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Abstract
Wepresent a full stochastic description of the pair approximation scheme to study binary-state
dynamics on heterogeneous networks.Within this general approach, we obtain a set of equations for
the dynamical correlations, fluctuations andfinite-size effects, as well as for the temporal evolution of
all relevant variables.We test this scheme for a prototypicalmodel of opinion dynamics known as the
noisy votermodel that has afinite-size critical point. Using a closure approach based on a system size
expansion around a stochastic dynamical attractor we obtain very accurate results, as comparedwith
numerical simulations, for stationary and time-dependent quantities whether below,within or above
the critical region.We also show thatfinite-size effects in complex networks cannot be captured, as
often suggested, bymerely replacing the actual system sizeN by an effective network dependent
sizeNeff.

1. Introduction

From classical problems in statistical physics [1, 2] to questions in biology and ecology [3–5], and over to the
spreading of opinions and diseases in social systems [6–10], stochastic binary-statemodels have beenwidely
used to study the emergence of collective phenomena in systems of stochastically interacting components. In
general, these components aremodeled as binary-state variables—spin up or down— sitting at the nodes of a
networkwhose links represent the possible interactions among them.While initial research focused on the
limiting cases of awell-mixed population, where each of the components is allowed to interact with any other,
and regular lattice structures, later works turned tomore complex and heterogeneous topologies [11–14]. A
most important insight derived from thesemore recent works is that themacroscopic dynamics of the system
can be greatly affected by the particular topology of the underlying network. In the case of systemswith critical
behavior, different network characteristics have been shown to have a significant impact on the critical values of
themodel parameters [15–17], such as the critical temperature of the Isingmodel [18–20] and the epidemic
threshold inmodels of infectious disease transmission [21–25]. Thus, the identification of the particular
network characteristics that have an impact on the dynamics of thesemodels, as well as the quantification of
their effect, are of paramount importance.

Thefirst theoretical treatments introduced for the study of stochastic, binary-state dynamics on networks
relied on a global-state approach [2, 26], i.e. they focused on a single variable—for example, the number of nodes
in one of the two possible states—assumed to represent thewhole state of the system. In order towrite amaster
equation for this global-state variable, some approximation is required tomove from the individual particle
transition rates defining themodel to some effective transition rates depending only on the chosen global
variable.Within this global-state approach, the effective-field approximation assumes that all nodes have the
same rate of switching to the other state, such that local densities can be replaced by their global equivalents and
all details of the underlying network are completely lost. As a consequence, results are only accurate for highly
connected homogeneous networks, closer to fully connected topologies.
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More recent theoretical treatments have proposed a node-state approach, departing fromamaster equation
for theN-node probability distribution and, thus, taking into account the state of each individual node. From
thismaster equation, general evolution equations for themoments and correlations of the relevant dynamical
variables can be derived. Depending on the particular functional formof the individual particle transition rates,
this systemof dynamical equations can be open—an infinite hierarchy of equations, each of themdepending on
higher-order correlation functions—or closed. For open systems of equations, different schemes have been
proposed for their closure: amean-field approximation [25, 27, 28], inwhich allmoments are replaced by
products of individual averages, and a vanKampen type system size expansion [29, 30]. Other variants of the
moments expansion have been previously considered in the literature with different types ofmoment closure
assumptions [31–34], see also the review [35] of these techniques. Evenwhen the systemof equations is closed,
further approximations are required to deal with the appearance of terms depending on the specific network
structure. In particular, an annealed network approximation has been successfully used in a number ofmodels
[36–42] in order to deal with these terms. This approximation involves replacing the original network by a
complementary, weighted, fully connected network, whoseweights are proportional to the probability of each
pair of nodes being connected. In this way, highly precise analytical solutions can be obtained for all relevant
dynamical variables.

A third group of analytical treatments has sought to establish an intermediate level of detail in its description
of the dynamics, in-between the global-state and the node-state approaches. Similar to the global-statemethod,
though significantly improving on it, a reduced set of variables is chosen to describe the state of the system. In
particular, information is aggregated for nodes of a given degree. In thismanner, some essential information
about the network structure is kept—different equations for nodes with different degrees—while the tractability
of the problem is greatly improved. Aswith the global-state approach, in order towrite amaster equation for this
reduced set of variables, some further approximation is required to translate the individual particle transition
rates that define themodel into some effective transition rates depending only on the chosen set of variables. The
number of these variables, as well as their nature, define different levels of approximation, which can be ordered
frommore to less detailed as: approximatemaster equation [16, 17], pair approximation (PA) [43–49] and
heterogeneousmean-field [25, 37, 50, 51].Manyworks based on these approaches have further neglected
dynamical correlations, fluctuations and finite-size effects, which corresponds to amean-field type of analysis.
While there have been attempts to relax these restrictions and deal with finite-size effects, these efforts have been
usually based on an adiabatic elimination of variables [37, 43, 48, 49, 51–53], whose range of validity is limited.

In this paperwe consider this intermediate level of description focusing on the PA that chooses as a reduced
set of relevant variables the number of nodes with a given degree in a given state and the number of links
connecting nodes in different states.We develop a full stochastic treatment of the PA scheme inwhichwe avoid
mean-field analysis or adiabatic elimination of variables. In particular, after writing amaster equation for the
reduced set of variables, we obtain effective transition rates by introducing the PA as described in [43] and
elaborating on the assumptions used in this approach aswell as on their quantitative implications. Furthermore,
after writing general equations for themoments and correlations, we propose two different strategies for their
closure and solution. Thefirst one, that we term S1PA, is based on a vanKampen type system size expansion
[29, 54] around the deterministic solution of the dynamics, that is, around the lowest order termof the
expansionwhich corresponds to the thermodynamic limit of infinite system size. This approach allows us to
derive linear equations for the correlationmatrix and first-order corrections to the average values. The second
strategy, that we term S2PA, is based on a system size expansion around a dynamical attractor, and it allows us to
obtain expressions not only for the stationary value of all relevant quantities but also for their dynamics.

Although ourmethodology is very general for any set of transition rates, only for the first closure strategy—
S1PA—one can apply straightforwardly our generalmethod to anymodel under study, to end upwith the
desired equations. The second one—S2PA—requires specific rates for the analysis to proceed. Thus, for the sake
of concreteness, we focus on the noisy votermodel as an explicit example for whichwe carry out a full analytical
treatment. The noisy votermodel is a variant of the original votermodel [4, 55]which, apart frompairwise
interactions inwhich a node copies the sate of a randomly selected neighbor, it also includes random changes of
state. It is a paradigmatic example of a stochastic binary-statemodel, with applications in the study of non-
equilibrium systems in awide range offields, and it has been studied by, at least, fivemutually independent
strands of research, largely unaware of each other. Namely, randomprocesses in genetics [56], percolation
processes in strongly correlated systems [57], heterogeneous catalytic chemical reactions [58, 59], herding
behavior infinancialmarkets [60], and probability theory [61]. The behavior of the noisy votermodel is
characterized by the competition between twomechanisms: on the one hand, the pairwise copy interactions
tend to order the system, driving it towards a homogeneous configuration—all spins in the same state, whether
up or down—. On the other hand, the random changes of state tend to disorder the system, pulling it away from
the homogeneous configurations. These homogeneous configurations are the absorbing states of the ordinary
votermodel, which lose their absorbing character due to the random changes of state. Depending on the values
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of themodel parameters, which set the relative strength of onemechanismover the other, the system can be
found in amostly ordered regime—dominated by pairwise interactions—or amostly disordered regime—
dominated by noise—. Furthermore, a noise-induced, finite-size transition can be observed between these two
behavioral regimes. Thefinite-size character of the transition is due to the fact that the critical point tends to zero
in the thermodynamic limit of large system sizes. Althoughmost of the initial literature about the noisy voter
model focused only on regular lattices [57, 61] and a fully connected network [60, 62], recent studies have
addressedmore complex topologies, both froman effective-field perspective [26, 63, 64] and using an annealed
network approximation [42]. In particular, while the effective-field approachwas only able to broadly capture
the effect of the network size andmean degree on the results of themodel for highly homogeneous and
connected networks, the annealed approximation [42]was, in addition, able to reproduce the impact of the
degree heterogeneity—variance of the underlying degree distribution—on the critical point of the transition
and the temporal correlationswith a high level of accuracy, as well as themain effects on the local order
parameter, thoughwith significantly less accuracy. Further studies of the noisy votermodel include the effects of
zealots [65], nonlinear group interactions [53] and aging [66].

When applied to the noisy votermodel, thefirst of the approaches proposed in this paper—S1PA—is able to
improve on the accuracy of previousmethods only for the region above the critical point, while it fails in its
proximity and in the region below it. This failure is due to the existence of amathematical divergence as the noise
intensity approaches zero in the analytical expressions obtained for the fluctuations and the local order
parameter. The second approach proposed in this paper—S2PA—, on the contrary, leads to highly accurate
results for all relevant variables and for all values of the parameters, whether below, within, or above the critical
region, thus significantly improving on previousmethods. Furthermore, this approach is not limited to
stationary values, but rather it is able to provide highly accurate analytical expressions for their time evolution.
Finally, this second approach allows us to show thatfinite-size effects in a complex network cannot be simply
reduced to replacing the system size by an effective one, asmost previous studies suggest [37, 43, 48, 49, 51].

Summing up, this paper contributes to the analysis of stochastic binary-statemodels in threemainways.
First, it presents a generalmethodology with clearly identified andwell-justified arguments and approximations,
including an analytical assessment of their validity ranges. Second, our approach allows tofind analytical
expressions for the correlations, fluctuations and finite-size effects, as well as for the temporal evolution of all
relevant variables, without needing to resort to crude adiabatic elimination of variables. Third, the results
obtained for the noisy votermodel represent a significant improvement in accuracy, being valid both above and
below the critical point aswell as in the critical region.

The paper is organized as follows: in section 2we introduce the stochasticmodel and define themain
quantities of interest, namely, thefluctuations of the density of nodes in a particular state and the density of
active links. In section 3we revisit some of the previous theoretical treatments introduced for the study of the
stochastic binary-state dynamics in the two limiting cases of a global-state approach and a node-state approach.
In the same sectionwe explain themain approximations required to close and eventually solve the dynamical
equations for themoments and correlations of the relevant dynamical variables. In section 4we introduce our
stochastic description based on amaster equation for a reduced set of dynamical variables. In this sectionwe use
the PA to derive the hierarchy of equations for themoments and correlations of the dynamical variables. Two
different closure schemes are presented and discussed in sections 5 and 6 based, respectively, on an expansion
around the deterministic solution and around a stochastic dynamical attractor. Themain results of both
schemes aswell as other approaches in the literature are compared against the results of numerical simulations in
section 7 in the steady state. In section 8we extend ourmethod to determine the dynamical evolution of the
correlation function and its comparisonwith numerical simulations. Finally, in section 9we present themain
conclusions of our study. The technical details of the solutions of some equations are presented in appendices A
andC. In appendix Bwe present a simple example using linear equations inwhich one of our closure schemes
can be carried out in full detail. In appendixDwe explain themethod of adiabatic elimination to obtain a partial
solution of some of the variables under study.

