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Zealots in the mean-field noisy voter model
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The influence of zealots on the noisy voter model is studied theoretically and numerically at the mean-field
level. The noisy voter model is a modification of the voter model that includes a second mechanism for transitions
between states: Apart from the original herding processes, voters may change their states because of an intrinsic
noisy-in-origin source. By increasing the importance of the noise with respect to the herding, the system exhibits
a finite-size phase transition from a quasiconsensus state, where most of the voters share the same opinion, to one
with coexistence. Upon introducing some zealots, or voters with fixed opinion, the latter scenario may change
significantly. We unveil new situations by carrying out a systematic numerical and analytical study of a fully
connected network for voters, but allowing different voters to be directly influenced by different zealots. We show
that this general system is equivalent to a system of voters without zealots, but with heterogeneous values of their
parameters characterizing herding and noisy dynamics. We find excellent agreement between our analytical and
numerical results. Noise and herding or zealotry acting together in the voter model yields a nontrivial mixture of the
scenarios with the two mechanisms acting alone: It represents a situation where the global-local (noise-herding)
competition is coupled to a symmetry breaking (zealots). In general, the zealotry enhances the effective noise of
the system, which may destroy the original quasiconsensus state, and can introduce a bias towards the opinion
of the majority of zealots, hence breaking the symmetry of the system and giving rise to new phases. In the
most general case we find two different transitions: a discontinuous transition from an asymmetric bimodal phase
to an extreme asymmetric phase and a second continuous transition from the extreme asymmetric phase to an
asymmetric unimodal phase.
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I. INTRODUCTION

The voter model is a paradigmatic nonequilibrium system
that has been used, among other applications, to study the
evolution to consensus in a population [1–5]. In the model,
a set of connected individuals or agents, known generically
as voters, can switch between two opinion states by copying
the state of a randomly chosen neighbor. In the simplest,
mean-field, formulation all agents are identical and connected
to all others in such a way that a voter supporting a particular
value of the opinion can change it with a rate proportional
to the fraction of agents holding the opposite one, the pro-
portionality constant referred to as the herding parameter h.
If the system is finite, the model exhibits a competition that,
after a transient time, ends up in the absorbing state of global
consensus where all agents hold exactly the same opinion and
no further evolution is possible. This picture may change when
the model is modified in order to account for more realistic
situations. Among all modifications studied in the literature,
we consider heterogeneity and noise. For other aspects which
are usually accounted for by a statistical physics approach to
social dynamics see [6].

Heterogeneity appears, for example, when individuals differ
by their intrinsic rates of change between states, an extreme
case being that of a zealot, an agent that never changes
one’s state. Another source of heterogeneity arises when some
agents are able to copy only a subset of the whole population,
a situation naturally described by a graph or network of
interactions [7]. Previous work has focused on the effect

that a few zealots might have on the asymptotic states for
regular networks or all-to-all interactions [8–11] and more
recently for complex networks [10–13]. In these cases, the
existence of zealots changes drastically the evolution of the
system: If only one zealot is present, the system approaches
much faster one absorbing state, the state of consensus that
corresponds to the zealot; for an equal number of zealots of
different opinions, the system reaches a dynamically active
nonconsensus steady state. The presence of zealots in nonlinear
voter models has been shown to result in a rich phenomenology
[14–16]. See also [17–28] for recent papers addressing the
influence of zealots or other agents whose opinions have a
special weight in the dynamical rules on a variety of models
of cooperation and opinion dynamics and in the influence
of zealots in spatial rock-paper-scissors game [29]. Zealots
are frequently considered also in the realm of evolutionary
games and research concerning the evolution of cooperation,
as reviewed recently in [6].

Noise has been included in the voter model as an intrinsic
tendency to spontaneous changes of state. In the so-called
noisy voter [30] or Kirman model for financial markets [31–35]
the rate at which one voter changes opinion includes, besides
the dependence on the fraction of neighbors in the opposite
state, an intrinsic constant or noise parameter a. This way of
introducing noise can be easily adapted to different models of
opinion dynamics, such as [36–39]. In any case, the main effect
of noise is that there are no absorbing states so it prevents the
system from reaching the full consensus states. Moreover, by
increasing the ratio a/h of the noise to the herding parameter
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the system undergoes, at a critical value (a/h)c, a finite-size
transition from a bimodal phase (where agents spend most of
the time close to one consensus state and then switch to the
other consensus) to a unimodal one (where there is coexistence
of two macroscopic subpopulations at different states) [40,41].
The presence of a complex network seems not to change this
general picture, while the critical value (a/h)c is modified.
Few studies consider agent heterogeneity in the context of the
noisy voter model (see [42] as an exception) or the influence
of zealots.

