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a b s t r a c t

The influence of contrarians on the noisy voter model is studied at the mean-field level.
The noisy votermodel is a variant of the votermodel where agents can adopt two opinions,
optimistic or pessimistic, and can change them by means of an imitation (herding) and an
intrinsic (noise) mechanisms. An ensemble of noisy voters undergoes a finite-size phase
transition, upon increasing the relative importance of the noise to the herding, form a
bimodal phasewheremost of the agents share the sameopinion to a unimodal phasewhere
almost the same fraction of agent are in opposite states. By the inclusion of contrarians
we allow for some voters to adopt the opposite opinion of other agents (anti-herding).
We first consider the case of only contrarians and show that the only possible steady
state is the unimodal one. More generally, when voters and contrarians are present, we
show that the bimodal-unimodal transition of the noisy voter model prevails only if the
number of contrarians in the system is smaller than four, and their characteristic rates are
small enough. For the number of contrarians bigger or equal to four, the voters and the
contrarians can be seen only in the unimodal phase. Moreover, if the number of voters
and contrarians, as well as the noise and herding rates, are of the same order, then the
probability functions of the steady state are very well approximated by the Gaussian
distribution.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays it is quite common to model the dynamics of opinion as a complex system in terms of agent-based models. In
thosemodels ‘‘agents’’ or ‘‘units’’ canhold different opinions that evolve under dynamical rules that include stochastic effects.
In this framework, the global behaviour of the system can be directly linked to the microscopic mechanisms acting at the
level of one or a few agents. The voter model (VM) [1–4] and the majority rule model (MR) by Galam [5–8] are paradigmatic
examples of agent-based models where each agent can be in one of two possible opinion states and the dynamics is driven
by an imitation process. For the VM a randomly chosen agent blindly copies the state of a neighbour, again randomly chosen,
while in theMR a complete group of randomly chosen agents adopt the opinion of the local majority. For finite systems, both
models describe an evolution towards a consensus state where all agents share the same opinion [3,9].

In the real world, however, perfect consensus is an exception and coexistence of opinions is a more likely stable scenario.
Both the VM and the MR have been modified in different ways in order to account for this more realistic situation. Among
many possibilities, it has been shown that the inclusion of inflexible agents (also known as zealots) or that of contrarians
prevents the system from reaching a perfect consensus state, allowing coexistence to prevail. Zealots are agents that
never change their opinion, their influence depending both on their number and the detailed structure of the network of
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interactions [10–18]. Contrarians are agents that, contrarily to the imitation rules described above, tend to copy the opposite
opinion of a neighbour or to adopt the opinion held by theminority of the group. Their influence on theMRwas first studied
by Galam [19]. He showed that the system can reach two steady states, depending on the concentration of contrarians: if it
is small enough, an ordered phase is reached with a majority (but not all) of agents holding one of the two opinions; while
for the concentration above a critical value, a disordered phase is reached with the same fraction of agents with different
opinions (no majority). See Refs. [20–35], amongst others, where contrarians have also been considered in other contexts.

Contrarian behaviour has been also studied within the VM, in the mean-field approximation with all agents being
neighbours, in Refs. [36,37]. In the two-role model (TRM) of [36,37] the agents can choose, at each decision step, between
behaving as a ‘‘voter’’ and then copy the opinion of a neighbour, or behaving as a ‘‘contrarian’’ and adopt the opposite
opinion of a neighbour, with given probabilities 1 − p and p, respectively. Observe that the situation is different from the
original model by Galam [19] where agents have fixed roles and the label of ‘‘voter’’ or ‘‘contrarian’’ of a single agent remains
unchanged during the dynamical evolution. For a system of N agents, three phases can be observed: the bimodal phase if
p < 1/(N+1), the plain phase1 for p = 1/(N+1), and the unimodal phase for p > 1/(N+1). In the bimodal phase, the system
keeps most of the time close to the consensus states, where the number of agents holding one particular opinion is much
larger than the number holding the opposite one, but the dominant opinion can change with time. Hence, the probability
distribution P(n) of the number of agents n holding a particular opinion has maxima at n = 0 and n = N in the steady state.
In the unimodal phase the number of agents in each of the two possible states fluctuates around equal numbers and the
distribution P(n) presents a single maximum at n = N/2. In the plain phase, P(n) is uniform for all n ∈ [0,N].

The situation of the TRM resembles that of the Kirman or noisy voter model [38–41]. In that model there are two
mechanisms that make an agent change her binary state: the herding or copying mechanism, as in the VM, and the intrinsic
noise allowing agents to change states regardless of the state of the remaining agents. By increasing the relative importance
of the noise with respect to the herding, the system undergoes a finite-size phase transition from a bimodal to a unimodal
phase, similar to the one observed in the TRM with respect to the probability p.

In this work we study the effect of contrarian agents on the noisy voter model. As in Galam’s model, agents are modelled
with fixed roles that they keep at all times. The main objective is to unveil the effects of the different mechanisms on the
global behaviour of the system, specially on the different phases the systemmay exhibit, as well as to clarify the similarities
and differences between the noisy voter model and the two-role model.