2.Model

Weconsider an undirected network consisting ofN nodes. Links between nodes aremapped into the usual
(symmetric) adjacencymatrix AA ij= ( ) asAij=1 if nodes i and j are connected, andAij=0 otherwise.
Connected nodes are ‘neighbors’ of each other. Each node i=1,K,N holds a time-dependent binary variable
ni=0,1.We do not adopt in this paper any specific interpretation, but the state ni=1 (resp. 0)will be labeled as
‘up’ (resp. ‘down’), and a link between nodes in different states will be defined as active. A stochastic dynamics is
introduced bywhich the node variable ni(t) can switch its state at time t, either 0→ 1with rate ri

+, or 1→ 0with
rate ri

-. The rates r ni
( ) depend, in general, on thewhole set of node-states n=(n1,K, nN) but are assumed to
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not depend explicitly on time. Although ourmethod is rather general, wewill use throughout the paper the noisy
voter (Kirman)model rates as an archetypal example

r a
h

k
A n r a

h

k
A n, 1 , 1i

i j
ij j i

i j
ij jå å= + = + -+ - ( ) ( )

being k Ai j ij= å the degree (number of connected nodes) of node i. The termproportional to h represents a
‘herding’mechanismbywhich the transition rates are proportional to the fraction of neighbor nodes holding
the opposite state, while the termproportional to a represents random jumps between states at a constant rate
and is also known as the ‘noise term’.

We introduce the probability P tn;( ) offinding node configuration n at time t. This probability can be
understood at different levels, as the detailed configuration tn( ) depends on (i) the initial condition, (ii) the
realization of the stochastic process, and (iii) the network realization A. For a given network configuration, let
N i A kk j ij= # å ={ ∣ }be the number of nodes with degree k. By definition,Nk=0 for k<kmin and for
k>kmax, theminimumandmaximumvalues of the degree for that given network.We introduce

P
N

N
P k, , 2k

k
m

k k

k

k
m

min

max

åm= =
=

( )

as the probability Pk that a randomly chosen node has degree k, and the m-momentμm of the degree
distribution, and for brevityμ≡μ1. The variance of the degree distribution is k

2
2

2s m m= - andwe introduce
the degree heterogeneity k

2 2k s m= .
Wewill focus on the time evolutionof thefirstmoment m tá ñ( ) and variance m t m t m t2 2 2s = á ñ - á ñ[ ( )] ( ) ( )

of the rescaled density of nodes in the up state, aswell as on the average trá ñ( ) of the density of active links. The
precise definitions of these quantities are

m
N

n
2

1, 3
i

iå= - ( )

A n n n n

A

L

N

1 1
, 4

ij ij i j i j

ij ij

1

2

1

2

1

2

å
å

r
m

=
- + -

º
( ( ) ( ) )

( )

where L is the number of active links, and the denominator N Aij ij
1

2

1

2
m = å is the total number of links.While

the ‘magnetization’m(t) ä [−1, 1] describes the global-state of the system, ρ(t) ä [0, 1] can be considered as a
measure of disorder, corresponding the value ρ=1/2 to a randomdistribution of states, and ρ=0 to full order
or consensuswhere all nodes are in the same state, either ni=0 or ni=1. All averages F tná ñ[ ( )] are understood
with respect to the probability P tn;( )

F t F P tn n n; . 5
n n0,1; ; 0,1N1

åá ñ =
= =

[ ( )] ( ) ( ) ( )

Results can be later averaged over the ensemble of networkswith a given degree distribution, always after
performing the average in equation (5).

We also introduce the correlation functions

C t t t n t n t n t n t , 6ij i j i j i j= áD D ñ = á ñ - á ñá ñ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

C t t t t , 7ijk i j k= áD D D ñ( ) ( ) ( ) ( ) ( )



where n ni i iD = - á ñ. As n ni i
2 = , note that C n nii i i

2= á ñ - á ñ and that

m t
N

C
4

, 8
i j

ij
2

2
,
ås =[ ( )] ( )

t
A n n C

N

1
. 9

ij ij i j ij

1

2

å
r

m
á ñ =

á ñ - á ñ -
( )

( ( ) )
( )
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3.Node-state and global-state approaches

3.1. The node-state approach
For general rates ri

, the probability function satisfies themaster equation [29, 67]

P t

t
E n r P t E n r P t

n
n n

;
1 ; 1 1 ; , 10

i

N

i i i i i i
1

å¶
¶

= - + - -
=

+ - - +( ) {( )[ ( )] ( )[( ) ( )]} ( )

beingEi the step operator E f n n n, ..., , ...,i i N1
 ( )= f n n n, ..., 1, ...,i N1 ( ). From themaster equation it is

possible to get general evolution equations for themoments as4

n t

t
r r r n

d

d
, 11i

i i i i
á ñ

= á ñ - á + ñ+ + -( ) ( ) ( )

C t

t
r r n r r n r r i j

d

d
, . 12

ij
i i i j j j j i i j j i= á + D ñ + á + D ñ + á D ñ + á D ñ ¹- + - + + +( )

( ) ( ) ( )

Toproceed forward, onewould need to solve these equations, introducing explicit expressions for the
transition rates ri

 andfinding solutions for n tiá ñ( ) andCij(t), which can then be introduced in equations (3), (8),
and (9) in order to obtain expressions for the desired quantities m tá ñ( ) ,σ2[m(t)], and trá ñ( ) .When introducing
explicit expressions for ri

 for any givenmodel, however, onemightfind two different cases depending on
whether the resulting systemof equations is closed or not, whichwill determine the need for different types of
approximations:

• Non-closed system of equations: with the remarkable exception of the noisy votermodel, the set of
equations (11)–(12) is, in general, not closed. In particular, when the explicit expressions for ri

 are
introduced, the right-hand side of the equationswill contain higher-order correlation functions, Ci i i... m1 2

with
m 3 .While it is also possible to obtain evolution equations for these higher-order correlation functions, the
resulting hierarchy of equations is, in principle, infinite. Thus, some approximations are needed in order to
close this hierarchy. In general, there are two basic schemes for the closure of equations (11) and (12) (see [35]
for alternative techniques):

Mean-field approximation: in themean-field approximation, allmoments are replaced by products of
individual averages, e.g.

n t n t n t n t

n t n t n t n t n t n t

,

,

13

i j i j

i j k i j k

á ñ » á ñá ñ

á ñ » á ñá ñá ñ


( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

within thismean-field approximation, equation (11) is closed and, asCij=0, equation (12) is not needed.

System size scaling hypothesis of the correlation functions: the usual vanKampen system size expansion [29]
splits a relevant dynamical variable as x t x t t1 2x= á ñ + W( ) ( ) ( ), beingΩ a large parameter (typically the
system size or volume). This assumes that the dynamical variable scales as x(t)∼Ω.When trying to apply
this approach to themaster equation (10) one faces the fact the dynamical variables ni(t)=0, 1 do not scale
with system sizeN. Amore sophisticated expansionwas developed in [30]with themain ansatz that the
correlation functions scale as C Oi i i i i i

m
...

2
m m1 2 1 2
= áD D D ñ = W- ( ) for all i1, i2,K, im different. Once

this ansatz is assumed, it turns out that one can still use themean-field results (13) in the evolution
equations for themean values (11), thusfinding for n tiá ñ( ) the same result as themean-field approximation.
Regarding the correlationCij, however, this approach leads to non-trivial evolution equations, allowing one
to improve on themean-field approach.

• Closed system of equations: in the particular case of the noisy votermodel, and due to its linear transition rates,
equations (11) and (12) are already closed, and thus there is no need for any closure approximation.Of course,
closing the equations is just the first step towards solving them. Typically, after closing the equations onefinds
factors of the form A nj ij jå , whose complexity for a general lattice structuremakes further analytical progress
very difficult. These terms can be dealt with by assuming the:

Annealed approximation: this approach replaces the original adjacencymatrixAij by a complementary,
weighted, fully connected adjacencymatrix Aij

~
, whoseweights are proportional to the probability of each

pair of nodes being connected [38–41]. For uncorrelated networks of the configuration ensemble this can
bewritten as

4
For a step-by-step derivation, see the supplementary information of [42].
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A
k k

N
, 14ij

i j

m
»~ ( )

where the normalization of theweights is chosen so that both the degree sequence and the total number of
links remain unchanged [37, 68–70]. This approximation reduces the aforementioned sums to

A f A f
k

N
k f , 15

j

N

ij j
j

N

ij j
i

j

N

j j
1 1 1

å å åm
» =~

= = =

( )

being fj[nj, kj] any function that depends on the degree kj of the node j and/or on the node variable nj. In the
particular case that fj[nj, kj]=f[kj], a further simplification is possible in terms of the degree distribution
Pk=Nk/N as

N
k f P kf k

1
. 16

j

N

j j
k

k
1

å å=
=

( ) ( )

There is one case inwhich the annealed approximation is exact. This is when the adjacencymatrix is
Aij=1,∀ i, j, meaning that every node is connected to every other node, a situation known as all-to-all
coupling or fully connected network. The results of the treatment in terms of the full set of node-states and
the annealed approximation have been described in [42].

Themain results for the noisy votermodel using themean-field and the annealed approximations will be
compared in section 7with our new treatment using a stochastic PA scheme. Before that, let us explain in the
next subsection yet another, very simple, approximationwhich is capable of capturing themain phenomen-
ological features of the noisy votermodel.

