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Abstract. We exploit the knowledge of the nonequilibrium potential in a model for the modulated class A
laser. We analyse both, the deterministic and the stochastic dynamics of such a system in terms of the Lya-
punov potential. Furthermore, we analyse the stochastic response of such a system and explain it again using
the potential in a wide range of parameters and for small values of the noise. Such a response is quantified
by means of the amplification factor, founding stochastic resonance within specific parameter’s ranges.

1 Introduction

Stochastic resonance (SR) has become a paradigm of
the constructive effects of fluctuations on nonlinear sys-
tems [1,2]. Briefly, the phenomenon occurs whenever
the Kramers’ rate for the transition between attractors
matches the typical frequency of a signal which can not
itself trigger that transition (i.e. it is sub-threshold. How-
ever, supra-threshold cases have also been studied [3]).
Several measures of SR can be defined (the signal-to-noise
ratio and the spectral amplification factor being the most
used ones), and the theoretical analysis is usually carried
on in terms of the two-state approximation [1]. Since its
discovery more than thirty years ago interest has gradually
shifted towards increasingly complex systems, networks
and nonlinear media being the main directions. Instances
of this trend are the experiments carried out to explore the
role of SR in sensory and other biological functions [4–6],
and experiments in chemical systems [7–9].

Recent research was based on the study of nonlinear
media that can be described as reaction-diffusion sys-
tems, namely those that can be thought of as a collection
of diffusively coupled nonlinear units. The possibility of
enhancing the system’s response through the coupling of
those units [10–23] has been among the explored issues,
together with the problem of how does nature manage to
make the system’s response less dependent on a fine tun-
ing of the noise intensity, or that of searching for different
ways to control the phenomenon [24,25].

In the case of extended systems, the theoretical studies
have profited from the knowledge of the system’s nonequi-
librium potential (NEP) [26,27]. However, there are
models that realistically describe experimental systems,
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with a known form of the NEP, that have so far not
been exploited for SR’s studies. One such a system is the
modulated class A laser with injection [28,29].

The dynamics of such lasers have a simple description
in terms of rate equations for the temporal evolution of
the different dynamical variables. It is usual to classify
lasers according to the decay rate of photons, carriers,
and material polarisation [30–32]. In the so-called class
A lasers the material variables decay to the steady state
much faster than the electric field, and can therefore be
adiabatically eliminated. The resulting equation for the
electric field suffices to describe the dynamical evolution
of the laser. This equation contains a white-noise term
accounting for the stochastic nature of the spontaneous
emission. Some properties of typical class A lasers, such
as a dye laser, are discussed in references [33,34].

Here we analyse SR in the indicated laser system,
exploiting the knowledge of its NEP. The extremely inter-
esting aspect of this system is that it goes from a single
fixed point into a limit cycle as a parameter of the laser
is varied. A fact that is reflected in the NEP’s behavior.

In the following Section 2 we introduce the model and
the form of its NEP. In Section 3 we describe the dynamics
of the system when modulation is considered, both in the
deterministic and the stochastic situations. Afterwards,
we devote Section 4 to the study of the amplification factor
to have a deep understanding of the stochastic dynamics
with modulation, therefore we discuss a few situations of
interest. Finally, we draw some conclusions.

2 The model

We study the dynamical equations of a class A laser
described in terms of the slowly varying complex
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amplitude E of the electric field, injected with a
monochromatic optical field SeiΩt. The resulting evolu-
tion equation is [29,35,36]

Ė(t)=(1+iα)

(
Γ

1+β|E|2
−κ
)
E+σSe−i∆Ωt+ζ(t), (1)

where ∆Ω is the detuning between the external field and
the free-running laser frequency. Here κ is the cavity decay
rate, Γ the gain parameter, β the saturation-intensity
parameter, α the atomic detuning parameter, and σ the
amplitude feed-in rate, proportional to the inverse of
the round-trip time τin [37], ζ(t) is a (complex) Gaus-
sian white-noise term with zero mean and correlations
〈ζ(t)ζ∗(t′)〉 = 4Dδ(t− t′). In this paper we will work with
a dimensionless version of equation (1) with rescaled time
and electric field. Writing x1 + ix2 for the new rescaled
field, the new equations are

ẋ1 =

(
a

b+x2
1+x2

2

− 1

)
(x1−αx2)+ρ−ηx2+

√
2εξ1(t), (2)

