[s]:

φk[s] =

∫∞
−∞ zke−csz2−c4z4dz∫∞
−∞ e−csz2−c4z4dz

.� (51)

In figure 5 we compare the scaling behavior predicted by this theoretical analysis for 
the absolute magnetization 〈|m|〉, the Binder cumulant U4 = 1− 〈m4〉/(3〈m2〉2) and the 
variance σ2[m] = 〈m2〉 − 〈|m|〉2 with the results coming from a numerical simulation 
of the aging model at dierent system sizes, using an activation probability p i  =  1/
(2  +  i). It can be seen that in all cases the theoretical scaling curves match remarkably 
well those of the simulations, validating the Markovian reduction introduced in this 
paper. In the thermodynamic limit, these scaling laws lead to 〈|m|〉 ∼ (ac − a)1/2 and 

Figure 4.  Steady states of the global variable x for the voter model with delayed 
aging, with pi�i0 = 1 and pi>i0 = 1/(i− i0) as a function of a for dierent values of 
i0 indicated in the figure. The panel (c) shows ac (red) and at (green) as a function 
of i0.
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χ ≡ Nσ2[m] ∼ |ac − a|−1 for the susceptibility, which correspond to the mean-field criti-
cal exponents β = 1/2, γ = 1.

7. Conclusions

In this work we have studied a non-Markovian binary-state model, which is constructed 
by including memory eects (aging) in the noisy-voter model. By means of a theoretical 
analysis, we have proved that the non-Markovian model, whose individual rates are 
linear with respect to the density of neighbor agents holding the opposite state, can be 
approximately reduced to a non-linear noisy-voter model which is Markovian.

This Markovian reduction is always valid, as long as the noise is nonzero a �= 0, for 
finding the deterministic steady state values. For this reason, we were able to show 

Figure 5.  Magnetization 〈|m|〉, variance σ2[m] = 〈m2〉 − 〈|m|〉2, and Binder cumulant 
U4 = 1− 〈m4〉/(3〈m2〉2) as a function of noise a  −  ac, for the aging model with 
an activation probability p i  =  1/(2  +  i), for which one can obtain the coecients 
c  =  2.643 and c4  =  0.0852 of the potential equation (50). The results of numerical 
simulation are plotted as points with dierent colors, corresponding to dierent 
system sizes N, averaged over 106 Monte Carlo steps, while the corresponding 
theoretical scaling function obtained from equation (51) is the solid black line.
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that all the phenomenology found in the critical behavior of the non-linear noisy-voter 
model is also observed for the non-Markovian linear model, which includes continuous 
phase transitions, discontinuous transitions, tricritical behavior, etc.

With respect to the dynamics and fluctuations of the model we have also shown 
that, in most of the cases, the same Markovian reduction is possible. This happens 
when the evolution of the system towards the steady states is controlled by the global 
fraction of agents with a given opinion x (regardless the age). In the sense that, the 
evolution of the number of agents with given opinion and age (fast variables) rapidly 
slaves to the value of x (slow variable). This adiabatic elimination of the age variables 
is valid as long as there is time scale separation, which strongly depends on the type of 
aging and on the noise intensity a. The adiabatic elimination technique allowed us to 
determine the finite-size scaling functions of the fluctuations and the dynamics of the 
model, which are impossible to obtain in the full non-Markovian description.

In the absence of noise a  =  0, the general picture depicted above does not apply, in 
general. At an absorbing or consensus state of the voter model with aging, for instance, 
the number of individuals in a given state (regardless the age) does not change while 
the number of agents with the consensus opinion and with a given age changes con-
tinuously due to aging. Hence, the splitting in terms of fast and slow variables is not 
possible and, we have to resort to other analytical techniques, as studied in [39].
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Appendix. The determination of the exact attractor

In this appendix we obtain the exact dynamical attractor x±
i,s(x(t)) and we derive the 

time evolution of the global variable x(t), comparing altogether with an adiabatic elimi-
nation dx/dt ≈ 0.

For this purpose, we try a solution x±
i,s(x) of equations (31) and (32) in power series 

around a fixed point x̃ , dx
dt

∣∣
x=x̃

= 0:

x±
i,s(x) =

∞∑
n=0

g
±(n)
i (x− x̃)n,� (A.1)

where g
±(n)
i  are the coecients of the expansion. Note that, due to the symmetries of 

equations  (31) and (32), we have that x−
i,s(x) = x+

i,s(1− x), thus the coecients g
−(n)
i  

can be obtained from g
+(n)
i , and vice versa. As the solution has to fulfill the relations 

equation  (14), the coecients are restricted by 
∑∞

i=0 g
+(0)
i = x̃, 

∑∞
i=0 g

−(0)
i = 1− x̃ , 
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∑∞
i=0 g

+(1)
i = 1, 

∑∞
i=0 g

−(1)
i = −1 and 

∑∞
i=0 g

±(n)
i = 0 for n � 2. After introducing the 

expansion equation  (A.1) in equation  (33) we obtain an explicit equation for the  
global x:

dx

dt
=

∞∑
n=1

εn(x− x̃)n,� (A.2)

where εn depend on g
±(n)
i .