3.2. The global-state approach
Instead of the full state n nn , , N1= ¼( ), this approach proposes amuch coarser description, inwhich the only
relevant variable is the number of nodes in the up state N i n 1i1 = # ={ ∣ }. This is clearly an important
reductionwith respect to theN variables needed in the n representation, leading to amuch simpler analytical
treatment but also to less accurate results in general network topologies and exact results only for fully connected
networks. As far as the global variableN1 is concerned, there are only two possible outcomes of the stochastic
process:N1→N1+1 andN1→N1−1. LetP(N1; t) be the probability that the number of nodes in the up state
takes the valueN1 at time t. It obeys themaster equation

P N t

t
E W P N t E W P N t

;
1 ; 1 ; , 17N N

1
1 11 1

¶
¶

= - + -+ - - +( ) ( )[ ( )] ( )[ ( )] ( )

whereW+ andW−are effective rates, depending only on the global variableN1, and the step operator now acts as
E F N F N 1N 1 11

=  ( ) ( ). Fromherewe derive equations for the average value and the secondmoment of the
global variable as

N

t
W W

d

d
, 181á ñ

= á - ñ+ - ( )

N

t
N W N W

d

d
1 2 1 2 . 191

2

1 1
á ñ

= á - + + ñ- +( ) ( ) ( )

Some approximation is needed tofind the effective ratesW+ andW− in such away that they depend only on the
N1 variable and in a closed form. The simplest approximation is to assume that all nodes have the same rate of
switching to the other state, such thatwe can replace the local density of nodes in the up state by the global
density of nodes in the up state

A n

k

N

N
, 20

j ij j

i

1å
» ( )

leading to

W N N a h
N

N
, 211

1= - ++ ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

W N a h
N N

N
. 221

1= +
-- ⎜ ⎟⎛

⎝
⎞
⎠ ( )

Note that in this effective-field approximation, the details of the network (any dependence on the connectivity
matrix) are completely lost. In the case of a fully connected network, where each node is connected to every other
node, the effective-field approximation is exact.
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Once the effective-field approximation has been assumed, no further approximations are needed, for after
replacing equations (21)–(22) in (18)–(19), the evolution equations for themean value m tá ñ( ) and the variance

m t2s [ ( )]of m N N2 11= - satisfy

m

t
a m

d

d
2 , 23

á ñ
= - á ñ ( )

m

t
a

h

N
m

h

N
m

a h

N

d

d
2 2

2 4 2
. 24

2
2 2s

s= - + - á ñ +
+⎜ ⎟⎛

⎝
⎞
⎠

[ ] [ ] ( )

The density of active links ρ can be calculated using the all-to-all ansatz as the probability offinding a node in the
up state times the probability offinding one of its neighbors in the down state or vice versa

2 N

N

N N

N

N

N

m

1 1

1

2
1 1

2

r = =-
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- . In the steady state we have

m 0, 25stá ñ = ( )

m
a h

aN h

2

2
, 26st
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+
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aN

aN h2
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+
( )

Further analysis shows that the noisy votermodel has a transition separating regions inwhich the steady state
probability Pst(N1) has a single peak at N N

1 2
= and regions inwhich it has two peaks atN1=0,N. The critical

condition of the transition is thus that the probability distribution becomes flat P N
Nst 1

1

1
=

+
( ) forN1=0,K,

N. This condition leads to a variance m N

Nst
2 2

3
s = +[ ] , fromwhichwe can obtain the critical value ac=h/N, such

thatPst(N1) is double peaked for a<ac and single peaked for a>ac (see [60, 62] for a differentmethod of
finding this critical value). These predictions for the transition point and the detailed dependence of mst

2s [ ]and
strá ñ on the systemparameters will be analyzed in the next sections.
As the critical value ac=h/N depends onN, the single to double peaked transition observed forPst(N1) is

said to be a finite-size-transition [71]. Certainly, the transition disappears in the thermodynamic limit N  ¥
where, for all values of a, the distribution Pst(N1) is always single peaked. Therefore, from the perspective of a
strict statisticalmechanics formulation, the transition does not exist. Nevertheless, the behavior near a=0
bearsmany similarities with a true phase transition, as there are valid scaling laws, divergence offluctuations
with characteristic exponents, critical slowing down, etc, as wewill show in the next sections. For this reason,
and being clearly an abuse of language, it is customary to refer to the small a∼h/N values as the ‘critical region’.
It is also possible to identify the critical dimension dc=2 abovewhich the ‘critical’ exponents are independent
of dimension [61].

As shown in equation (26), which, we recall, is exact in the all-to-all coupling scenario, when a/h=O(N−1),
thefluctuations scale asσ[m]∼O(N0), while far away from the critical point, a/h=O(1), they scale as
σ[m]∼O(N−1/2). As the critical dimension of thismodel is dc=2, this scalingwith system size is the correct
one in the all-to-all coupling. This simple global approach captures one of themain difficulties wewill encounter
when closing the equations for themoments inmore complicated setups, namely, the fact that the fluctuations
scale differently near the critical point and far away from it. A standard vanKampen approach [29] consisting in
splittingm(t) in deterministicf(t) and stochastic ξ(t) contributions m t t N t1 2f x= + -( ) ( ) ( ), will lead
invariably tofluctuations of the order m O N 1 2s = -[ ] ( ), and it is hence not appropriate near the critical point.

4. Stochastic pair approximation

In this section, we introduce the stochastic PA, starting from amaster equation description of the dynamics and
using an intermediate level of detail in our characterization, in-between the node-state and the global-state
approaches. Ourmethod is a full stochastic treatment of the PA considered byVazquez and Eguíluz [43] in their
study of the (noiseless) votermodel.We elaborate further on this approach andwe apply it to the case of the
noisy votermodel.We derive in this section the evolution equations for themoments and correlations of the
dynamical variables and leave for the next two sections the closure of the hierarchy and the solution of the
equations.

As explained, the starting point is not the full node-state configuration n nn , , N1= ¼( ), but a reduced set of
variables LN ,1{ }, where L is the number of active links and N N NN , , ,k k k1 1, 1, 1 1,min min max

= ¼+( )withN1,k the
number of nodes in the up state with degree k. The total number of variables in this description is thus
kmax−kmin+2, stillmuch smaller than theN variables needed in the n representation.

In the elementary process ni=0→ni=1, we have N N 1k k1, 1,i i
 + , being ki the degree of node i. At the

same time, the number of active links L can vary in different amounts L L k q2i i + - depending on the
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number qiä(0, ki) of neighbors of node i in the up state. Similarly, in the elementary process ni=1→ ni=0 it
is N N 1k k1, 1,i i

 - and L can vary in different amounts L L k q2i i - + . Introducing P L tN , ;1( ) as the
probability of the state LN ,1{ }at time t, we derive themaster equation

P L t

t
E E W P L t

E E W P L t

N
N

N

, ;
1 , ;

1 , ; , 28

k q

k

N L
k q k q

N L
k q k q

1

0

2 , ,
1

2 , ,
1

k

k

1,

1,

å å¶
¶

= -

+ -

=

+ - -

- - + +

( ) {( )[ ( )]

( )[ ( )]} ( )

( )

( )

with EN k1,
andEL the step operators acting onN1,k and L, respectively. From thismaster equation and following

standard techniques, one can derive the equations for themoments and correlations of the rescaled variables
m 2 1k

N

N
k

k

1,= - and L

N1

2

r =
m

as

m

t
F

d

d
, 29k

k
á ñ

= á ñ ( )

t
F

d

d
, 30

rá ñ
= á ñr ( )

m m

t
m F m F

G

N

d

d
, 31k k

k k k k k k
k

,d
á ñ

= á ñ + á ñ +
á ñ¢

¢ ¢ ¢ ( )

m

t
F m F

G

N

d

d
, 32k

k k
k,r

r
á ñ

= á ñ + á ñ +
á ñ

r
r ( )

t
F

G

N

d

d
2 , 33

2r
r

á ñ
= á ñ +

á ñ
r

r ( )

where

F
N

W W
2

, 34k
k q

k
k q k q

0

, , , ,å= -
=

+ -[ ] ( )( ) ( )

F
N

k q W W
2

2 , 35
k q

k
k q k q

0

, , , ,å åm
= - -r

=

+ -( )[ ] ( )( ) ( )

G
P N

W W
4

, 36k
k k q

k
k q k q

0

, , , ,å= +
=

+ -[ ] ( )( ) ( )

G
N

k q W W
4

2 , 37k
k q

k
k q k q

,
0

, , , ,åm
= - +r

=

+ -( )[ ] ( )( ) ( )

G
N

k q W W
4

2 . 38
k q

k
k q k q

2
0

2 , , , ,å åm
= - +r

=

+ -( ) [ ] ( )( ) ( )

As in the global-state approach, some approximation is needed in order tofind the effective ratesW k q, ,( )

that appear in themaster equation.Writing qi as q and ki as k, the rates of the elementary processes
ni=0→ ni=1 and ni=1→ ni=0 are, respectively

R a h
q

k
, 39k q, = ++ ( )

R a h
k q

k
. 40k q, = +

-- ( )

Therefore, the total rate of the process N N 1k k1, 1, + , L L k q2 + - is calculated as the product of the
elementary rate Rk q,

+ , the number of nodes in the down state among the populationwith degree k, and the
fraction (probability) of the population of nodes in the down state with degree k that have q neighbors in the up
stateP0(k, q), i.e.

W N N P k q R, . 41k q
k k k q

, ,
1, 0 ,= -+ +( ) · ( ) · ( )( )

A similar reasoning leads to the total rate of the processN1,k→N1,k−1, L L k q2 - + ,

W N P k q R, . 42k q
k k q

, ,
1, 1 ,=- -· ( ) · ( )( )

In general, those probabilities depend on the detailed configuration n and adjacencymatrix A, but we need
towrite them in terms only of the description variables LN ,1{ }.We thenmake the PA [43]

P k q
k

q
c c, 1 , 43q k q

0 0 0» - -
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )
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P k q
k

q
c c, 1 , 44k q q

1 1 1» --
⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

where

c
L

kN kN
n, 0, 1, 45n

k k

k
n k N k k

k
n k,

2
,

min

max

min

maxå å
r

= = =
m= =

( )

is the ratio between the total number of active links and the total number of links connected to nodes in state
n=0,1. This c0/1 can be interpreted as the single event probability that a node in the state 0/1 has a neighbor in
the opposite state 1/0. The PA assumes that the probability of having q nodes in the up state among the knodes
connected to a node in state 0/1 is a sequence of q independent processes and thus binomial. The PA is known to
be accurate for uncorrelated networks [17, 43, 48].