ẋ2 =

(
a

b+x2
1+x2

2

− 1

)
(αx1+x2)+ηx1+

√
2εξ2(t), (3)

(see Ref. [29] for full details). The new parameters are
a = Γ/(κβ) (related to the gain parameter), b = 1/β,
ρ = σS/κ and η = ∆Ω/κ such that ρ is proportional to the
intensity of the injected field and η to its frequency. The
(real) Gaussian white noises ξi(t) have zero mean and cor-
relations 〈ξi(t)ξj(t′)〉 = δ(t − t′)δij , i, j = 1, 2, with noise
intensity ε = D/κ. The equations can be written in terms
of intensity I = x2

1 + x2
2 and phase φ = arctan(x2/x1) as

İ = 2

[
a

b+ I
− 1

]
I + 2ρ

√
I cos(φ) + 2

√
2εIξI(t), (4)

φ̇ = α

[
a

b+ I
− 1

]
− ρ√

I
sin(φ) + η +

√
2ε√
I
ξφ(t), (5)

with white noises of zero mean and correlations
〈ξA(t)ξB(t′)〉 = δ(t− t′)δAB , A,B = I, φ.

Eventually, in order to study the existence of stochastic
resonance in this system, we will be interested in allowing
the parameter a to vary periodically in time. However,
when a is a constant it is a matter of simple algebra to
show that the dynamical equations (2) and (3) can be
written as [27,29,38–40](

ẋ1

ẋ2

)
= −M

( ∂V
∂x1
∂V
∂x2

)
+ η

(
−x2

x1

)
+

(
ξ1
ξ2

)
, (6)

with the matrix M =

(
1 −α
α 1

)
, and the potential

function

V (x1, x2) =
1

2

[
x2

1 + x2
2 − a ln(b+ x2

1 + x2
2)
]

− ρ

(1 + α2)
(x1 − αx2). (7)

For future reference, we write this function in terms of
intensity I and phase φ,

V (I, φ) =
1

2
[I − a ln(b+ I)]

− ρ
√
I√

1 + α2
cos(φ+ arctan(α)). (8)

In the next subsections we summarise the main fea-
tures of the dynamical evolution in the deterministic and
stochastic cases, a more detailed account can be found
in [29].

2.1 Deterministic dynamics

In the absence of the stochastic terms (ε = 0), it turns
out that V (x1, x2) is a Lyapunov potential (i.e. bounded
from below and never increasing during the dynamical
evolution) provided that the condition ηρ = 0 is satisfied.
The existence of the potential allows one to “visualise”
the dynamics of the point of coordinates (x1(t), x2(t)) as
the movement of a fictitious particle within the potential
landscape.

(i) The case ρ = 0: if a < b the potential has a single
minimum at x1 = x2 = 0 and the dynamics leads to
this only stable fixed point. If a > b, the Lyapunov
potential has the shape of a “Mexican hat” (see for
instance Fig. 7 in [28]) with a line of minima at the
circle I = x2

1 + x2
2 = a − b. After a transient time

to reach the minima of the potential, the intensity
remains constant at I = b− a but there is a residual
dynamics φ̇ = η on the potential minimum induced
by the terms proportional to η which do not vary
the value of V . As a result, in the stationary state
the phase increases linearly as φ(t) = φ0 + ηt, with
φ0 depending on the initial conditions.

(ii) The case ρ 6= 0, η = 0: independently of the values
of a and b the potential is now tilted to a particular
direction and displays a single minimum. Hence, all
trajectories end up on a steady state with a well
defined intensity and phase obtained from setting
İ = φ̇ = 0 in equations (4) and (5).

(iii) In the case ρ 6= 0, η 6= 0, the function V (x1, x2) is no
longer a Lyapunov potential. However, the complex
bifurcation set that appears in this case [29], can still
be understood in terms of the potential at least for
small values of the product ρη.

In all cases, the details of the transient trajectory in
the (x1, x2) space leading to the minimum of the potential
depend on the particular value of the parameter α.