In this work we analyze the effects of zealotry on the
noisy voter model, focusing on the steady-state properties, and
provide a deep relation between this system and a system made
of heterogeneous voters. We restrict our study to the simplest
case of all-to-all or mean-field interaction, since it represents a
suitable and simple scenario where the competition of global
(noise) and local (herding or zealotry) mechanisms is coupled
to a symmetry breaking induced by zealots, which can also
be global or local. Apart from the latter general and physical
motivation, we aim at understanding the role played by zealots
on a population of agents whose dynamics accounts for two
important processes, namely, copying or herding and intrinsic
noise. More specifically, we want to describe, quantify, and
understand the changes induced on the different phases of the
noisy voter model. In this way, the present study is a natural
extension of previous works on the opinion dynamics of voters
[43], the zealots representing now leaders or inflexible voters,
for instance. We carry out our study using two complementary
approaches: a theoretical one, based on a master-equation
description, and a numerical one. For all the cases studied,
the two approaches compare almost perfectly.

The paper is organized as follows. In Sec. II we introduce the
stochastic model of homogeneous noisy voters with different
subgroups or communities affected by a different number of
zealots. By an appropriate redefinition of the constants, we
show that the model describes a set of heterogeneous noisy
voters without zealotry, the effect of zealots being accounted
for in the new rate constants. Section III considers the simplest
situation of one single community and corresponds to a global
influence of zealots since all individuals are equally influenced.
The latter abstract scenario can be shown as a homogeneous
population of voters equally affected by one or several leaders.
Despite its simplicity, this case turns out to be important
because it is tractable analytically. Moreover, it provides
available information for the study of more general cases, in
particular the two-community case considered in Sec. IV. This
two-community case, seen now as different leaders acting on
two different subsets of a homogeneous population of voters,
is the minimal situation where the system can exhibit all
possible phases and a suitable context in which to compare
the approximate theories, discussed in Sec. IV, Sec. V, and
Appendix C, against the numerical simulations. That way the
theory is constructed going from simple and concrete cases
to general ones, gaining step by step understanding. Two
complementary theories are provided in this work: one more
general but approximated, based on the analysis of the master
equation, given in Sec. V, and another one which is exact but
restricted to the case of one community, given in Appendix C.
Finally, Sec. VI is devoted to a discussion, conclusions, and a
summary.

II. MODEL

We consider N agents, each one capable of being in one
of two possible states. Following the original application
to financial markets by Kirman [31], we call those states
optimistic and pessimistic, but in this work we do not give any
particular meaning to the states of the agents. The system is
divided into M subsystems or communities so that community
k has Nk agents, nk of them being optimistic at a given moment,
under the influence of z+

k optimistic and z−
k pessimistic zealots,

as schematically represented in Fig. 1. We stress, however, that
each agent interacts with any other agent, irrespectively of the
community they belong to.

Since all agents are identical inside their communities, the
state of the system is specified by the set S = {n1, . . . ,nM}
of the number of optimistic agents of each subsystem. The
dynamics or time evolution of S is given by a stochastic process
characterized by the rates π+

k and π−
k for transitions nk →

nk + 1 and nk → nk − 1, respectively,

π+
k =

(
a + h

n + z+
k

N + zk

)
(Nk − nk),

π−
k =

(
a + h

N − n + z−
k

N + zk

)
nk, (1)

where zk = z+
k + z−

k is the total number of zealots of com-
munity k and n = ∑

k nk is the total number of optimistic
agents. Observe that the interaction among agents and among
agents and zealots is different. While the former involves all

N1 a hz+
1 z−1

Nk a hz+
k z−k

NM a hz+
M z−M

FIG. 1. Schematic representation of the system made of agents
having the same constants a and h but divided into M communities
with different sets of voters directly influenced by different zealots.
The same color of circles (communities) indicates common constants,
a community being fully characterized by the number of optimistic
(green squares on the left) and pessimistic (red squares on the right)
zealots linked to it. For an alternative representation showing the fine
structure of one zoomed community see Fig. 4.
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FIG. 2. Simulation results for the trajectory x(t) and probability
function P (x) of a system of N = 200 agents, N1 = N/2, z+

1 = z−
1 =

1, and z2 = 0 for a/h � (a/h)c (top), a/h = (a/h)c (middle), and
a/h � (a/h)c (bottom). Time is measured in units of h−1. The lines
on the plots of P (x) are the reconstruction of the probabilities using
K = 4 moments as explained in Appendix B.

possible pairs of agents, regardless of the community they
belong to, the latter distinguishes between communities. As
described in the Introduction, the rates have two contributions:
The one encoded by the noise constanta � 0 is such that a voter
changes one’s opinion randomly regardless of the opinions of
other voters or zealots; the contribution encoded by the herding
constant h � 0 represents the random copying mechanism
whose rate is proportional to the total number of voters with
opposite opinion in the whole system plus the number of
zealots with different opinion within the same community. We
recover the usual noisy voter model if zk = 0 and the voter
model if, in addition, a = 0.