For the noisy votermodel, encoded in the transition rates (39) and (40) using the knownmoments of the
binomial distribution qP k q kc,q

k
0 0 1 0 1å == ( ) and q P k q kc k c, 1 1q

k
0

2
0 1 0 1 0 1å = + -= ( ) ( ( ) ), after lengthy

but straightforward algebrawe arrive at

F am
h

m
m m2

2

1
, 46k k

L
L k2

r
= - +

-
-( ) ( )

F a h a
h

m

h

m

m mm

m
mm2 2 2

4

1

1 4

1

1 2

1
1 , 47

L L

L L

L
L2

2
2

2

2
r r

m
r

r= + - -
-

+
-

+ -
-

- +r

⎡
⎣⎢

⎤
⎦⎥( ) ( )

G
P

a
h

m
m m

4

1
1 , 48k

k L
k L2

r
= +

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( )

G h k ak
m m

m
h k

m m m m

m

4
2 2

1
2 1

2

1
, 49k

L k

L

k L k L

L
, 2

2

2 2
2

m
r r= - -

-
-

- -
- +

-
r

⎛
⎝⎜

⎞
⎠⎟( ( ) ) ( )

( )
( )

with the link (or ‘degree-weighted’)magnetizationmL defined as

m P km
1

. 50L
k k

k

k k

min

max

åm
=

=

( )

The complete expression forGρ being too long, only a simplified version valid in the stationary state will be
displayed later (see equation (70)).

Equations (29)–(33) together with equations (46)–(50) are the basis of our subsequent analysis. They are not
yet closed.Note, however, thatmL(t) satisfies the exact equation

m

t
a m

d

d
2 , 51L

L
á ñ

= - á ñ ( )

whose solution m t m 0 eL L
at2á ñ = á ñ -( ) ( ) indicates that m 0L stá ñ = . Remarkably, mLá ñ is self-governed and fulfills

an equation equivalent to má ñ in the effective-field approximation (see equation (23)). This will not be the only
similarity between these two approximations and variables, as wewill show in section 6.2.

5. Expansion around the deterministic solution

5.1. The deterministic solution
In order to close and eventually solve equations (29)–(33), we first study the deterministic solution using amean-
field assumption, i.e., neglecting all correlations. Introducing the notation t m tk kf = á ñ( ) ( ) , t tf r= á ñr ( ) ( ) ,

t m t 0 eL L L
at2f f= á ñ = -( ) ( ) ( ) , and t m t P tk k kf f= á ñ = å( ) ( ) ( ), and substituting equations (46) and (47)

into (29) and (30), wefind

a h2 2
1

, 52k k
L

L k2
f f

f

f
f f= - +

-
-r˙ ( ) ( )

a h a
h h

2 2 2
4

1

1 4

1

1 2

1
1 , 53

L L

L L

L
L2

2
2

2

2
f f

f
f

m

f

f

f ff

f
f ff= + - -

-
+

-

+ -

-
- +r r r

r
r

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˙ ( ) ( )

where the dot indicates a time derivative. The equation forfwould be identical to equation (52)with the
exception of changing kf f . This systemof equations has only one (stable)fixed pointfk=0,fρ=ξ, where
ξ is the positive solution of the quadratic equation
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h h a a2
1 2

2 0, 542m
m

x
m
m

x
-

-
-

- - =
⎛
⎝⎜

⎞
⎠⎟ ( )

namely

h a

h

h a

h

a

h

2 2

4 1

2 2

4 1 2 1
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2

x
m m

m
m m

m
m
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-
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-
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⎞
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( )
( )

( )
( ) ( )

( )

For a=0 this is 2

2 1
x = m

m
-
-( )

. The other solution (unstable) of equation (54) is negative and thus non-physical,
except in the case a=0, which isfρ=0. The stability of the fixed pointfk=0 andfρ=ξ can be assessed

using the elements of the Jacobianmatrix J, defined as Ja b, 0,
a

b k
= - f

f f
f x

¶
¶ =

=r

˙
, namely

J a h h
P k

2 2 , 56k k k k
k

, ,x d x
m

= + -
¢

¢ ¢
¢( ) ( )

J J 0, 57k k, ,= =r r ( )

J a h h
h

2 2 8
4

1 2 . 58, x
m

x= - + + -r r ( ) ( ) ( )

For future reference, let us alsomention here the coefficients of theHessianmatricesH, evaluated at thefixed

point, Hb c
a
, 0,

a

b c k

2

= f
f f f

f x

¶
¶ ¶ =

=r

˙
, namely

H h
P k

2 , 59k
k k

k k, ,
m

d=
¢
-r¢

¢
¢

⎛
⎝⎜

⎞
⎠⎟ ( )

H
h

P P k k kk
4

1 2
3 1

2 , 60k k k k, 2

x
m

x x
x
m

= - + ¢ + - +
-

¢r
¢ ¢

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥( )( ) ( )

H h8
1

, 61,
m
m

= -
-

r r
r ( )

H H H 0. 62k k
k k

k, , ,= = =r r r
r

¢ ¢¢ ( )

Note that the cross-terms Jk,ρ and Jρ,k are zero,whichmeans that thedeterministic dynamics offk andfρ are
uncoupled—at least in the linear regime—. The eigenvalues of the Jmatrix (obviating the trivialfρpart) are (i) 2a
(slow) and (ii) 2 (a+h ξ) (fast). Bothof themarepositive,whichmeans that thefixedpoint is a stable node (note that
the Jacobianmatrix has beendefinedwith aminus sign). Thefirst eigenvaluehasmultiplicity onewhile the second
onehasmultiplicity d−1,whered=kmax−kmin+1 is the dimensionality of the space kf f= { }. The
corresponding eigenvectors are (i) v 1, ...., 11 = ( ) and (ii) the vectors v2 contained in theplane p v 02 =· , where

k P k Pp , ...,k kmin maxmin max
m= ( ) is thenormal vector to theplane. The linear deterministic dynamics is thengiven

by t v v0 e 0 0 eL
at

L
a h t

1
2

1
2f ff f= + - x- - +( ) ( ) ( ( ) ( ) ) ( ) ,where p0 0L ff =( ) · ( ), whichhas a clear geometric

interpretation.As shown infigure1, in the early stages of the dynamics, the fast part dominates and trajectories evolve

Figure 1. Simple example of different deterministic trajectories in the linear approximationwith h=1, a=0.01,μ=4, degree
sequence k=2, 4, 6 and normal vector p=(1/8, 1/2, 3/8).
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close to theparallel plane tp 0Lf f=· ( ) ( ). Later, the slowpart plays the important role and trajectories bend
following thedirection v1, an effectwhich ismorepronounced the larger the separationof time scales is.

5.2. Expansion around the deterministic solution
Thefirst approach that wewill consider to close and solve equations (29)–(33) is a system size expansion around
the deterministic trajectory.We term this approach as S1PA. In the spirit of vanKampen’s expansion [29], we
propose here the expansion

m t t N t N t ..., 63k k k k
1 2 1f g h= + + +- -( ) ( ) ( ) ( ) ( )

t t N t N t ..., 641 2 1r f g h= + + +r r r
- -( ) ( ) ( ) ( ) ( )

where γk, γρ, ηk, ηρ are stochastic processes, whilefk,fρ are the deterministic terms as given by the solution of
equations (52) and (53).

If we introduce the ansatz (63) and (64) into (29)–(33) and equate powers ofN, we are able to close the system
of equations for themoments5. Fromnowon, we restrict ourselves to the stationary state and set all time
derivatives to zero. For the stochastic variables γk and γρwefind 0k stgá ñ = and 0stgá ñ =r for the average values,

and the following set of equations for the correlationmatrix Ca b a b, stg gº á ñ

C J C J C J C J G , 65
k

k k k k k k k k k k k k k k k, , , , , , , , ,
stå d+ + + =r r r r

¢¢
¢ ¢¢ ¢¢ ¢¢ ¢ ¢¢ ¢ ¢ ¢[ ] ( )

C J C J C J C J G , 66
k

k k k k k k k k k, , , , , , , , ,
stå + + + =r r r r r r r r r

¢¢
¢¢ ¢¢ ¢¢ ¢¢[ ] ( )

C J C J G2 2 , 67
k

k k, , , ,
stå + =r r r r r r r

¢¢
¢¢ ¢¢ ( )

withGk,Gk,ρ andGρ evaluated at the steady state

G
a h

P

4
, 68k

k

st x
=

+( ) ( )

G 0, 69k,
st =r ( )
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h

8
2 2

2 7 6 2 3 2 . 70

st
2 2 2

2 2
2

x
m

m m x m m

m m m x m m x

=- - + -

+ - + - + - - +

r ( [ ( )]

[ ( ) ( ) ]) ( )

Although the systemof linear equations (65)–(67)might be difficult to solve in general, the decoupling
J J G 0k k k, , ,

st= = =r r r , which can be shown to be a general consequence of the up–down symmetry in the rates

R Rk q k k q, ,=-
-

+ , in addition to the simplicity of the terms Jk, k’ for the noisy votermodel, simplifies significantly the
problem. As shown in appendix A, the solution is

C G J2 , 71,
st

,=r r r r r ( )

C 0, 72k, =r ( )

C
h

a h

h

a

k k

P2

1
. 73k k

k
k k,

2
2 ,

x
x

x m
m m

d=
+

+
+ ¢

+¢ ¢
⎛
⎝⎜

⎞
⎠⎟ ( )

The variance of the globalmagnetizationm can nowbe obtained from equation (8), expressed in the form
m P P Ck k k k k k

2
, ,s = å ¢ ¢ ¢[ ] ,

N m
h

a h

N

aN

h

a h2

2

2
1, 74st

2
2 2

eff

s
x

x
x
x

=
+

+
+

+[ ] ( )

wherewehavedefined an effective systemsizeNeff≡Nμ2/μ2. For a givenfinite network,Neffadopts afinite value.
In the largeN limit, however,Neff canbe characterizedby anon-trivial dependenceonN, as themoments of the
distribution candiverge. For instance, in aBarabási–Albert network it is N N Nlogeff ~ . Fromequation (74)we
obtain that, in the limit a→ 0, thefluctuations diverge as N m h

ast
2 2

2s ~ x m
m

[ ] . In the same limit, the correlations behave

asC N mk k, st
2s~¢ [ ], independentof k k, ¢,which is strongly related to thegeometricpictureof the lineardeterministic

dynamics thatwedescribed earlier,where variablesfluctuate along the slowdirection v1with an amplitude
N m1 2

sts [ ]. In ahomogeneousnetwork,whereμ2=μ2,wefind N m a h

ast
2s = x+[ ] , which in the limit N  ¥

coincideswith the effective-field result in equation (26)whenever ξ=1/2,whichhappens, for instance, in the limit
of large connectivity m  ¥.On theother hand, belowor around the critical point,when a=O(N−1), the

5
The traditional vanKampen’s expansion does not include the second order terms ηk,ρ and it is applied directly to themaster equation (28).