For the symmetric fixed point x̃ = 1/2, the coecients fulfill the symmetry relations 

εn = 0 and g
+(n)
i = −g

−(n)
i  for n odd, and g

+(n)
i = g

−(n)
i  for n even, obtained easily from 

the restriction x−
i,s(x) = x+

i,s(1− x). Introducing the expansion equations (A.1) and (A.2) 
in equation (31) and equating the dierent orders of O(x− x̃), we find the following 

recurrence relations for the coecients g
+(n)
i  of the first n = 0, 1, 2, 3:

0 = −g
(0)
i + g

(0)
i−1ai−1,� (A.3)

g
(1)
i ε1 = −g

(1)
i + g

(1)
i−1ai−1 − g

(0)
i−1a

′
i−1,� (A.4)

2g
(2)
i ε1 = −g

(2)
i + g

(2)
i−1ai−1 − g

(1)
i−1a

′
i−1,� (A.5)

g
(1)
i ε3 + 3g

(3)
i ε1 = −g

(3)
i + g

(3)
i−1ai−1 − g

(2)
i−1a

′
i−1,� (A.6)

where ai ≡ αi(1/2), a
′
i ≡ d

dx
αi(x)

∣∣
x=1/2

 and we have simplified notation by removing 

the superscript  +, such that g
(n)
i  stands for g

+(n)
i . The first recurrence relation equa-

tion (A.3) leads trivially to the stationary solution equations (17) and (18) at the sym-
metric fixed point x̃ = 1/2, this is:

g
(0)
i = g

(0)
0

i−1∏
k=0

ak, g
(0)
0 =

1

2f
,� (A.7)

with f = 1 +
∑∞

i=1

∏i−1
k=0 ak. The second recurrence relation equation (A.4) leads to:

g
(1)
i =

g
(1)
0

(1 + ε1)i

i−1∏
k=0

ak − g
(0)
0

i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

1

(1 + ε1)i−k
,� (A.8)

with

g
(1)
0 =

1 + g
(0)
0

∑∞
i=1

∏i−1
k=0 ak

∑i−1
k=0

a′k
ak

1
(1+ε1)i−k

1 +
∑∞

i=1
1

(1+ε1)i

∏i−1
k=0 ak

.� (A.9)

If we introduce the expansion equation (A.1) in equation (14) we get the relations 

between ε1,3 and the first four coecients g
(0,1,2,3)
i  for the symmetric fixed point x̃ = 1/2:

ε1 = 2
∞∑
i=0

[
g
(0)
i b′i − g

(1)
i bi

]
,� (A.10)
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ε3 = 2
∞∑
i=0

[
g
(2)
i b′i − g

(3)
i bi

]
,� (A.11)

with bi ≡ βi(1/2) and b′i ≡ d
dx
βi(x)

∣∣
x=1/2

. Equation  (A.10) is an implicit equation  for 

ε1 = L(a, ε1) as a function of the noise intensity a. In order to analyze the dependence 
ε1(a), we will assume that there is a critical point a  =  ac where the result of the equa-
tion is ε1 = 0, i.e. L(ac,0)  =  0. We can then expand L(a, ε1) around this point:

ε1 ≈
∂L

∂a
(a− ac) +

∂L

∂ε1
ε1,� (A.12)

where the derivatives are evaluated at a  =  ac and ε1 = 0. The solution close to a ≈ ac 

can be obtained as ε1 =
∂aL

1−∂ε1L
(a− ac).