2.2 Stochastic dynamics

In the presence of noise terms (ε 6= 0), the Lya-
punov potential also allows us to determine the
steady-state probability distribution as Pst(x1, x2) =
Z−1 exp(−V (x1, x2)/ε), being Z the normalisation con-
stant. The relation is exact if ηρ = 0 and, otherwise,
it has to be interpreted as an approximation valid in
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Fig. 1. Evolution of the intensity I = x21 + x22, phase φ =
arctan(x2

x1
) and trajectories in the phase space (x1, x2) coming

from a numerical integration of equations (2) and (3) in the
case of no injected signal: ρ = 0, η = 0 and no noisy terms:
ε = 0. The intrinsic laser parameters are a0 = 2, b = 1, while
the parameters of the modulation equation (13) are: a1 = 0.5
and ω = 2π/T , T = 100. (a) Intensity versus time for α = 0
and α = 2 (both lines coincide). (b) Phase versus time for
α = 0 (dotted line) and α = 2 (solid line). Dynamics in the
(x1,x2) space: (c) α = 0 and (d) α = 2. The arrows of panels
(c) and (d) indicate the oscillatory dynamics of the system in
the stationary state. In those same panels the circles x21 +x22 =
a0 − b (solid circle), x21 + x22 = a0 − b+ a1 and x21 + x22 = a0 −
b− a1 (dotted circles) are displayed in the graphs x2 versus x1.
These circles correspond to the extremes and the middle of the
minima of the potential.

the limit ε → 0 [26]. A simple change of variables gives
us the probability distribution for intensity and phase,
Pst(I, φ) = Ẑ−1 exp (−V (I, φ))/ε, from which the average

value of intensity I and phase flux, φ̇, can be computed

〈I〉st =

∫
IPst(I, φ)dIdφ, (9)

〈φ̇〉st =

∫ [
α

(
a

b+ I
− 1

)
− ρ√

I
sin(φ) + η

]
×Pst(I, φ)dφdI. (10)

For ρ = 0 and a > b, the integrals can be analytically
computed with the results

〈I〉st = a− b+ 2 ε

[
1 +

exp(−b/2 ε) (b/2 ε)
a
2 ε+1

Γ
(
a
2 ε + 1, b2 ε

) ]
, (11)

〈φ̇〉st = −αexp(−b/2 ε) (b/2 ε)
a
2 ε

Γ
(
a
2 ε + 1, b2 ε

) + η, (12)

where Γ (x, y) is the incomplete gamma function [41].
From these expressions we derive that, in the determinis-
tic case, ε = 0 (and ρ = 0 , a > b), the average value of the
intensity is 〈I〉st = a− b and the phase changes linearly as
φ(t) = φ0 + ηt, in accordance with the discussion of the

Fig. 2. Same as Figure 1, with ρ = 0, but η = ω/5. The main
difference, as compared to the case η = 0 shown in Figure 1, is
that the laser phase φ(t) has now an additional dependence ηt
and the trajectories oscillate around the centre of coordinates
in the (x1, x2) plane. As the ratio ω/η is an integer number
the trajectories are closed in that plane both for α = 0, panel
(c), and α = 2, panel (d).

previous section. Note that in the case ρ = 0 the parame-
ter α has no influence in the mean value of the intensity
but only in the phase flux. In the most general case ρ 6= 0,
the steady state average values have to be computed from
a numerical integration of equations (9) and (10).

3 Modulation: deterministic and stochastic
dynamics

We are interested in analysing the possibility of stochastic
resonance in the dynamic system’s response to an external
perturbation. To this end, we consider a periodic modu-
lation of the parameter a in equations (2) and (3) of the
form:

a(t) = a0 + a1 sin(ωt). (13)

As a = Γ/(κβ), this is equivalent to a modulation of the
gain parameter (with fixed values for the cavity decay
rate and the saturation-intensity parameter). It is worth
here remarking that the modulation of the gain parame-
ter is equivalent to the modulation of the injected current
in class B lasers [42]. We firstly consider this contribu-
tion in absence of noisy terms (deterministic) and then in
presence of noise (stochastic effects).

3.1 Modulation: deterministic dynamics

We first note that the form of the evolution equations (6)
is still valid if the parameter a depends on time a(t).

For the deterministic dynamics, i.e. ε = 0, the numer-
ical results indicate that in the stationary state (long
times), the intensity I(t) varies with time, with the same
frequency of the modulation term, ω, see Figures 1–3.
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Fig. 3. Same as in Figure 1 with an injected signal: ρ = 0.2,
η = 0. At variance with Figure 1 the α parameter has now
effects on the oscillations of the intensity I(t): α = 0 (dot-
ted line) and α = 2 (solid line). For α = 0, it is φ = 0 in the
stationary regime, dotted line of panel (b) and the trajectory
oscillates around the x2 = 0 line, see arrowed segment of panel
(c), while they follow a more complicated closed trajectory in
the case of α = 2, panel (d).