Wewill, however, do it at the level of the equations for themoments (29)–(33), and it can be proven [54] that onlywhenwe include these
second order terms, the expansion leads to the correct results.
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vanKampenexpansion fails to reproduce the all-to-all result and, hence, it provides thewrong scalingdependence
with systemsize near the critical region (as canbe seen infigure2(b)). The critical point canbeobtained fromthe
conditionof aflat probability distributionof themagnetization, m N

Nst
2 2

3
s = +[ ] , which leads to

a
h

N
O N

3

2

2

1
. 75c

eff

2m
m

=
-
-

+ -( ) ( )

It is also possible to calculate the O N 1-( ) stochastic corrections to the average value of the description
variables defined in equations (63) and (64), which are led by k sthá ñ and sthá ñr . In the stationary state, the

equations for k sthá ñ and sthá ñr read

J J C H C H C H
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Again, due to the particularities of themodel, these equations greatly simplify, leading to

J 0, 78
k

k k k, stå há ñ =
¢

¢ ¢ ( )
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2
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2
, 79

k k
k k k k, st

,
, , , ,åhá ñ = +r r r

r
r r r r

r

¢ ¢¢
¢ ¢¢ ¢ ¢¢ ( )

fromwherewe obtain 0k sthá ñ = , a result arising again from the up–down symmetry of themodel, and

J
h

a h
h D a h

h
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D
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, 80
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2 ,
,
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x x

m x
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x
x
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whereD is given by equation (A.5). Finally, the density of active links in the stationary state is

N . 81st
1

str x há ñ = + á ñr
- ( )

In the all-to-all limit 2
2m m  ¥, we have h

ast 4
há ñ = -r and strá ñ coincides with the effective-field result in

equation (27) to the orderO(N−1). On the other hand, in the limit of a→ 0we have

h

a
lim , 82
a 0

st

2
2
2

h
x m

m
á ñ = -r


( )

which leads to unphysical results for the density of active links, as, by definition, it should be 0r .
Infigure 2we test the validity of these analytical results for awide range of values of a for an Erdös–Rényi

networkwithN=2500 nodes and average connectivityμ=4 (amore detailed comparison for other network
types is postponed to the next section). The results in thisfigure suggest that the expansion S1PA around the
deterministic solutionworks perfectly for a a hNc

1= - , while it fails below the critical point a ac , where
it is not able to reproduce even qualitatively the observed dependence.We also plot the prediction for the density

Figure 2. Stationary average density of active links (figure 2(a)) and variance of themagnetization (figure 2(b)) as a function of the
parameter a, for an Erdös–Rényi graphwithfixed h=1,μ=4 andN=2500, ac≈h/N=4×10−4. Points correspond to
numerical simulations, and different lines, as indicated in the legend, are the analytical results corresponding to the global all-to-all
approach, equations (26) and (27), the stochastic pair approximation combinedwith a vanKampen expansion (S1PA), equations (74)
and (81), and the prediction for the density of active linkswhich is obtained neglecting fluctuations, str xá ñ = from equation (55).
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of active linkswhich is obtained neglecting fluctuations, str xá ñ = , which performs very poorly, specially for
small a. In the same panel we show the results of the simple global approach, equations (25) and (26), which is
surprisingly accurate for the variance of themagnetization but not so good for the density of active links.
Nevertheless, we note that the global approach, equivalent to the all-to-all approximation, completely disregards
the details of the network connectivity and, as shown in the the next sections, is not capable of explaining the
differences observed between different networks. The reason for the failure near the critical region of the
stochastic PA combinedwith a vanKampen expansion lies in the ansatz stated in equations (63) and (64), which
requiresσ2[m] to scale as∼N−1 and also to be small enough for the expansion to be accurate, which is only true
in the limit a ac (see equation (26)). This is strongly related to the associated deterministic dynamics and to
the slow eigendirection v1having an infinite time scale as a 0 , which eventually leads to largefluctuations
following this direction. If wewant an expansion to be also valid in the critical region, we have to explore the full
set of nonlinear deterministic dynamical equations (52)–(53) andfind a solution (in this case a privileged slow
trajectory) aroundwhich the dynamics has afinite time scale in the entire parameter region. Then, we can
propose an expansion similar to equations (63) and (64) around this solution. This is themethod that we are
going to apply in the next section andwhose procedure ismade clear in appendix Bwith a simple example of a set
of linear equations.

6. Expansion around a stochastic dynamical attractor

6.1. The dynamical attractor
As explained before, the secondmethodwe propose to tackle equations (29)–(33) starts byfinding a particular
deterministic solution aroundwhichwe can include stochastic corrections. The solution of equations (52) and
(53) depends on the initial conditionsfk(0),fρ(0) besides the time t.We are interested, however, in a particular
solution thatwewill name tk

*f ( ), t*fr( ) and that depends on time only throughfL(t), namely tk L*f f( ( )),
tL*f fr( ( )), i.e., in a particular solution such that the system reacts instantly to the self-governed variable

t 0 eL L
at2f f= -( ) ( ) . This solution has to fulfill the constraints 1*f =  and 0*f =r whenfL=±1, which arise

from the definition of the variables when all the nodes are up or down. By inspection, we note that k L*f f= is an

exact solution of equation (52) that fulfills these constraints, while the dependence L*f fr( ) is not so trivial.

Introducingf=fL in equation (53) and changing the time derivative a2
t L

d

d

d

d L
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f
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a Riccati type of equationwhose exact solution, carried out in appendix C, depends on a combination ofGauss
hypergeometric functions. A simpler form,more amenable to analytical treatment, is also derived in appendix C
as

O N1 . 84L
2 1*f x f= - +r

-( ) ( ) ( )

In order to show that this simpler *fr is a stable attractor of the deterministic dynamics, we linearize

equations (52) and (53) around the particular trajectory k k k*f f d= + , *f f d= +r r r,finding

a h2 , 85k kd x d= - +˙ ( ) ( )

J
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a
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1 2 2 1 2 , 86L L,
2d d
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x x f d x f= - + - + -r r r r˙ ( ) ( ) ( )

with t P tk k kd d= å( ) ( ) and J ,r r given by equation (58). The solution of these linear equations is

t 0 e , 87k k
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where c is a constant determined by the initial conditions. The time scale of δk is fast (compared to the time scale
offL(t)) and corresponds to the second eigenvalue calculated in section 5.1, while δρ has three terms: the first two
are fast and the last one is slow (for a 1 ). It is important to note that this last slow term appears becausewe
used the approximate expression of the trajectory in equation (84), instead of the exact one. According to the
discussion in appendix C, this term can be neglected, since it is of order O N 1-( ) as long as the approximation is
accurate.We thereby conclude that this trajectory is an attractor of the dynamics and that the attractor is reached
in a time scale, which is shorter than the time scale within the attractor. This approach captures a critical feature
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that the expansion around the deterministic solution overlooked.Whilefk(t) is exactly the same for both
approaches,fρ(t)depends onfL(t) following equation (84), and the dynamics are not uncoupled as in the
previous case.

6.2. Expansion around the dynamical attractor
Infigures 3(a) and (b)we plot, respectively,m(t) and ρ(t) versusmL(t) for different realizations of the stochastic
process in different network structures. It is apparent from thisfigure thatm(t) and ρ(t)fluctuate around the
dynamical attractor m t m t t m t,L L*r f= = r( ) ( ) ( ) ( ( )). Based upon this picture of the phase space, our second
approach to solve equations (29)–(33), whichwe name S2PA, consists in splitting themk(t) and ρ(t) variables
into the dynamical attractor contribution plus additional fluctuations as

m t m t t , 90k L ke= +( ) ( ) ( ) ( )

t m t t , 91L*r f e= +r r( ) ( ( )) ( ) ( )

wheremL, εk and ερ are all stochastic variables. According to the discussion above, section 6.1, εk and ερ are fast
variables andwe assume that they can be approximated by a vanKampen type expansion

t t N t N t ..., 92k k k k
1 2 1e d l n= + + +- -( ) ( ) ( ) ( ) ( )

t t N t ..., 931 2e d l= + +r r r
-( ) ( ) ( ) ( )

δ k and δρ being the deterministic equations (87) and (89), whileλk,λρ, νk are stochastic. The orderO(N
−1) of ερ

will not be necessary for the expansion procedure in this case.
We nowproceed tofind the statistical properties of εk and ερ. Introducing equations (90)–(93) in the

equations for themoments (29)–(33) and equating powers ofN, wefind
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Figure 3. Single trajectories of the stochastic variablesm(t), ρ(t) andmL(t) for three different networks with a=0.01, h=1,μ=4
andN=256. Black solid lines correspond to the deterministic attractor part of equations (90) and (91)whilefluctuations around it
correspond to εk and ερ.
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for the correlations, where, for simplicity and brevity of the expressions, we have assumed that the deterministic
contributions δk(t), δρ(t) arewell captured by the linear systemof equations (85) and (86) and that
δk(0)=δρ(0)=0. An important difference with respect to the expansion around the deterministic solution,
equations (63)–(64), is that the equations for themoments are not closed, as indicated by the presence of the last
term in equation (98). Nevertheless, wewill argue later on in this same section that this term can be neglected at
this level of approximation.

From these equations, it follows directly that m 0k k Lst st stl l lá ñ = á ñ = á ñ =r . Furthermore, due to the up–

down symmetry of themodel, we know that 0k stná ñ = , and thus it follows that 0
m1 st

k

L
2 =l l

-
r . Performing in

equation (98) the double sum kk P Pk k k k,å ¢¢ ¢ and taking into account that, by definition, kP t 0k k keå =( ) (the
same identity holds for tkd ( ),λk(t) and νk(t) separately), wefind
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which, togetherwith equation (51), proves that m tL ( ) behaves as an autonomous stochastic variable.
Furthermore, its first and secondmoments fulfill equivalent equations to those ofm(t) in the all-to-all scenario
(see equations (23) and (24)) if we change h h2 x and N Neff . The stationary solution reads

m
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and the transient regime
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Note that aN m O 1L
2

stá ñ = ( ), implying that the order of equation (98) is consistentlyO(1) and also supporting
the reasoning of appendix C. As shown in appendixD, it is also possible to obtain these statistical properties
starting from a closedmaster equation for the linkmagnetizationmL(t).

Performing in equation (98) the partial sum k Pk kå ¢¢ ¢ we obtain an expression for mk Lná ñ that depends
on mL

2á ñ,

m

t
N

m

t
aN m a h m

k
a h m h

m

m

d

d

d

d
4 2 2

4
1 2

1
. 102

k L L
L k L

L
k L

L

2
2

2
2

n
x n

m
x

l l

á ñ
+

á ñ
= - á ñ - + á ñ

+ + - á ñ -
-

r

( )

( ( )) ( )

Wenow set

m

m1
0. 103

k L

L
2

st

l l
-

»r ( )

A justification of this assumption relies on the use of the vanKampen expansion equations (63), (64), that
determines that at orderO(N−1/2) the average of equation (103) is proportional to k kg g gá ñr¢ , which is zero as the
stochastic variables γa areGaussian [54]. This analysis is strictly valid only in the regime of large a ac , but in
figure 4we provide numerical evidence of its validity in thewhole range of parameters of a.We observe that the
assumptionworks verywell for the Erdös–Rényi and Barabási–Albert networks, while for the dichotomous
network there is a narrow parameter region around the critical point where the average equation (103) is non-
zero but still negligible.