Thepaper is organized as follows. In thenext sectionwe introduce themodel and explore some limits, particularly the case
of the TRM. Section 3 contains the main results of the system: exact and approximate theoretical expressions are compared
against numerical results for simple as well as general cases. Finally, Section 4 is devoted to the conclusions.

2. Model

The system ismade ofN = Nv+Nc agents,where the suffixes v and c stand for the voters and the contrarians, respectively.
Each agent can hold any of two possible opinion states. We do not have any particular interpretation in mind, and we will
denote the two states generically as ‘‘up’’ and ‘‘down’’. They could account for ‘‘optimistic’’ and ‘‘pessimistic’’ states; the
‘‘buy’’ and ‘‘sell’’ states of brokers in the stock market, or whatever other interpretation. We assume all agents inside each
subgroup to be equivalent, hence the state of the system is fully specify by the set {nv, nc} of the numbers of up voters nv and
up contrarians nc , with n ≡ nv + nc being the total number of up agents. Both voters and contrarians can change their state
randomly with certain rates, increasing and decreasing the number nv and nc . The dynamics implements a Markov chain
with the rates π±

v,c for the allowed transitions that differ for voter and contrarian agents.

1. Voter agents. A voter agent can change her state either randomly at a rate av or by a copying mechanism that occurs
at a rate proportional (with a proportionality constant hv) to the fraction of agents holding the opposite state to the
given agent. Hence, the number of voters in the up state, nv , can decrease or increase by one with the following rates:

• nv → nv + 1. It is needed that any of the Nv − nv voter agents in the down state switches to the up state, either
with rate av or with rate hv

n
N , as

n
N is the fraction of agents in the opposite (up) state. The total rate of this process

is

π+

v (nv, nc) =

(
av + hv

n
N

)
(Nv − nv), (1)

• nv → nv − 1. It is needed that any of the nv agents in the up state switches to the down state, either with rate av

or with rate hv
N−n
N , as N−n

N is the fraction of voters in the opposite (down) state. The total rate of this process is

π−

v (nv, nc) =

(
av + hv

N − n
N

)
nv, (2)

2. Contrarian agents. A contrarian agent still changes state at a constant rate ac but interacts with the rest of agents by
changing her state with a rate proportional (with a proportionality constant hc) to the fraction of agents that hold the
same state than the given agent. Hence, the number of contrarians in the up state, nc , can decrease or increase by one
with the following rates:

1 Please, note that in most of the literature the plain phase is considered as a boundary or a border case and not a phase in itself.
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• nc → nc + 1. It is needed that any of the Nc − nc contrarian agents in the down state switches to the up state,
either with rate ac or with rate hv

N−n
N , as N−

N is the fraction of agents in the same (down) state. The total rate of
this process is

π+

c (nv, nc) =

(
ac + hc

N − n
N

)
(Nc − nc), (3)

• nc → nc − 1. It is needed that any of the nc agents in the up state switches to the down state, either with rate ac
or with rate hc

n
N , as

n
N is the fraction of voters in the same (up) state. The total rate of this process is

π−

c (nv, nc) =

(
ac + hc

n
N

)
nc . (4)

Here av and ac are called the ‘‘noise’’ coefficients, while hv and hc are, respectively, the ‘‘herding’’ and the ‘‘anti-herding’’
coefficients. In terms of pairwise interactions, the herding mechanism in equivalent to an agent copying the state of another
agent selected randomly with rate hv from the whole population, while the anti-herding mechanism is equivalent to an
agent copying the opposite state of another agent again selected randomly with rate hv from the whole population. Observe
that the rates at Eqs. (1)–(4) are quadratic functions of nv and nc . However, π+

v,c + π−
v,c are linear functions, a property that

makes the system analytically solvable, see the discussion of Ref. [42] addressing the case of the VM.
It is useful to rewrite the contrarian rates as that of the voter, as follows:

π+

c (nv, nc) =

(
āc + h̄c

n
N

)
(Nc − nc), (5)

π−

c (nv, nc) =

(
āc + h̄c

N − n
N

)
nc, (6)

with

āc ≡ ac + hc (7)

and

h̄c ≡ −hc . (8)

That is, the contrarians can be seen as noisy voters with negative herding parameter

h̄c ≤ 0, (9)

but with a noisy coefficient greater of equal to −h̄c

āc ≥ −h̄c (10)

which insures the total rates to be non negative. As, similarly, a contrarian with negative herding acts as a voter, and in order
to avoid inconsistent notation (contrarians behaving as voters or vice versa), we consider, from now on, that all herding
parameters are non negative hc, hv ≥ 0. By construction, the noise coefficients cannot be negative either, av, ac ≥ 0.

Agents can also adopt the radical formof ‘‘zealots’’. They are agents that never change their state. Formally a zealot is either
a voter or a contrarian with ac,v = hv,c = 0, so the rate of changing state is always zero. A zealot’s opinion is determined
solely by her initial state.