This modulated behaviour can still be understood with
the use of the potential in equation (8) replacing a by
a time-dependent modulation as given by equation (13).
Note that this potential has now an explicit dependence
on time, i.e V (x1, x2, t) or V (I, φ; t). In Figure 4 we plot
relevant cross sections of the potential.

We keep in this section the condition a0 > b such that
the unmodulated (a1 = 0) potential V (x1, x2) has the
“Mexican hat” shape with a line of degenerate minima
at x2

1 + x2
2 = a0 − b.

(i) For ρ = 0 and a0 > a1 + b the modulated poten-
tial keeps at all times the same qualitative shape with a
time-dependent minimum Imin(t) = a0−b+a1 sin(ωt), see
Figure 4a. In this case, it is observed that for large mod-
ulation periods, small values of ω, and after a transient
time, the trajectories (x1(t), x2(t)) follow faithfully that
minimum but with a time delay, such that their intensity
I(t) = x1(t)2 + x2(t)2 after this transient time can be fit-
ted as Ist(t) = a0 − b+ a1 sin(ωt+ ψ), with ψ a constant
angle, see panel (a) of Figure 1 corresponding to η = 0.
However, for small modulation period –large frequency ω–
the shape of the potential changes very fast and, although
the trajectories (x1(t), x2(t)) tend to the minima of the
potential following the maximum slope lines, they are not
able to follow adiabatically the values of these minima.
As a result, it turns out that the intensity can be fitted to
a form Ist(t) = a0 − b+ c1 sin(ωt+ ψ), with c1 < a1 (not
shown).

For α = 0, the phase φ(t) remains constant around a
value that depends on the initial condition, see dotted line
of Figure 1b, also manifested by a oscillatory trajectory in
space (x1, x2), as indicated by the arrowed straight seg-
ment in Figure 1c. A non-zero value of α induces a periodic
variation of the phase φ(t) with the same frequency ω of

Fig. 4. Plot of the cross-sections at x2 = 0 of the potential of
equation (7) with a value of the parameter a of equation (13).
The intrinsic laser parameters are a0 = 2, b = 1, and the mod-
ulation parameter a1 = 0.5. The solid lines are for a(t) = a0,
which correspond to the middle of the potential. The dotted
lines are for the a(t) = a0 + a1 and a(t) = a0 − a1 cases, which
correspond to the extremes values of the potential. (a) ρ = 0.
In this case, the Lyapunov potential has the shape of a “Mex-
ican hat” and due to its symmetry all the cross sections are
equal. Moreover, its shape does not depend on α. (b) ρ = 0.2
and α = 0. The potential is tilted to a preferred direction with
a single minimum. In the case α = 0 the preferred direction
where the minimum exists is located is at φ = 0 or at the
cross section of the potential in line x2 = 0. For α 6= 0, not
shown, the preferred direction of the minimum is located at
φ = − arctan(α) or at the cross section of the potential in the
line x2 = −αx1.

the external modulation, see solid line in Figure 1b and a
modification of the trajectories in the space (x1, x2) that,
although still oscillatory, do not fall on a straight segment
as indicated by the arrowed curved line in Figure 1d.

The main effect of a non-zero value of the external injec-
tion frequency η (while still keeping ρ = 0) is to increase
the phase in an amount ηt with respect to the value for
η = 0, while keeping the same evolution for the intensity
I(t). Compare Figure 1 for η = 0 and Figure 2 for η = ω/5.
On the (x1, x2) plane, the trajectories now oscillate around
the centre of coordinates, the exact shape depending on
the value of η: if (as displayed in the figure) ω/η is an
integer number, the trajectories form a closed loop.

(ii) For ρ > 0, η = 0 the potential is tilted to a preferred
direction and displays a single minimum whose location
oscillates periodically in time with the frequency ω. In
Figure 4b we observe the variation of this minimum when
a is modulated. The trajectories in the (x1, x2) plane as
well as the intensity and phase follow this time-varying
minimum as shown in Figure 3. Note that the station-
ary intensity oscillates around a larger mean value than
a0 − b, Figure 3a. The maximum and minimum value of
the oscillations of the intensity I(t) now depend on the α
parameter at variance with the case ρ = η = 0 analysed
previously.