Once this termhas been neglected, the solution of equation (102) in the stationary state is
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Replacing this result in equation (98), we obtain the following correlations in the stationary state

k k aN h k k

a h
m

P

h

a h
m1 . 105k k L

k k

k
Lst

2
st

, 2
stl l

m
m x
m x

d x
x

á ñ = -
+ ¢

+
+ + ¢

+
á ñ + -

+
á ñ¢

¢ ⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

Wehave now all necessary ingredients to calculate the first and secondmoments of the globalmagnetization
m P mk k k= å , both in the stationary and transient regimes. For example, the stationary variance is
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The critical point is found by solving m N
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s = +[ ] , taking into account that ξ depends on a,
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The average value of ρ can be determined in the stationary regime as
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At variancewith the results of the expansion around the deterministic solution (see equations (81) and (82)), the
above expression is not divergent for a 0 .

It is important to stress the similarities and differences of our stochastic PAmethodwith the one developed
in [43] for the noiseless votermodel. In that paper the authors use amaster equation approach for the link
magnetizationmLwhich can readily be extended to the noisy case (see appendixD) yielding formL the same
statistical properties as the ones obtained by ourmore sophisticated approach.However, the authors of [43]
make, implicitly, the extra assumption that the linkmagnetizationmL and the nodemagnetizationm share the
same statistical properties. To check the validity of this assumption, and using
mm m N P mL L k k k Lst

2
st

1
stná ñ = á ñ + å á ñ- , we obtain
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a function of the degree heterogeneity and the parameters of themodel (the ratio of time scales). From this
expressionwe conclude that it is true that in the noiseless votermodel, with a=0, m mL

2
stá - ñ( ) becomes zero

(rather, of orderN−1, which is the accuracy of our expansion), validating the approach of [43] in that case.
Remarkably, in the limit of a homogeneous network, withNeff=N, the statistical properties ofm andmL also
coincide, consistently with the fact thatm andmL are the same quantity for those networks. Furthermore, in the
critical zone a=O(N−1) and for a heterogeneous networkwe obtain that m m O NL

2
st

1á - ñ = -( ) ( ), meaning
thatwhen there is time scale separationm does not differ significantly frommL. Our analysis shows that in the

Figure 4. Statistical properties of the variable Z m m1k L L
2l lº -r ( ). The left panel plots one representative time evolution ofZ

corresponding to the trajectories offigure 3with a=0.01, h=1,μ=4 andN=256. In practice,Zhas been computed using
N m mk k L

1 2l = -( ) and N mL
1 2 *l r f= -r r( ( )) coming from equations (90)–(93) in the steady state δk(t)=δρ(t)=0. The

average value Z stá ñ and its standard deviationσZ are then plotted in the right panel as a function of a for different network types (see
section 7 for a precise definition). In this panel (b) the dots indicate Z stá ñ and the dashed lines are Z Zst sá ñ  .
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noisy votermodel the assumption that the statistical properties of themagnetization are those of the link
magnetization cannot be held for heterogeneous networks far away from the critical region, while for the voter
model without noise (a=0) the statistical differences between both quantities turn out to be negligible. The
relevance of this difference for other stochastic processes defined in heterogeneous networks is under study.

7. Comparisonwith numerical simulations

Wenow compare the different theoretical approaches based on the stochastic PA and others with the results of
numerical simulations.We focus on the steady state values mst

2s [ ]and strá ñ as functions of the noise parameter a
and the degree heterogeneityκ≡μ2/μ

2−1, for six different network structures keeping a constant value for
the average connectivityμ=4 and the total number of nodesN=2500, namely:

(1) an Erdös–Rényi randomnetwork with a fixed number of links N 2m that are connected randomly between
pairs of nodes, thus leading to a degree heterogeneityκ=0.19;

(2) a Barabási–Albert preferential-attachment network, with a power-law degree distribution P kk
3~ - and a

degree heterogeneityκ=3.05;

(3) a dichotomous network where a fraction 23/24 of nodes has k=2 neighbors and the remaining fraction 1/
24 has k=50 neighbors, leading to a degree heterogeneityκ=5.75;

(4) a z-regular network where each node has exactly k=4 neighbors but the connections amongst them are
chosen at random;

(5) a one-dimensional (1D) linear lattice where a node is connected to its closest 4 neighbors (2 to the right and
2 to the left);

(6) and a two-dimensional square lattice (2D)where each node is connected to its 4 nearest neighbors.

The last three of these networks are called ‘homogeneous’, asκ=0. For each one of these networks we plot the
theoretical predictions for the variance of themagnetization mst

2s [ ]and the average density of active links strá ñ in
the steady state as given by:

(a) the global-state-approach as presented in equations (26) and (27), which is independent of all network
details (the comparison has already been presented infigure 2);

(b) the annealed approximation as developed in [42];

(c) the expansion around the deterministic solution (S1PA) as given by equations (74) and (81);

(d) the expansion around the dynamical attractor (S2PA) as given by equations (107) and (109);

(e) and, for comparison, we have also included the variance mLst
2s [ ], which would have been the result of

extending the theory developed at [43] to the noisy votermodel, neglecting the difference between the
magnetizationm(t) and the linkmagnetizationmL(t).

Infigure 5we plot N mst
2s [ ]as a function of the noise parameter a. For clarity, we have split the comparison

in several panels.We can appreciate infigures 5(b) and (d) howS2PA reproduces very accurately the numerical
results for the heterogeneous and the z-regular networks in thewhole range of values of a, both above and below
the critical point ac. The results of S1PA are indistinguishable from those of S2PA above the critical point a>ac,
while below it a<ac the S1PAprediction for N mst

2s [ ]diverges as a 0 , at oddswith S2PA and the numerical
simulations.We expect a full agreement between these two approaches only in the thermodynamic limit, in
which N  ¥with afixed, as equations (107) and (74)would then coincide. The data is also analyzed in
figure 6 as a function of the degree heterogeneityκ.While for a>ac (figure 6(a)) mst

2s [ ] is proportional to the
degree heterogeneity in accordancewith equation (74), for a<ac (figure 6(b)) the dependence is not linear but
well captured by equation (107). On the other hand, N mLst

2s [ ]coincides with N mst
2s [ ]only below the critical

point a<ac or for homogeneous networks 0k  , where the difference betweenm andmL is irrelevant, as
discussed in the previous section. The annealed approximation developed in [42] reproduces correctly both the
dependence on a andκ, but it is less accurate in general than the PA (S2PA). The global-state approach equation
(26) has the correct scaling, but it is accurate only for networks with low levels of heterogeneity and does not
predict any dependence withκ. In the limit 2

2m m=  ¥, and for all values of a below and above the critical
point, the relative difference between equations (107) and(26) is of orderN−1.We also check the predicted
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values for the critical point ac infigure 7. Again, the S2PA approach offers the bestfit to the numerical data, while
the S1PA and the annealed approximations coincide for all values of the degree heterogeneity.

Infigure 8we plot the results of strá ñ as a function of a.We have split the comparison for heterogeneous
random (figure 8(a)) and homogeneous (figure 8(b))networks.We can observe again a very high degree of
accuracy of S2PA for randomnetworks in thewhole range of values of a. The results using the expansion around
the deterministic solution S1PA are accurate above the critical point, but below it they show a divergence leading
to non-physical results ρ<0. Comparingwith other treatments, such as the annealed and all-to-all

Figure 5. Stationary variance of themagnetization as a function of a for different networkswith fixedμ=4 andN=2500.
Figures 5(b) and (d) show the comparisonwith themethods developed in this paper, S1PA and S2PA, for heterogeneous (figure 5(b))
and homogeneous (figure 5(d))networks, whilefigures 5(a) and (c) show the corresponding comparison for the annealed
approximation of [42], and the results obtained neglecting the difference between themagnetizationm and the linkmagnetizationmL.
Dots correspond to numerical simulationswhile lines are analytical results according to the legend.

Figure 6. Stationary variance of themagnetization as a function of degree heterogeneityκ=μ2/μ
2−1 for different networkswith

fixedμ=4 andN=2500. Figure 6(a) focuses on a>ac, where the S1PA and the S2PA approaches coincide, while figure 6(b)
focuses on a<ac, where the S2PA and the assimilation of themagnetizationm and the linkmagnetizationmL lead to similar results.
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approximations, it is clear that the stochastic PA (S2PA)developed here perfectly captures the shape of the curve
strá ñ versus a, while the annealed approximation discussed in [42] fails even qualitatively. This failure of the

annealed and all-to-all approximations is directly related to the fact that the average degreeμ is finite, as one can
prove that in the limit 0k  equations (109) and (27) coincide onlywhen m  ¥ and thus 1 2x  . Note
that the expression of S2PA for strá ñ given at equation (109) is independent onwhether the spinm and linkmL

magnetizations are assumed to be equal or not, and thus this approximation leads to the same result as the
extension of the theory developed at [43] for strá ñ .

Both the variance of themagnetization and the average density of active links show significant discrepancies
between the results of numerical simulations and the proposed analyticalmethods in the case of regular networks of
lowdimensionality d=1, 2. This is specially notorious for the 1Dcase,where even the scaling m O N2

st
0á ñ ~ ( ) if

a∼O(N−1)doesnot apply and, instead, it is m O N2
st

1 2á ñ ~ -( ). This is the reasonwhy there is nofinite-size
critical point infigure 7, as definedpreviously, for the 1Dand2Dcases. As the critical dimensionof the noisy voter
model isd=2, for any dimension above this value the same scalingproperties are expected, in accordance to the all-
to-all result. A detailed analysis of thefinite-size scaling for regular latticeswill be published elsewhere [72].

8. Time dependence

Themethod S2PA, developed in the previous sections, allows us to determine the time evolution of m tá ñ( ) and
trá ñ( ) . From the construction of the variables we have m t t m tk k Ldá ñ = + á ñ( ) ( ) ( ) , which leads to

Figure 7.The critical point as a function of degree heterogeneityμ2/μ1
2−1 for networkswith fixedμ=4 andN=2500.Dots

correspond to numerical simulations while lines are analytical results: ac=h/N for the all-to-all approach and equations (75) and
(108) for S1PA and S2PA, respectively. The annealed network approximation coincides with S1PA.