2.1. The case of the two-role model

Suppose a systemofN equivalent agents that can adopt the role of a voterwith probability 1−p and the role of a contrarian
with probability p, as the TRM considered in Ref. [36]. The possibility of an intrinsic change of state is here disregarded. Then
the rates for the allowed transitions, using the structure of the rates (1)–(4), read

π+(n) = h
[
(1 − p)

n
N

+ p
N − n
N

]
(N − n), (11)

π−(n) = h
[
(1 − p)

N − n
N

+ p
n
N

]
n, (12)

where h is a constant. Notice a slight difference of our rates if compared to that of Ref. [36]: in our approach, when an agent
adopts the role of a contrarian, her state changes taking into account also her own state. The difference disappears forN ≫ 1.

After a rearrangement, the rates (11) and (12) can be written as

π+(n) =

[
hp + h(1 − 2p)

n
N

]
(N − n), (13)
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π−(n) =

[
hp + h(1 − 2p)

N − n
N

]
n, (14)

which are a particular case of (1)–(2) if p < 1/2, and of (5)–(6) for p > 1/2.
For all said, the TRM studied in [36,37] is a particular case (for N ≫ 1) of the general model considered here. On the one

hand, if the probability p, for an agent of the TRM to be a contrarian, is smaller than 1/2 then the model is equivalent to an
ensemble of noisy voters with noise hp and herding h(1 − 2p). On the other hand, if p > 1/2 then the equivalence is with
an ensemble of noisy contrarians with noise hp and herding h(2p − 1). Finally, for p = 1/2 we have a random walk with
transition rate h/2.

Once we have established the relationship between the two-role model of Ref. [36] and our general model of voters
and contrarians, we analyse the latter in detail and determine the possible phases and transitions that it can present. Our
intention is to identify whether consensus or coexistence of opinions prevails as a function of the system parameters and
relative numbers of voters and contrarians. We will also study the role of zealots in the final outcome of the dynamics.

3. Theory

At the mesoscopic level, the fundamental quantity is the probability P(nv, nc, t) of finding the system in state {nv, nc} at
time t . It satisfies the following master equation [43,44]

∂

∂t
P(nv, nc, t) =

∑
k∈{v,c}

∑
s∈{+,−}

(Es
k − 1)π−s

k (nv, nc)P(nv, nc, t), (15)

where E±
v and E±

c are the step operators defined such that E±
v f (nv, nc) = f (nv ± 1, nc) and E±

c f (nv, nc) = f (nv, nc ± 1) for
any function f (nv, nc). Equations for the moments

Mij ≡
⟨
ni

vn
j
c

⟩
=

∑
nv

∑
nc

ni
vn

j
cP(nv, nc, t), i, j ∈ N, (16)

where ⟨·⟩ denotes an average over the probability function, can be easily inferred form Eq. (15) by multiplying it by ni
vn

j
c and

summing over all possible values of nv and nc . After some algebra, we arrive at

dMij

dt
=

∑
k∈{v,c}

∑
s∈{+,−}

⟨
π s
k(E

s
k − 1)ni

vn
j
c

⟩
. (17)

To obtain this equation, the following property has been used⟨
f (nv, nc)(Es

k − 1)g(nv, nc)
⟩
=
⟨
g(nv, nc)(E−s

k − 1)f (nv, nc)
⟩
, (18)

valid for any pair of functions f and g
It turns out that the hierarchy of Eqs. (17) can be closed at any order (value of i + j) because

∑
s∈{+,−}

⟨
π s
k(E

s
k − 1)ni

vn
j
c

⟩
involves only moments of degree i + j or less, a direct consequence of the form of the rates. Namely, (Es

k − 1)ni
vn

j
c is either

zero or a polynomial of degree i+ j− 1 whose leading coefficient has different signs for different values of s. Hence the sum
on the r.h.s. of Eq. (17) is either zero or it involves the combination of π+

k − π−

k times a polynomial of degree i+ j− 1. Since
π+

k − π−

k is of degree one for the rates (1)–(4), we obtain the desired result.
We consider next the steady-state solutions of Eqs. (17). But first, it is more natural to take the partial and global

magnetizations, defined as

xv =
2nv

Nv

− 1; xc =
2nc

Nc
− 1; x =

2n
N

− 1 = xc + xv. (19)

The new quantities take values in [−1, 1], and are correlated in general. It is not difficult to see that the steady-state values
of the moments of degree one are

⟨nv⟩ =
Nv

2
⇔ ⟨xv⟩ = 0, (20)

⟨nc⟩ =
Nc

2
⇔ ⟨xc⟩ = 0, (21)

in agreement with the symmetry of the problem. In a similar way, we can obtain the secondmoments. However, the explicit
expressions are very long, and are given in Appendix A.

The knowledge of the second moments can be used to infer the phase of the system, through the following result:
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Fig. 1. Second moments (left) and probability functions (right) for the magnetization of a system of Nv = 200 voters and no contrarians Nc = 0. Left: the
line is from Eq. (22) and symbols are from the numerical simulations. Right: numerical results for av/hv = 1/(5Nv) (convex bimodal function), 1/Nv (plain
function), and 20/Nv (concave unimodal function) showing the three possible phases.

Lemma. Let the probability function P(x) : D → R+ be an even function, monotonic in D+, with D = {xi ≡ −1 + 2i/N, i =

0, . . . ,N} and D+
= {x ∈ D|x > 0}. Then P(x) is non-decreasing (resp. non-increasing) in D+ if and only if

⟨
x2
⟩
≥ (resp. ≤)N+2

3N .
The equality holds when P(x) is constant.