The combined effects of η and ρ include different
scenarios depending on the values adopted for these

https://epjb.epj.org/
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Fig. 5. Plot of 〈I〉st as a function of the noise intensity ε.
Common parameters a0, b, a1 and ω as in previous Figure 1.
Lines correspond to expression (14): solid line for ρ = 0 (results
depend neither on α nor on η), dotted line for ρ = 1. The
symbols are the results of averaging over at time 105T the data
for I(t) coming from the numerical integration of equations (2)
and (3). Symbols: (+) α = −5, η = 0 and ρ = 0, (∗) α = 2,
η = 0 and ρ = 0, (4) α = 2, η = 0.5 and ρ = 0, (�) α = 2,
η = 0 and ρ = 1.

two parameters, corresponding to an extension of the
bifurcation set reported in the non-modulated case.

3.2 Modulation: stochastic effects

We now consider equations (2) and (3) subject simultane-
ously to the modulation term (13) and to noise (i.e. ε 6= 0).
The noise term ε is the responsible of driving the sys-
tem out of the minima of the potential. In this section we
will discuss the possible enhancement of the modulation
induced by the stochastic terms as a function of the dif-
ferent system parameters. It is our main aim here to char-
acterise the stochastic dynamics in terms of the Lyapunov
potential. We use the asymptotic probability distribution
function Pst(I, φ, t) = Ẑ−1 exp (−V (I, φ, t))/ε) where the
potential V (I, φ, t) is given by equation (8) but includ-
ing an explicit dependence of a(t) with time as given by
equation (13).

We can obtain the mean values of the intensity and
phase flux in a similar way than in equations (9) and
(10). As these values have an explicit dependence on
time, we obtain the mean value of each of them in a
period of time, i.e.

〈I〉st =
ω

2π

∫ 2π
ω

0

〈I〉st(t)dt (14)

and

〈φ̇〉st =
ω

2π

∫ 2π
ω

0

〈φ̇〉st(t)dt (15)

Fig. 6. Plot of the normalised averaged frequency [〈φ̇〉st − η]/α
as a function of the noise intensity ε. This normalised frequency
neither depends on η nor on α. The lines correspond to the
theoretical expression obtained using (15). The symbols are

the results of averaging over at time 105T the data for φ̇(t)
coming from the numerical integration of equations (2) and
(3). Same parameters and symbol meanings that in Figure 5.

where the averages 〈I〉st(t) and 〈φ̇〉st(t) are obtained from
equations (9) and (10) using the time dependent probabil-
ity distribution Pst(I, φ, t). We note that equations (14)
and (15) do not have a dependence on ω, i.e. by defining
a new time t′ = ωt the variable ω disappears from both
integrals. Furthermore, 〈I〉st neither depends on α nor
on η. A result that is confirmed in Figure 5 where the
lines coming from the theoretical expressions (solid line
for ρ = 0 and dotted line for ρ = 1) do not change for
different values of α or η.

We note that the effect of η is to add a constant value

η to 〈φ̇〉st. Additionally, 〈φ̇〉st depends linearly on α. For
these reasons we define the normalised averaged frequency

[〈φ̇〉st − η]/(−α) that is constant for different values of α
and η, see Figure 6.

For ρ = 0 we can use the analytical equations (11)
and (12) with the explicit dependence on time. In this
case, we can obtain the limits for vanishing or extremely

large noise. For ε → 0, 〈I〉st ≈ a0 − b and 〈φ̇〉st ≈ η,

hence [〈φ̇〉st − η]/(−α) ≈ 0. For ε → ∞, 〈I〉st ≈ a0 + 2ε

and 〈φ̇〉st ≈ −α + η, then [〈φ̇〉st − η]/(−α) ≈ 1. These
tendencies are observed in Figures 5 and 6.

We want to compare these theoretical expressions with
the mean values obtained numerically. By integrating
equations (2) and (3), getting the corresponding intensity
I(t) and phase φ(t) after the transient dynamics, we can

obtain the numerical mean values of 〈I〉st and 〈φ̇〉st near
the minima of the potential. Whenever the two evaluation
procedures (theory and numerics) give the same result it
will imply that Pst(I, φ, t), the above indicated probabil-
ity distribution function, is the adequate one. In Figures 5
and 6 we compare the numerical results (symbols) with the

https://epjb.epj.org/
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theoretical ones (lines) obtaining a very good agreement.
Consequently the potential (8) used in the model without
modulation extends its validity into the modulation case.