Figure 8. Stationary average density of active links as a function of a for different networks withμ=4 andN=2500. Figure 8(a)
focuses on heterogeneous randomnetworks and figure 8(b) onhomogeneous networks. Dots correspond to numerical simulations
while lines are analytical results according to the legend.While for randomnetworks (both heterogeneous or homogeneous) the S2PA
offers a very good agreement for all values of a, the annealed approximation fails qualitatively for intermediate values and S1PA gives
non-physical results 0strá ñ < for small a.
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assuming that we start with afixed initial conditionm(0) andmL(0). A preferable quantity tomeasure this time
evolution, that does not depend on the initial conditions, is the stationary autocorrelation function
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The existence of two exponentials in this expression is directly related to the degree heterogeneity, as already
pointed outwith the annealed approximation in [42]. Infigure 9we plot the time evolution ofKst[m](t) for the
two extreme cases of a networkwith no degree heterogeneity (z-regular randomnetwork) and a highly
heterogeneous degree distribution (dichotomous network).While for the z-regular network there is only one
slow exponential, for the dichotomous network the early stages are dominated by the fast exponential and later
the slowpart dominates, in accordance to equation (112). Hence, byfitting a double exponential to the
autocorrelation datawe are then capable of obtaining information about the network heterogeneity.

While it has not been studied before in the context of the noisy version of themodel, the time evolution of
the interface density of active links ρ is commonly used to describe the dynamics of the (noiseless, a=0) voter
model. In that case, the votermodel is characterized by the existence of two absorbing states (m=−1 and
m=1), both of them corresponding to full order or consensus (ρ=0). Therefore, the focus is on how the
system approaches consensus and if it does so in the thermodynamic limit. In particular, the ordering process is
found to be determined by the dimensionality d of the underlying topology. For d 2 , and in the infinite size
limit, the systemorders by a coarsening process, i.e., by a continuous and unbounded growth of spatial domains
of one of the opinions. The ensemble average interface density decays as t 1 2rá ñ ~ - for d=1 and as

tlog 1rá ñ ~ -( ) for d=2. After an initial transient, infinite systemswith d>2 are observed to fall into a
metastable, highly disordered state (0<ρ<1/2)where coarsening processes have stopped. In these cases, the
average interface density behaves as b c t d 2rá ñ ~ - -· , and thus complete order is never reached. Finite-size
systems, on the contrary, are always led to complete order by finite-size fluctuations. As a consequence, finite
systems follow the above described behaviors only for afinite time, after which an exponential decay to complete
order is observed.Notably, it has been shown that this characteristic decay time is proportional to the effective
system sizeNeff (for d>2).

According to the theoretical description presented in the previous section 6, the time dependence of trá ñ( )
can be determined as

t m t O N0 e 1 , 113J t
L

2 1,r d xá ñ = + - á ñ +r
- -r r( ) ( ) ( ( ) ) ( ) ( )

where 0 0d r x= á ñ -r ( ) ( ) and, for simplicity, we assume m m0 0 0k Lá ñ = á ñ =( ) ( ) so that the term 0 e J t,dr - r r( )
is the only one that remains from equation (89). The formof this expression is in linewith the qualitative
description given in [64], where the average interface density is said to be characterized by a short initial transient
after which a plateau is reached at a value 0*r x= > . In amore quantitative description, equation (113)
contains the initial transient 0 e J t,dr - r r( ) , the exponential decay due tofinite-size effects after the plateau

m eL
t2

stx á ñ t- with N

aN h4
eff

eff
t =

x+( )
and thefinal steady state described by equation (109). Note how the decay

time of the initial transient is independent of the degree heterogeneity, unlike the one due tofinite-size effects.

Figure 9. Stationary autocorrelation function of themagnetization as a function of the time-lag τ for the dichotomous and z-regular
networks with a=0.01,μ=4 andN=2500. Dots correspond to numerical simulationswhile lines are analytical results: dashed
lines are the annealed approximation [42], while solid lines are the S2PA results, equation (112). The green-dotted analytic curve for
the annealed approximation is superposed to the solid green line because in the absence of degree heterogeneity, i.e. for the z-regular
network,Kst[m](t)=e−2at in both approaches.
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For a<ac, N J1eff ,t ~ r r , whereas τ and 1/ J ,r r are both of the orderN
0 for a>ac. The difference between

the plateau and the steady state m tL
2x á ñ( ) is of order 1/N for a>ac and of order aN for a<ac.

Numerical results for the time evolution of the average order parameter are presented infigure 10 for the six
different networks studied. Note that, due to their particular ordering dynamics and for comparisonwith the
votermodel, we have included both 1D and 2D regular networks. In thisfigure, we can clearly distinguish the
two stages in the dynamics of the average interface density identified in [64] and described by equation (113): an
initial ordering transient, with a significant decrease of the order parameter from its initial, close to complete
disorder value ρ=1/2, corresponding to a random initial distribution of states; and afinal steady state, where
the order parameter fluctuates around a characteristic level of disorder. As shown in the figure, for a<ac the
initial ordering behavior of the noisy votermodel is remarkably similar to the ordering dynamics of the voter
model described above: a power-law decay as t 1 2rá ñ ~ - for d=1 (regular 1D), a logarithmic decay as

tln 1rá ñ ~ -( ) for d=2 (regular 2D), and a fast decay to the plateau followed by a slow exponential decay

e t*r rá ñ ~ t- for d>2 (z-regular, Erdös–Rényi, Barabási–Albert, dichotomous). Therefore, as in the voter
model, the initial ordering of systemswith dimension d 2 is characterized by a coarsening process with
growth of spacial domains, while the ordering of systemswith dimension d>2 occursmainly byfinite-size
fluctuations after a period in ametastable, highly disordered state.We can also note that, apart from coarsening,
finite-size fluctuations are present too for d 2 , being responsible for the exponential decay interrupting the
coarsening process. It is important to note, however, that, while in the votermodel any ordering process in a
finite system is a transient towards complete order, in the noisy votermodel it is a transient towards a non-zero
steady state of the order parameter. Thus, the votermodel-like initial ordering of the noisy votermodel is
interruptedwhenever the average order parameter reaches its steady state value. In general, the behavior for
a>ac is quite different, as one can notice from thefigure. This is because the influence offinite-size effects on

rá ñbecomesweaker as a is increased. Thus, the value at the plateau ρ=ρ* is closer to the steady state solution

strá ñ and the time scale of the fast initial transient is not that different from the one offinite-size effects τ, which
mixes the two behaviors. Furthermore, for d 2 the previous voter-like time dependence is no longer true.

Figure 10.Temporal evolution of the average density of active links for different networkswith 4m = andN=2500. Twofixed
values of a are taken, one below the critical point, figures 10(a) and (c), and one above, figures 10(b) and (d). Dots correspond to
numerical simulationswhile lines are the analytical result equation (113).

21

New J. Phys. 20 (2018) 103045 A FPeralta et al



9. Conclusions

Wehavedeveloped a full stochastic approach to thePA scheme to studybinary-state dynamics onheterogeneous
networks.Our starting point is themaster equation for the set of variables {L,N1,k}, beingN1,k the number of nodes
withdegree k in the state up andL the number of active links. The effective rates of themaster equation are obtained
using thePAasdiscussed in [43] in the context of thenoiseless votermodel. For the noisy votermodel, however,we
show that the spinmagnetization and the linkmagnetization cannot be identified.Once the equations for the time
evolutionof themoments and correlations are formulated,weproceed to close the hierarchyby using twodifferent
closure schemes. Thefirst one, S1PA, is based on a vanKampen type of expansion around thedeterministic solution
of thedynamics corresponding to the thermodynamic limit, while the secondone, S2PA, is based on an expansion
around a stochastic dynamical attractor.

In thefirst approach, we expand the solution around the deterministic fixed point. In this waywe are able to
derive a linear set of equations for the correlationmatrix and first corrections to the average values. Although our
methodology is very general for any set of rates, we have focused on the noisy votermodel, for whichwe have
been able to carry out a full analytical treatment. Thisfirst analysis, based on the ansatz that the fluctuations of
themagnetization scale with system size as m Nst

2 1s ~ -[ ] , predicts that the fluctuations depend linearly on the
degree heterogeneity of the network.We also obtained an expression for the average density of active links strá ñ .
Both expressions have amathematical divergence as the noise intensity approaches a 0 . Compared to
numerical simulations, these results turn out to be very accurate well above the critical point of the noisy voter
model, a h N 1- , but fail belowor close to it. The failure of this approach is ultimately linked to the ansatz of
the scaling of the correlationswith system size. Aswe approach the critical point a 0 , it is not true that
fluctuations diverge but there is a change in the scalingwithN, in the noisy voter case becoming m Nst

2 0s ~[ ] .
Our second approach is based on a system size expansion around a stochastic dynamical attractor. Although

thismethod turns out to bemore precise than the expansion around the deterministic solution and fitsmuch
better the numerical data for the noisy votermodel, it ismuchmore involved and its applicabilitymust be
analyzed for the particularmodel under study. Exploring the phase space of deterministic solutions, wewere
able to identify a special trajectorym(t)=mL(t) and t m t1 L

2r x» -( ) ( ( ) ) (mL being the linkmagnetization)
aroundwhich the dynamics is fast and thefluctuations do fulfill a vanKampen type of scaling, namely

m m NLst
2 1s - ~ -[ ] , for all values of a. Using this expansionwe are able to obtain expressions for all the desired

quantities, not limited to the stationary values but including the dynamics of trá ñ( ) and m tá ñ( ) , whichmatch
perfectly compared to numerical simulations andwork better than previous approaches to the samemodel, such
as all-to-all or annealed network approximations.We highlight that the results of mLst

2s [ ] are the same as the all-

to-all network if we rescale the herding as h h2 x and the system size as N N Neff
2

2

 = m
m
in terms of thefirst

μ and secondμ2moments of the degree distribution, a result that was previously reported for the noiseless voter
model. However, due to the effect of noise a 0¹ , it is not true that m mLst

2
st
2s s»[ ] [ ], which implies thatfinite-

size effects in a complex network cannot be reduced to replacing the system sizeNby an effective oneNeff.
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AppendixA. Solution of equations (65)–(67)

Replacing the Jacobian equations (56)–(58) and the steady state value equations (68)–(49) into equations (65)–
(67), these latter can be reduced to

a h C h
P k

C C
a h

P
4 2

4
, A.1k k

k

k
k k k k

k
k k, , , ,åx x

m
x
d+ -

¢¢
+ =

+
¢

¢¢

¢¢
¢¢ ¢ ¢¢ ¢( ) ( ) ( ) ( )

a h J C h
P k

C2 2 2 0, A.2k
k

k
k, , ,åx x

m
+ + -

¢¢
=r r r r

¢¢

¢¢
¢¢( ) ( )