The proof of the lemma is given in Appendix B.
By symmetry considerations, P(xv), P(xc), and P(x) are even functions. In addition, if we can prove that they aremonotonic

functions when their arguments are positive, then it follows that there are three possible phases for the subsystem of voters
and contrarians: the bimodal phase (with x = 0 being the less probable value), the unimodal phase (with x = 0 being the
most probable value), and the plain phase as the border case. Next, we consider some cases separately.

3.1. The noisy voter model

When Nc = 0, we recover the noisy voter model. For this case, it was proven [15] that the probability function P(x) for
x > 0 is monotonic, and we can use the previous lemma. The second moment is⟨

x2v
⟩
=

2av + hv

2Nav + hv

, (22)

so for av/hv < 1/N , i.e.
⟨
x2v
⟩
> N+2

3N , the system is in the bimodal phase; for av/hv > 1/N , i.e.
⟨
x2v
⟩
< N+2

3N , the system is in
the unimodal phase; and for av/hv = 1/N , i.e.

⟨
x2v
⟩
=

N+2
3N , the system is in the plain phase, as shown in Fig. 1, see [15] for

further details.
A simplemodification of this case allows us to consider the influence of zealots in a systemof voters. Formally, we identify

zealots as a set of Nc > 0 contrarian agents with zero rates, ac = hc = 0. The state of the zealot is determined by the initial
condition and it remains unchanged during the evolution of the system. The distribution of the states of the voters then
depends strongly on the number and states of the zealots. If the number of zealots of opposite states are the same, the so
called balanced case, the bimodal and plain phases in the distribution of voters P(nv) always disappear. If the number of
opposite zealots are different (unbalanced case) the system loses its optimistic–pessimistic symmetry and two new phases
appear (see [15] for details): an extreme asymmetric (EA) phase (where the maximum of the probability distribution occurs
at the consensus value favoured by the zealots) and an asymmetric unimodal (AU) phase where the maximum, being still
tilted towards the zealot-favoured opinion, is located far from the extreme consensus state.

3.2. Only contrarians

We now consider the case of only contrarians, i.e. Nv = 0. The master equation for P(n) with n = nc can be easily written
down, and from it we deduce the following useful relation for the steady-state probability functions, see appendix C of [15],

P(n) =
π+
c (n − 1)
π−
c (n)

P(n − 1), n = 1, . . . ,N. (23)

Using the rates (3) and (4) we have

π+
c (n − 1)
π−
c (n)

=

(
ac + hc

N−n+1
N

)
(N − n + 1)(

ac + hc
n
N

)
n

(24)
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Fig. 2. Second moments (left) and probability functions (right) for a system of Nc = 200 contrarians and no voters Nv = 0. Left: the line is from Eq. (25)
and symbols are from the numerical simulations. Right: numerical results for av/hv = 10−3 (squares), 10−1 (circles), and 102 (triangles). The data has been

scaled with their variance σ ≡

√⟨
x2c
⟩
, and the line is a Gaussian distribution with unit variance.

which is smaller than 1 for n > N/2 and greater than 1 for n < N/2. Namely, the steady-state probability function verifies
the hypothesis of the lemma. Moreover, n = N/2 is always a global maximum, and the only possible phase is the unimodal
one. The same conclusion can be reached by using the lemma: the exact expression for the second moment is⟨

x2c
⟩
=

2ac + hc

2Nac + (2N − 1)hc
. (25)

Using ac ≥ 0, N > 1, it follows immediately that
⟨
x2c
⟩

< (N + 2)/(3N), meaning (according to the lemma) that the only
possible phase is the unimodal one.

The expression in Eq. (25) is an increasing function of the noise coefficient ac , see Fig. 2, meaning that the anti-herding
(contrarian)mechanism ismore efficient than the noise to lead the system deep inside the unimodal phase, since the smaller
the value of ac/hc the smaller the value of

⟨
x2c
⟩
. The opposite behaviour is observed for the noisy voter model, i.e. Eq. (22) is

a decreasing function of av/hv . For ac ≫ hc we get
⟨
x2c
⟩
≃ 1/N , the anti-herding mechanism does not act, and the behaviour

of the system is the same as the noisy voter model for av = ac ≫ hv/Nv , as expected.
It is also possible to study the effect that zealots have in a system of contrarians. Similarly to the previous subsection we

just need to consider a set of Nv > 0 voters with av = hv = 0, that will act as zealots. In the balanced case of an even number
Nv of zealots, with the same number of zealots having opposite states, i.e. nv = Nv/2, we can consider the effect that zealots
have on the contrarian rates, rewriting Eqs. (3), (4) as:

π+

c (nv, nc) =

(
ac + hc

N − n
N

)
(Nc − nc) =

(
ãc + h̃c

Nc − nc

Nc

)
(Nc − nc), (26)

π−

c (nv, nc) =

(
ac + hc

n
N

)
nc =

(
ãc + h̃c

nc

Nc

)
nc, (27)

with effective noise and herding coefficients,

ãc = ac + hc
Nv

2N,
(28)

h̃c =
Nchc

N
, (29)

meaning that the roles of zealots on a set of contrarian agents is to increase the effective noise and to decrease the anti-
herding constant. As a consequence, the system keeps always in the unimodal phase.