The effect of ρ is observed in Figures 5 and 6, dotted

lines for ρ 6= 0. Both 〈I〉st and 〈φ̇〉st depend on ρ. For
small values of ε the effect of ρ is to increase the mean
value of the intensity and decrease the absolute value of
the frequency. For ρ 6= 0 the potential is tilted in a pre-
ferred direction, hence its minimum has a larger value of
the intensity and the absolute value of the frequency is
lower because it is more difficult to escape from the min-
imum. However, for large values of the noise term ε, the
trajectories are far from the minimum and the dynamics is
similar to the one for ρ = 0. In fact, for ρ 6= 0 and ε→∞,
the mean values have the same tendency than in the ρ = 0

case, this is 〈I〉st ≈ a0 + 2ε and [〈φ̇〉st − η]/(−α) ≈ 1.

4 Stochastic resonance: the amplification
factor

It is the aim of this section to study if a certain value
of the noise term ε improves the response of some of the
variables for the modulated system. More specifically, we
are interested in maximising the amplification factor of
the intensity or the phase flux as a function of the noise
term.

The amplification factor of 〈I〉st(t) is defined as

AF (I) ≡ 4|M1|2/a1
2, (16)

where M1 indicates the first coefficient of the Fourier
expansion [43]

〈I〉st(t) =
∑
n

Mn exp (inωt), (17)

and can be obtained as

M1 =
ω

2π

∫ 2π
ω

0

〈I〉st(t) exp (−iωt)dt. (18)

We evaluate this amplification factor by using 〈I〉st(t)
in two ways: (i) by direct numerical integration of
equations (2) and (3), and using as 〈I〉st(t) the mean value
of I(t) obtained in a single trajectory for different values
of time, and (ii) by using the theoretical potential and
computing 〈I〉st(t) =

∫
IPst(I, φ, t)dI as explained in the

previous section. We define the amplification factor AF (φ̇)

of the frequency (φ̇) using an equivalent procedure.
Again, we note that the parameter ω does not have

any influence in the amplification factors as the change of
variables t′ = ωt eliminates ω from all relevant integrals.

In Figures 7 and 8 we plot the above defined amplifica-
tion factors as a function of ε. We obtain a good agreement
between the results obtained with the use of the poten-
tial function or by a direct numerical integration of the
dynamical equations, indicating the consistency of the
theoretical frame (compare lines and symbols of both fig-
ures). In the numerical simulations, and specially for large

Fig. 7. Plot of the amplification factor of the intensity
AF (I) as a function of the noise intensity ε, obtained from
equations (16) and (18), the data for 〈I〉st(t) coming either
from the analytical expression equation (9) with a time-
dependent potential (lines), or from the numerical integration
of equations (2) and (3) (symbols). In the main plot, the sym-
bols are the results of averaging over a time 105T while in
the inset, α = 2, η = 0 and ρ = 0, the averages are performed
during a time period of 107T . Same parameters and symbol
meanings than in Figure 5.

ε, it is important to evaluate the mean values over longer
times in order to reduce the statistical errors and obtain
a good agreement between the numerical results and the
theoretical ones, as it is observed in the inset of Figure 7.
For ρ = 0 we can use the analytical expressions (11) and
(12) with the explicit dependence on time. In this case,
we can obtain the limit for both vanishing and very large
noise. For ε → 0 and for ε → ∞, both AF (I) → 1 and

AF (φ̇)→ 0.
Let us explain now the main effect of the parameters

α, η and ρ on the amplifications factors, as evidenced in
Figures 7 and 8.

The parameter α has no effect when evaluating theoret-
ically the amplification factor AF (I) because it appears
in the antisymmetric matrix but it does not explicitly
appear in the potential. The amplification factor AF (φ̇)
does have an explicit dependence on α, and we can define
a normalised amplification factor AF (φ̇)/α2 that does not
depend on α.

From our theoretical expressions, we obtain that the
injected signal frequency η does not have any influence
neither in the values of AF (I) nor on AF (φ̇), as it corre-
sponds to a residual term in the dynamics in terms of the
potential.