In the bare adiabatic elimination equation (34), however, the coecients g
(n)
i  of the 

attractor are determined by imposing the r.h.s. of equations (A.3)–(A.6) equal to zero, 

which is accurate only when εn ≈ 0, i.e. very slow x(t) (exact for g
(1)
i , g

(2)
i  at ε1 = 0, 

a  =  ac). The equation for ε1 becomes explicit ε1 = L(a, 0) with the same function L of 

the exact attractor. Near a ≈ ac we have ε1 ≈ ∂L
∂a
(a− ac) and the adiabatic elimination 

neglects ∂L
∂ε1

≈ 0. The adiabatic elimination may not be perfectly accurate but we note 

that the two procedures, i.e. obtaining the exact and adiabatic attractors, give the 
same normal form of equation (A.2), this is:

dx

dt
� ε′1(ac)(a− ac)(x− x̃) + ε3(ac)(x− x̃)3 +O(x− x̃)5,� (A.13)

where we write the explicit dependence of the coecients εn(a) with respect to the noise 

a, and ε′1(ac) =
d
da
ε1
∣∣
a=ac

. The two methodologies give the same critical exponents, 

scaling functions, symmetries and phenomenology, although the numerical value of the 
coecients ε′1(ac) and ε3(ac) may not be correct for the adiabatic elimination method. 
It is also important to realize that, although the methodology presented here relies on 
an expansion around a critical point a ≈ ac, its validity extends over a wide range of 
parameter values. This is, the normal form equation  (A.13) describes accurately the 
time evolution of x(t) for almost all a ∈ (0, 1).

We will now compute the dierence between the exact and the approximate adia-
batic coecients of the normal form, i.e. ε′1(ac), ε3(ac). For this reason we redefine the 

expansion as g
(n)
i = s

(n)
i + d

(n)
i , where we split the coecients with the contribution of 

the adiabatic elimination s
(n)
i  and the correction d

(n)
i . The adiabatic coecients s

(n)
i  can 

be obtained solving the recurrence relations equations (A.3)–(A.6) with εn = 0, ∀n, i.e. 

dx/dt ≈ 0, while the corrections d
(n)
i  are just the dierence between the exact solution 

g
(n)
i  and the adiabatic approximation s

(n)
i . To determine ε′1(ac) we have to calculate the 

first term of g
(1)
i = s

(1)
i + d

(1)
i  of equations (A.8) and (A.9) for small ε1 at the critical 
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point a  =  ac (the contribution with ε1 = 0 corresponds the adiabatic approximation 

s
(1)
i ), this is:

d
(1)
i = d

(1)
0

i−1∏
k=0

αk +
ε1
2f

i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

(i− k),� (A.14)

d
(1)
0 = − ε1

2f 2

∞∑
i=1

i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

(i− k).� (A.15)

Introducing this d
(1)
i ∝ ε1 in equation (A.10) gives us the term ∂ε1L of equation (A.12):

∂L

∂ε1
=

1

f

∞∑
i=1

[
1

f
− bi

] i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

(i− k).� (A.16)

In order to calculate ε3(ac) at the critical point a  =  ac, we impose ε1(ac) = 0 in equa-

tions (A.4)–(A.6) and we realize that the coecients g
(1)
i = s

(1)
i , g

(2)
i = s

(2)
i  of the adiabatic 

elimination are exact (d(1)i = 0, d
(2)
i = 0). Thus, we only need to find g

(3)
i = s

(3)
i + d

(3)
i  

from the recurrence relation equation (A.6) and introduce it in equation (A.11). This 
leads to the solution:

d
(3)
i = d

(3)
0

i−1∏
k=0

ak +
ε3
2f

i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

(i− k),� (A.17)

d
(3)
0 = − ε3

2f 2

∞∑
i=1

i−1∏
k=0

ak

i−1∑
k=0

a′k
ak

(i− k),� (A.18)

which has the same form as equations (A.14) and (A.15) with d
(3)
i ∝ ε3. Consequently the 

exact equation for ε3 equation (A.11) deviates from the adiabatic approximation d
(3)
i = 0 

in an equivalent way as equation (A.12), i.e. ε3 = ε3(adiabatic) +
∂L
∂ε1

ε3 → ε3 =
ε3(adiabatic)

1−∂ε1L
.

Finally, we conclude that the normal form of the exact attractor equation (A.13) 
is the same as the one of the crude adiabatic elimination after multiplying the whole 
equation by the pre-factor C = (1− ∂ε1L)

−1, where the partial derivative ∂ε1L has to 
be evaluated using equation  (A.16) at the critical point x = 1/2, a = ac with ε1 = 0. 
For example in the case of figure 1, i.e. with aging pi = (2 + i)−1 and ac � 0.075 56, 
we obtain a pre-factor C = 0.316... In section 6, see figure 5, we test the accuracy of 
the finite-size scaling functions calculated with the coecients extracted using the 
crude adiabatic elimination, which leads to a remarkable good agreement compared to 
numerical simulation. This is because this pre-factor is not important for calculating 
the scaling functions, but it is indeed important for the dynamical evolution of the slow 
variable x(t), as shown in figure 1.
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