3.3. Noisy voters under the influence of extreme contrarians

We consider in this subsection a more general case with a mixture of voters and contrarians. Moreover, since we have
already seen that the noise mechanism diminishes the contrarian effect, from now on we set ac = 0, so that the effect of the
contrarians will be tuned only through changing hc and Nc . This way, the relevant free parameters become av/hv , hc/hv , Nv ,
and Nc . A contrarian with ac = 0 never changes spontaneously her state and will be termed as an ‘‘extreme’’ contrarian.

Take the subsystem of voters. From the exact expression of
⟨
x2v
⟩
, see Appendix A, we can compute the values of the

parameters where the different phases appear, as previously discussed. By imposing
⟨
x2v
⟩
=

Nv + 2
3Nv

we obtain the critical

values of av = av(hc/hv,Nv,Nc) as the (positive) solution of the quadratic equation

Aa2v + Bav + C = 0, (30)
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Fig. 3. Left: A phase diagram with two regions: below the critical line the voters can be in the three phases, depending on the value of av , while above the
critical line only the unimodal phase is possible. The exact position of the critical line depends on the value of Nv , however this dependence is through the
prefactor N/(N +Nc −1) ≃ 1 for N ≫ 1. Centre and right: Numerical results (symbols) and theory (lines) for the secondmoment of the magnetization of a
system of voters under the influence of extreme contrarians as a function of the noise to herding ratio av/hv , and for hc/hv/(hc/hv)0 = 10−1 (black square),
1 (red circles), and 10 (blue triangle), with (hc/hv)c given by Eq. (34). Centre: Nv = 197 and Nc = 3. Right: Nv = 196 and Nc = 4. The dashed horizontal
line is the value

⟨
x2v
⟩
= (Nv + 2)/(3Nv) for which the bimodal-unimodal transition occurs.

where

A = 2(Nv + Nc)(2Nc + Nv − 1) > 0, (31)
B = N2

v hc/hv + 2(2Nc − 1)[(hc/hv + 1)Nc − 1] + [(4hc/hv + 3)Nc − 3 − hc/hv]Nv, (32)

C = 1 + hc/hv(Nc − 1)(Nv + 2Nc − 1) + (Nc − 4)Nc . (33)

As A, B > 0, a positive solution to Eq. (30) requires C < 0. If C > 0 all solutions will be negative and, effectively, there are no
transitions between different phases, being the unimodal the only possible phase. The limiting case happens when C = 0,
or

hc

hv

=
(4 − Nc)Nc − 1

(Nc − 1)(Nv + 2Nc − 1)
. (34)

As hc, hv ≥ 0, this condition can only be fulfilled if (4−Nc)Nc ≥ 1, or Nc = 1, 2, 3. In summary, for Nc ≥ 4 the only possible
outcome is the unimodal distribution of up voters. On the other hand, for Nc = 0, 1, 2, 3 it is possible to switch from the
unimodal to the bimodal phase, passing through the plain phase, by varying the parameters av, hv, hc . The phase diagram is
sketched in Fig. 3.

Let us consider that Nc ≤ 3, so the voters can be in the bimodal phase. If we now take the limit of hc/hv → 0, one could
naively expect that the contrarians behave like zealots. But this is not the case, as can be seen fromEq. (34). Take, for instance,
two contrarians Nc = 2 that initially have opposite opinions. For hc/hv = 0, i.e. the contrarians being zealots, voters are
always in the unimodal phase, as already said in Section 3.1. However, for 0 < hc/hv < 3/(Nv + 3) the voters are in the
bimodal phase, even if hc/hv ≪ 1. The singularity of the limit hc/hv → 0 has to do with the time needed for the system to
reach the steady state. While for hc/hv = 0 the relaxing time is of order of (av + hv)−1, for hc/hv ≪ av/hv it is or order of
h−1
c .
Another important observation concerns the region of existence of the bimodal phase that disappears for Nv,Nc → ∞

(finite-size character of the transitions). For the case of the noisy voter model, both with and without the influence of
contrarians (and zealots), the bimodal phase disappears with a small amount of noise av ∼ hv/N , a small number of
contrarians Nc/Nv ∼ 4/Nv , and/or a small value of the anti-herding parameter hc ∼ hv/Nv . For Nc ∼ Nv both subgroups of
agents are typically very deep in the unimodal phase.