The amplitude ρ of the injected field increases the
amplification factor of the intensity (compare the dotted
and solid lines of Fig. 7) and decreases the amplification
factor of the frequency (compare the dotted and solid lines
of Fig. 8). For ρ > 0 the potential, tilted to a preferred
direction, makes the system to evolve only around one
well. For large values of the noise intensity ε, the dynam-
ical variables evolve in the upper part of the potential,
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Fig. 8. Plot of the normalised amplification factor of the fre-
quency AF (φ̇)/α2 as a function of the noise intensity ε. This
particular normalisation does neither depends on α, nor on
η. The lines and symbols are obtained by a similar procedure
as explained in the caption of Figure 7 using the frequency
φ̇ instead of the intensity I. Same parameters and symbol
meanings than in Figure 5.

which is the same than for ρ = 0. Consequently, the ampli-
fication factor of the frequency coincides with the one
for ρ = 0, as said before, for ε → ∞, AF (I) → 1 and

AF (φ̇)→ 0.
We now discuss the contribution of the parameters a0,

b and a1 related with the modulation terms (for the sake
of brevity we do not provide specific figures sustaining the
next statements).

If a0 increases (for fixed values of b and a1), both
the mean value of the intensity and the amplification
factor AF (I) increase, while the absolute value of the fre-

quency and the corresponding amplification factor AF (φ̇)
decrease. In terms of the potential, the larger a0, the wider
the diameter of the circle of the minima of the ”Mexi-
can hat”, hence the higher the intensity and the smaller
the frequency. A similar effect would be obtained when
a0 remains constant and b is decreased, as the potential’s
minimum is related to a0 − b.

The amplification factor does not change significantly
when a1 is modified (keeping a0 and b constant). How-
ever, we observe that when a1 increases, the mean value of
the intensity slightly increases but the amplification factor
AF (I) decreases, and the absolute value of the frequency

and the amplification factor AF (φ̇) increase.
An important result is that the amplification factor

AF (I) as a function of ε has a minimum, while the ampli-

fication factor AF (φ̇) presents a maximum. Moreover, for

ρ = 0 the minimum of AF (I) and the maximum for AF (φ̇)
occur at the same value of the noise parameter ε, while
for ρ > 0 the coincidence between the location of the two
extrema is not so accurate. These extreme values corre-
spond to the value of ε for which the system goes out of
the influence of the minima of the potential. This noise

intensity can be obtained numerically from equation (8)

identifying the value of 〈I〉st which has the same value
of the potential that the one of the relative maximum of
the potential Imax = 0. For ρ = 0, V (〈I〉st) = V (I = 0),

equivalent to the equation 〈I〉st − a ln(1 + 〈I〉st/b) = 0.
For the values we consider in Figures 7 and 8, we obtain a
value of 〈I〉st ≈ 2.5, which corresponds from Figure 5 to a
noise term ε ≈ 0.75. This value agrees to the observed
one for which there is minimum of the amplification
factor for the intensity and a maximum of the amplifi-
cation factor of the frequency. For ρ 6= 0, the condition
V (〈I〉st) = V (I = 0) leads to an equation that depends
on φ and we take the value of φ that maximises the

intensity, namely 〈I〉st− a ln(1 + 〈I〉st/b)−
2ρ

√
〈I〉st

√
1 + α2

= 0.

For the values we consider in Figures 7 and 8, we get
〈I〉st ≈ 6.1, which corresponds from Figure 5 to a noise
term ε ≈ 2.1, which agrees reasonably with the value for
which the amplification factor of the intensity displays a
minimum, see Figure 7. For larger values of the ρ param-
eter, i.e. ρ = 5, the minimum of the amplification factor
of the intensity disappears whereas the maximum of the
amplification factor of the frequency is kept.

5 Conclusions

In this paper we have exploited the description of a
class A laser in terms of a Lyapunov potential for the
deterministic dynamics in order to discuss the effect of
a modulation term in the gain parameter. The potential
description was obtained in a previous work [28,29] and
is strictly valid in the ρη = 0 parameter region, but
can be extended approximately to other cases. For the
unmodulated case, the use of the potential function
allows one to derive analytically expressions for the
dependence of the mean intensity and phase flux on the
system parameters, including the noise intensity. For
the modulated case, we are also able to evaluate the
amplification factors of the intensity and phase flux by
a numerical integration of the equations. Different values
for the parameters describing the system were considered
and the results compared with the theoretical ones.
Stochastic resonance is obtained as an indication that it
is possible to have a maximum response for the frequency
of the system whenever the noise term is chosen properly.
The agreement of both results validates the use of the
Lyapunov potential for the case of a modulated laser.
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