C J G2 . A.3, , =r r r r r ( )

From equation (A.3)we get C G J2, ,=r r r r r, while from equation (A.2), by inspection, we note thatCk,ρ is a
constant that does not depend on k. Reinserting this independence of k back into the equation, we notice that the
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only possibility is the trivial solutionCk,ρ=0. Equation (A.1) ismore involved. Let us define D Ck k
P k

k k,
k= å m¢

¢
¢

¢

and D Dk
P k

k
k= å m

, so the equation becomes

a h C h D D
a h

P
4 2

4
. A.4k k k k

k
k k, ,x x

x
d+ - + =

+
¢ ¢ ¢( ) ( ) ( ) ( )

Wenowperform the double sum k
P k

k
P kk kå åm m¢

¢¢ , obtaining in this way a closed relation forD

D
a h

a
. A.52

2

x m
m

=
+ ( )

If we perform instead the single sum k
P kkå m¢

¢¢ , we obtain an expression forDk as a function ofD

D
h

a h
D

k a h

a h2

2

2
, A.6k

x
x m

x
x

=
+

+
+
+

( ) ( )

andwe then solve Ck k, ¢

C
h

a h
D D

P2

1
. A.7k k k k

k
k k, ,

x
x

d=
+

+ +¢ ¢ ¢( )
( ) ( )

Finally, replacing equation (A.5) into (A.6) and this latter into (A.7), we obtain equation (73).

Appendix B. A linear noise example

Consider the simple example of two coupled linear stochastic equations for variables x(t) and y(t)

x x N t
1

, B.1
x

x
1 2

t
x= - + -˙ ( ) ( )

y y x y N t
1 1

, B.2
x y

y
1 2

t t
x= - + - + -˙ ( ) ( ) ( )

where ξx, y(t) are two uncorrelatedGaussianwhite noise variables t t t ta b a b,x x d dá ¢ ñ = - ¢( ) ( ) ( ). The x variable is
independent of y and has a stationary variance x N2x

2
st tá ñ = ( ). This variance fulfills the vanKampen ansatz as

long as τx=O(1), while when the time scale diverges τx=O(Nα)with 0 1 a , the variance has an
anomalous scaling x O N2

st
1á ñ = a-( ). The deterministic part of the equation has the solution y(t)=x(t)which

is an attractor of trajectories.We then propose to split the y variable as y(t)=x(t)+ε(t), with two stochastic
parts: a slow one x(t), based on the solution of the deterministic attractor, and a fast one ε(t). Introducing this
change of variables in equation (B.2), we find

N t N t
1 1

, B.3
x y

y x
1 2 1 2e

t t
e x x= - + + -- -

⎛
⎝⎜

⎞
⎠⎟˙ ( ) ( ) ( )

whose variance is N2
st

1 x y

x y
eá ñ =

t t

t t
-

+
. Hence, as long as τy=O(1), and regardless of the scaling of τx, the variance

of ε always scales as O N2
st

1eá ñ = -( ), which justifies the use of a vanKampen type of expansion for this variable
in thewhole range of values of τx.

AppendixC. Solution of equation (83)

The equation is

d

d
1

1
, C.1L

L L

2

2

*
*

*
f

f

f
af b

f

f
- = + -

-
r

r
r ( )

with 1 2 2h

a
a m= - -( )/ , 1 1h

a

2b m= -( )/ and boundary conditions 1 0L*f f =  =r( ) . Note that, the

value y0L 0
*f f = ºr( ) is determined by the (positive) solution of y y1 00 0

2a b+ - = or 0*f x=r( ) , where ξ is
given by equation (54).

Tofind the general solution of the Ricatti-type equation (C.1)we follow a standard procedure.Wefirst
introduce the change of variables s L

2f= , which reduces the equation to

s
s s

2
d

d
1

1
. C.2

2*
*

*f
af b

f
- = + -

-
r

r
r ( )
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Then the change of variables

s
s s

z s

z s

s

2 1 d

d
, C.3*f

b
= -

-
r( ) ( )

( )
( ) ( )

leads to the second order linear differential equation

z

s

s

s s

z

s s s
z

d

d

2 4

2 1

d

d 4 1
0, C.4

2

2 2

a a b
+

+ - +
-

-
-

=
( )

( ) ( )
( )

whose solution is

z s Cs F s s F s, 1 ; 1 ; , 1 ; 1 ; , C.51 2 1 2 2 1 1 2
1 2l l l l l l l l= + + + + - - - -l l-( ) ( ) ( ) ( )

whereC is an integration constant (another irrelevant globalmultiplicative constant has been set equal to one).
F(a, b; c; s) is theGauss hypergeometric function andwe have introduced the notation

1

4
4 , C.61

2l a a b= - + +( ) ( )

1

4
4

2
. C.72

2l a a b
b
x= + + =( ) ( )

Wenote that, independently of the value of the constantC, the solution verifies 0*f x=r( ) . The constantC is

obtained by demanding that 1 0*f =r( ) . Using the known expansion [73] of the hypergeometric function

F a b a b s
a b

a b
s O s, ; ; log 1 1 , C.81+ = -

G +
G G

- + -( ) ( )
( ) ( )

( ) (( ) ) ( )

which is valid for s→ 1, we arrive at

C
1 1

1 1
. C.91 2 1 2

1 2 1 2

l l l l
l l l l

= -
G - - G G +
G + + G - G -

( ) ( ) ( )
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The solution isfinally written as

G1 , C.10L L L
2 2*f f x f f= -r( ) ( ) ( ) ( )

where

G s
sz s

z s
. C.11

2l
= -

¢( ) ( )
( )

( )

For amore explicit expression of L*f fr( ) in terms of hypergeometric functionswe could perform the derivative

z s z s

s

d

d
¢ =( ) ( ) using

F a b c s

s

ab

c
F a b c s

d , ; ;

d
1, 1; 1; . C.12= + + +

( ) ( ) ( )

By expandingG(s) around s=0 it is possible tofind the following bound

G a1 1 1 , C.13L L L L L
2 2 2 2*f f x f x f f f- - = - - < Lr∣ ( ) ( )∣ ( )( ( ) ) ( )

FigureC1. Exact solution equation (C.10) compared to the approximation equation (84). The two expressions are shown infigure
C1(a) for a=0.1, h=1 andμ=3 and their difference infigure C1(b) for different values of awith the same other parameters. The
dashed lines correspond to the upper bound proportional to a L

2fL .
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with

h a h h a a h
O

2

2 2 4 1 2

1

2

1
. C.14

2 2 2 2 2

2m

m m m m m m
mL =

- + + - + +
=

+
+ -

( ) ( ) ( )
( ) ( )

Note that thedifference 1L L
2*f f x f- -r∣ ( ) ( )∣ is ameasure of the error introducedbyusing the approximate form

1 L
2x f-( ) instead of the exact function L*f fr( ), as done in equation (84), and thus the previous equation establishes

anupper bound for this error. The validity of the approximation and its error bound are graphicallyproven in
figureC1,whereweplot the difference 1L L

2*f f x f- -r∣ ( ) ( )∣as a functionof mL
2 and the straight line amL

2L .

If we now assume thatmL fulfills the same scaling properties asm described earlier in equations (25)–(26),
then m O NL

2
st

0á ñ ~ ( ) if a∼O(N−1) and m O NL
2

st
1á ñ ~ -( ) if a∼O(N0), and it turns out that the difference

between the exact function *fr and the approximation equation (84) is of orderN−1 and thus it can be neglected

at the order of our approximation.

AppendixD.Master equation for the linkmagnetization

Wepresent in this appendix a simplermethod, based on amaster equation approach, to compute the statistical
properties of the linkmagnetization, including fluctuations and finite-size effects [53]. This approach is very
similar to the all-to-all approximation, and it can be derived following the same steps.We only consider one

description variablemL to be relevant. The possible processes are m mL L k  D , with k
k

N

2D =
m

, where the

sign− (resp.+) corresponds to the switching of a node of degree k from the up (resp. down) to the down (resp.
up) state. Themaster equation then reads

P m t

t
E W P E W P

;
1 1 , D.1L

k
m k m kL

k
L

kå¶
¶

= - + -D - -D +( ) ( )[ ] ( )[ ] ( )

whereWk
 are the effective rates of the proposed processes, that only depend on the description variablemL.We

assume that all nodes with degree khave the same rate of switching to the other state, replacing the local density
A n

k

j ij j

i

å
by the global density of up–nodes connected to nodes in state up or down, which coincides with the c0/1

calculated in equation (45) as
m1 L

r


. Additionally, and this is the key point, we assume that all the other variables

follow strictly the deterministic attractor and do not deviate at all, i.e.,mk=mL, m1 L
2r x= -( ).We then have,

for the noisy votermodel

W
N

m a h m
2

1 1 , D.2k
k

L Lx= - + ++ ( )( ( )) ( )

W
N

m a h m
2

1 1 . D.3k
k

L Lx= + + -- ( )( ( )) ( )

Following [43], we take the continuum limit by expanding themaster equation (D.1) in powers ofΔk to second
order

P m t

t m
f m P

m
g m P

; 1

2
, D.4L

L
L L

L
L L

2

2

¶
¶

= -
¶

¶
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¶
¶
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where nowP(mL; t)must be understood as a probability density function and the functions fL(mL) and gL(mL) are
defined as

f m W W am2 , D.5L L
k

k k k Lå= D - = -+ -( ) [ ] ( )

g m W W a h m N4 1 . D.6L L
k

k k k L
2 2

effå x= D + = + -+ -( ) [ ] ( ( )) ( )

The time evolution of themoments m tLá ñ( ) and m tL
2á ñ( ) can be obtained by integrating both sides of the

Fokker–Planck equation (D.4) respectively as m mdL Lò and m mdL L
2ò , such that one reproduces the results

obtained in equations (51) and(99).
If we take the same continuum limit in themaster equation (17) of the all-to-all approach, wefind, for the

probability P m t;( ), an equation similar to equation (D.4), but dependent nowon functions f (m) and g(m),
defined as

f m
N

W W am
2

2 , D.7= - = -+ -( ) [ ] ( )

g m
N

W W a h m N
4

2 2 1 . D.8
2

2= + = + -+ -( ) [ ] ( ( )) ( )
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These functions are equivalent to fL and gL if we replace h h2 x , N Neff and m mL , in agreement with
the equivalence of equations (100) and (26) under the same replacement.
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