The phase diagram of Fig. 3, particularly the disappearance of the bimodal phase for Nc ≥ 4, can be qualitatively
understood by considering the extreme case of av = ac = 0. First, take a situation with two contrarians (Nc = 2) and
hc ≫ hv . Under this conditions, the contrarians aremost of the time in the state that opposes themajority of voters, inducing
a bias towards the coexistence of opinions among voters. The two contrarians make the system stay close to the coexistence
of opinions and hence to be in the unimodal phase. The unimodal phase also prevails if the number of contrarians increases.
Second, take the opposite limit hc ≪ hv with Nc = 2, and consider that initially the two contrarians and the voters are
in the same state. A typical trajectory starting from the previous configuration has three consecutive parts: (a) the system
keeps in the coexistence state a time of the order 1/hc until one contrarian changes her opinion, then (b) the two contrarians
behave as zealots in opposite states imposing a fast (a time of order 1/hv ≪ 1/hc) relaxation of the system toward the
plain phase, according to [15], until one contrarian changes her opinion again, making (c) the system return to the state
of coexistence of opinions and to the initial configuration. Overall, the system will keep in the bimodal phase. In between
the two limiting cases, the system encounters the plain phase. Finally, let us consider the case of Nc = 4 contrarians, with
hc ≫ hv , and initially all in the same state. Again, a typical trajectory has different parts: a first one similar to (a) followed by
(b′) a fast relaxation where the voters evolve as being influenced by four zealots, three of them holding the same state (the
distribution for the magnetizations of the new transient state accumulates around a value close but different from zero, the
so-called asymmetric unimodal phase in [15]), then a contrarian changes her state either (c1) the rebel contrarian rectifies
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and we go back to the starting point or (c2) another contrarian changes opinion and we have two pairs of contrarians with
different opinions. Situation (c2) is the most probable one and makes the system stay deep inside the unimodal phase, as
shown in [15], and is followed by (b′). On average, the system keeps in the unimodal phase. Therefore, four agents are enough
to prevent the system from being in the bimodal phase.

More briefly, the strong influence of only four contrarians on the system can be understood as the joint effect of two
important aspects: the contrarians introduce an effective noise, of the order of hv/N , to the voters when they change opinion
(in a similar way than two opposite zealots), and just such a small amount of noisy is enough to allow the voters to be the
unimodal phase.

3.4. The unimodal phases

We have already seen that the most common phase for both the voters and the contrarians is the unimodal phase. This is
very apparent if the constants are the same for both kinds of agents, and/or Nc ∼ Nv ≫ 1. Moreover, if both kinds of agents
are deep inside the unimodal phase, e.g. if the noise is big enough, then we expect the two communities to decouple, in the
sense specified below.

First, we derive an equation for the marginal probability functions P(nv) and P(nc) from the master equation (15). By
summing Eq. (15) over all possible values of nc , we get the following equation

∂

∂t
P(nv, t) =

∑
s∈{+,−}

(Es
v − 1)

Nc∑
nc=0

π−s
v (nv, nc)P(nv, nc, t) (35)

and a similar one for P(nc, t). Now we introduce the fundamental assumptions∑
nc

π−s
v (nv, nc)P(nv, nc, t) ≃ π−s

v (nv, ⟨nc⟩)P(nv, t) (36)

and the analogous one for the contrarians. Since we are replacing nc by ⟨nc⟩ in Eq. (36), and nv by ⟨nv⟩ in the equation for the
contrarians, an error of the order of the fluctuation of the latter quantities is expected. Hence, the smaller the fluctuations
of nv and nc , the better the approximations. Since for Nv ∼ Nc ≫ 1 and av ∼ hv the system is deep inside the unimodal
phase, where the fluctuation are small, the fundamental assumptions provide a correct description of the system. Using the
fundamental assumptions, we obtain the following system of equations:

∂

∂t
P(nv, t) ≃

∑
l∈{+,−}

(E l
v − 1)π−l

v (nv, ⟨nc⟩)P(nv, t), (37)

∂

∂t
P(nc, t) ≃

∑
l∈{+,−}

(E l
c − 1)π−l

c (⟨nv⟩ , nc)P(nc, t). (38)

For the steady-state solutions, and due to the up-down symmetry, the two equations decouple one from the other. More
specifically, since ⟨nv⟩ = Nv/2 and ⟨nc⟩ = Nc/2, the rates become

π+

v (nv, ⟨nc⟩) =

(
ãv + h̃v

nv

Nv

)
(Nv − nv); π−

v (nv, ⟨nc⟩) =

(
ãv + h̃v

Nv − nv

Nv

)
nv, (39)

where ãv = av +
Nc
2N hv and h̃v =

Nv

N hv , and

π+

c (⟨nv⟩ , nc) =

(
ãc + h̃c

Nc − nc

Nc

)
(Nc − nc); π−

c (⟨nv⟩ , nc) =

(
ãc + h̃c

nc

Nc

)
nc, (40)

with ãc = ac +
Nv

2N hc and h̃c =
Nc
N hc . The respective second moments become, after using Eqs. (22) and (25),⟨

x2v
⟩
≃

2ãv + h̃v

2Nv ãv + h̃v

=
2av + hv

2Nvav +
Nv (Nc+1)

N hv

≤
av≥0

Nv + Nc

Nv(1 + Nc)
≤

Nc≥2

Nv + 2
3Nv

, (41)

and ⟨
x2c
⟩
≃

2ãc + h̃c

2Nc ãc + (2Nc − 1)h̃c
=

1
Nc

2ac + hc

2ac +
N+Nc−1

N hc
≤

1
Nc

≤
Nc + 2
3Nc

. (42)

See Fig. 4 where we compare the latter approximate expression with exact ones and numerical results.
We can also obtain approximate expressions for the probability functions. Following the well-known approach of [43], if

the numbers of voters Nv and contrarians Nc are large, then the distributions are solutions of the Fokker–Planck equations
resulting form Taylor expanding the r.h.s of the master equations (37) and (38) up to second order in 1/Nv and 1/Nc . For the
steady-state solutions, the equations are

d
dxv

[
2ãvxvP(xv)

]
+

1
2N

d2

dx2v

{[
4ãv + 2h̃v(1 − x2v)

]
P(xv)

}
= 0, (43)
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Fig. 4. Numerical (symbols), exact (solid lines), and approximate results of Eqs. (41) and (42) (dashed lines) for the second moments of the magnetization
of a system of 200 agents, and Nv = 50 (black squares), 100 (red circles), and 150 (blue triangle) voters as a function of noise to herding ratio. Voters and
contrarians have the same rates, av = av and hv = hc .

Fig. 5. Scaled probability functions for a system of 100 voters (left) and 100 contrarians (right) for hc = hv and av/hv = ac/hv = 10−3 (black squares),

10−1 (red circles), and 102 (blue triangle). For each set of data, it is σ =

√⟨
x2v,c

⟩
. The solid line is the Gaussian distribution with zeromean and unit variance.

which was obtained previously in [45], and

d
dxc

[
2(ãc + h̃c)xcP(xc)

]
+

1
2N

d2

dx2c

{[
4ãc + 2h̃c(1 + x2c )

]
P(xc)

}
= 0. (44)

The corresponding solutions are

P(xv) =
1
Zv

(
1 −

1

2Nv ãv/h̃v + 1

x2v⟨
x2v
⟩) Nv ãv

h̃v
−1

−→
Nv ãv/h̃v≫1

exp
(

−
x2v

2
⟨
x2v
⟩)√

2π
⟨
x2v
⟩ , (45)

and

P(xc) =
1
Zc

⎡⎣1 +
1

2
(
ãc/h̃c + 1

)
Nc − 1

x2c⟨
x2c
⟩
⎤⎦−

(
ãc/h̃c+1

)
Nc−1

−→
Nc (ãc/h̃c+1)≫1

exp
(

−
x2c

2
⟨
x2c
⟩)√

2π
⟨
x2c
⟩ , (46)

where Zv and Zc are normalization constants. The Gaussian approximations are verified in Fig. 5 for one representative case.

4. Conclusions

An agent-based model of voters and contrarians has been proposed and studied at the mean-field level (all-to-all
interactions). The voters follow the noisy voter model dynamics, while the contrarians can change state by copying opposite
states or by means of and intrinsic noise. The model is quite general, analytically tractable, and reduces to simpler ones: the
(noisy) voter model (with and without zealots), the only-contrarians model (with and without zealots), and the two-role
model, among others.

Contrarians and voters behave differently if analysed separately. The former always reach a steady state with a concave
probability function (the unimodal phase), which in turn is very close to a Gaussian distribution. Moreover, the second
moment of the distribution of contrarians is an increasing function of the noise to anti-herding ratio, meaning that it is
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always smaller than that of a system of noisy voters, the two quantities being coincident only when the intrinsic noises are
the only source of transitions between opinions.

In general, the presence of a small amount of contrarians modifies the dynamics of the voters critically. Particularly, if the
number of contrarians is smaller than 4, the noisy voters can be in the bimodal, plain, and unimodal phases, depending on the
value of their intrinsic noise. For the number of contrarians bigger or equal to four, however, the phase transition disappears,
and only the unimodal phase, both for the voters and contrarians, prevails. The situation is similar to that described by Galam
using his majority model [19], the main difference happening when the number of contrarians is below the critical value:
the bimodal phase of our model preserves the up-down (optimistic–pessimistic) symmetry, while the Galammodel reaches
a state with the fractions of agents with different opinions being different.

When the numbers of voters and contrarians are of the same order, the probability distribution of contrarians is almost
a Gaussian distribution. In addition, if the voter noise and herding coefficients are of the same order, the dynamics of voters
and contrarians decouple, although their respective transition rates for voters and contrarians depend on the number of
agents of each kind. In this latter case, the probability function of voters is also very close to the Gaussian distribution.
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Appendix A. Second moments

The exact expressions for the steady-state second moments of a general mixture of voters and contrarians are:⟨
x2v
⟩
= [(2av + hv)Nv(−hc(2av + 2ac + hv + hc) + (2ac + hc)(2(av + ac) + hc)Nv)

+(−4a2vhc − 2(2av + hv)hc(hv + hc) − 2ac(2avhc + hv(hv + hc))

+(4ac(4av(av + ac) + (3av + 2ac)hv + h2
v) + (12av(av + 2ac) + 2(5av + 6ac)hv + 3h2

v)hc

+4(2av + hv)h2
c )Nv)Nc + 2(2av + hv)(ac + hc)(2av + 2ac + hv + 2hc)N2

c ]

×[Nv(4a2v(Nv + Nc)(2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))

+2av((2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))(2ac(Nv + Nc) + hc(Nv + 2Nc))

+hv(2ac(Nv + Nc)(1 + 2Nc) + hc(−1 + 3NvNc + 4N2
c )))

+hv(4a2c (1 + Nc)(Nv + Nc) + hc(hc(1 + 2Nc)(−1 + Nv + 2Nc) + hv(−1 + Nc + 2N2
c ))

+2ac(hvNc(1 + Nc) + hc(−1 + 2Nv + 2Nc + 3NvNc + 4N2
c ))))]

−1, (A.1)⟨
x2c
⟩
= [4a2v(2ac + hc)(Nv + Nc)2 + hv(4a2c (1 + Nc)(Nv + Nc) + hcNc(hv + hc + 3hcNv + hvNc + 2hcNc)

+2ac(hvNc(1 + Nc) + hc(Nv + Nc)(2 + 3Nc)))

+2av(4a2c (Nv + Nc)2 + 2ac(Nv + Nc)(hv + 2hcNv + 2hvNc + 3hcNc)

+hc(hv(Nv + Nc)(1 + 2Nc) + hc((−1 + Nv)Nv + 4NvNc + 2N2
c )))]

×[Nc(4a2v(Nv + Nc)(2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))

+2av((2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))(2ac(Nv + Nc) + hc(Nv + 2Nc))

+hv(2ac(Nv + Nc)(1 + 2Nc) + hc(−1 + 3NvNc + 4N2
c )))

+hv(4a2c (1 + Nc)(Nv + Nc) + hc(hc(1 + 2Nc)(−1 + Nv + 2Nc) + hv(−1 + Nc + 2N2
c ))

+ 2ac(hvNc(1 + Nc) + hc(−1 + 2Nv + 2Nc + 3NvNc + 4N2
c ))))]

−1, (A.2)

⟨xvxc⟩ = [2ac(h2
v(1 + Nc) + hv(2av − hc)(Nv + Nc) − 2avhc(Nv + Nc))

+hc(h2
v(1 + Nc) − 2avhc(−1 + Nv + 2Nc) + hv(2av(Nv + Nc) − hc(−1 + Nv + 2Nc)))]

×[4a2v(Nv + Nc)(2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))

+2av((2ac(Nv + Nc) + hc(−1 + Nv + 2Nc))(2ac(Nv + Nc) + hc(Nv + 2Nc))

+hv(2ac(Nv + Nc)(1 + 2Nc) + hc(−1 + 3NvNc + 4N2
c ))) + hv(4a2c (1 + Nc)(Nv + Nc)

+hc(hc(1 + 2Nc)(−1 + Nv + 2Nc) + hv(−1 + Nc + 2N2
c ))

+ 2ac(hvNc(1 + Nc) + hc(−1 + 2Nv + 2Nc + 3NvNc + 4N2
c )))]

−1. (A.3)
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Appendix B. Proof of the lemma

Under the hypothesis of the lemma, P(x) can be either (a) non-decreasing and non-constant, (b) non-increasing and
non-constant, or (c) constant.

Case (c) is evident. If P(x) is constant in D, the normalization condition,
∑N

i=0 P(xi) = 1, imposes P(x) =
1

N+1 . Hence,∑N
i=0 x

2
i P(xi) =

1
N+1

∑N
i=0 x

2
i =

N+2
3N .

Case (b) is similar to (a), so we focus only on the latter case:

(i) Now, it is P(xi) ≤ P(xi+1) for xi and xi+1 in D+.
(ii) Take P̃(xi) = P(xi) −

1
N+1 , then it is clear that P̃(xi) ≤ P̃(xi+1) for xi and xi+1 in D+. The new function is also an even

function.
(iii) Since

∑N
i=0 P(xi) =

∑N
i=0

1
N+1 = 1, the new satisfies

∑N
i=0 P̃(xi) = 0.

(iv) Let I+ = {i|xi ∈ D+
} and i0 = min I+. The results in (ii) and (iii) imply the existence of two numbers im and iM in I+,

im < iM , such that P̃(xi) < 0 for i0 ≤ i ≤ im, P̃(xi) for iM ≤ i ≤ N , and P̃(xi) = 0 if im < i < iM .
(v) From (iii) and (iv), −

∑
i0≤i≤im P̃(xi) =

∑
iM≤i≤N P̃(xi) ≡ k > 0.

(vi) Using 1
N+1

∑N
i=0 x

2
i =

N+2
3N , the definition of P̃(x), and (iv), we have

⟨
x2
⟩
−

N+2
3N =

∑N
i=0 x

2
i P̃(xi) = 2

∑
i0≤i≤N x2i P̃(xi) =

2
[∑

i≤im x2i P̃(xi) +
∑

i≥iM
x2i P̃(xi)

]
. The even character of P̃(x) has been used.

(vii) Since x2i ≤ x2im and P̃(xi) < 0 for i ≤ im, it is
∑

i≤im x2i P̃(xi) ≥ x2im
∑

i≤im P̃(xi) = kx2im . Similarly,
∑

i≥iM
x2i P̃(xi) ≥

x2iM
∑

i≥iM
P̃(xi) = kx2iM .

(viii) From (vi) and (vii), we get the desired result
⟨
x2
⟩
−

N+2
3N ≥ 2k(x2iM − x2im ) > 0.
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