From a mesoscopic point of view, the system is character-
ized by the probability p(S) of the system being in a state S.
The master equation for p(S) and its corresponding moments
are easily obtained from rates (1) or (2). As discussed in
Appendix A, the equations for the dynamical evolution of the
moments of a given order involve only moments of lower order
and hence are closed. For the usual noisy voter or Kirman
model (with no zealots) the analysis of the stochastic system
proves that there is a finite-size phase transition characterized
by a qualitative change of the steady-state probability distribu-
tion P (x) of observing a magnetization x = 2 n

N
− 1. Figure 2

shows typical trajectories x(t) and their respective steady
probability functions P (x). As it is apparent from this figure,
the system may exhibit two phases separated by a critical
value (a/h)c = 1/N . For a/h � (a/h)c the system is in the
symmetric bimodal (SB) phase where voters share the same

NM aM hM

Nk ak hk

N1 a1 h1

FIG. 3. Schematic representation of the system where no zealots
are present but different communities have different constants (colors
denote positions).

opinion most of the time, having the two opinions the same
over all probabilities in the long run; hence a typical trajectory
has long stays with extreme values of the magnetization and
short transitions among them, while the steady probability
function P (x) accumulates around the extremes and becomes
bimodal with symmetric maxima at xm = ±1. For a/h �
(a/h)c the system is in the symmetric unimodal (SU) phase
where probabilities accumulate around xm = 0, corresponding
to a coexistence of opinions. In the border case a/h = (a/h)c
the probability function P (x) is uniform in the x ∈ [−1,1]
space, meaning that any fractions of optimistic voters are
equally probable. [See also Fig. 5(a).] It is our objective in
this paper to investigate the effect that the presence of zealots
and the splitting in communities has on the unimodal-bimodal
transition.

It is worth writing the rates of Eq. (1) as

π+
k =

(
a+

k + hk

n

N

)
(Nk − nk),

π−
k =

(
a−

k + hk

N − n

N

)
nk, (2)

with

a±
k ≡ a + zk

2N
hk ± �zk

2N
hk, �zk ≡ z+

k − z−
k ,

hk ≡ N

N + zk

h. (3)

In this way we show that the system of N identical noisy voters
(same a and h), under the influence of zealots, is equivalent to
N noisy voters without any zealotry influence but with some
heterogeneity in the noise and herding constants (see Fig. 3).
If �zk �= 0, the original noise parameter a splits in two: a+

k for
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pessimistic to optimistic transitions and a−
k for the optimistic

to pessimistic ones, that is, inducing a bias in between the two
states. On the contrary, the herding parameter is not affected
in this sense, being the same for both transitions. In all cases,
the mean noise parameter (a+

k + a−
k )/2 increases with the total

number of zealots acting on community k, while the herding
parameter hk decreases.

III. GLOBAL INFLUENCE

In this section we consider a single community M = 1 un-
der a global influence of zealots. It is convenient to distinguish
between balanced (equal number of pessimistic and optimistic
zealots) and unbalanced cases.

A. Balanced case

Consider a situation like in Fig. 4, with one community
M = 1 and the same number of optimistic and pessimistic
zealots z+ = z− = z/2. From Eq. (2) we obtain that the system
behaves like a noisy voter model without zealots with effective
noise and herding parameters

ab = a + z

2(N + z)
h,

hb = N

N + z
h, (4)

where ab increases with z and hb decreases (the subscript b

refers to the balanced case). That is to say, the net effect of
zealotry is to enhance the original noise by increasing ab/hb.

The functional form of the new constants in Eq. (4) are
easily understood if we look at the dynamics at the agent level.
The factor in hb is a direct consequence of removing the zealots
from the system in the interpretation of Eq. (4): An agent now
can copy the opinion of only N agents, while initially there
were N + z agents and zealots. The noise term accounts for
the removal of zealots. The additional contribution to ab is
essentially the rate at which one zealot was initially copied
divided by 2. The division by 2 is required since a couple of
opposite zealots forms a unit of uncertainty or equivalently
because only half of the zealots contribute to either one of

N − nn

z+ z−

FIG. 4. Schematic representation of the state of a system at a
given time with one community of optimistic (green circles on the
left) and pessimistic (red circles on the right) agents, influenced by
z+ optimistic (green square on the left) and z− (red square on the
right) pessimistic zealots.

the two possible transitions. This picture clarifies the deep
connection between the voter and the noisy voter model, in
the sense that the latter can be understood as the former with
the additional influence of couples of opposite zealots.

As for the noisy voter model, the border case separating
symmetric bimodal and symmetric unimodal phases is given
by the condition ab/hb = 1/N , which using Eq. (4) reads

(a/h)c = 2 − z

2(N + z)
. (5)

Since we are considering z � 2 (recall that for the present case
z is an even number), the critical value given by Eq. (5) is zero
or negative. That means that for z+ = z− � 1 the system only
shows the symmetric unimodal phase. In other words, zealotry
always destroys the symmetric bimodal phase, a result that also
holds for a = 0, the noiseless voter model [see Fig. 5(b)]. We
realize now how sensitive the system is to the global influence
of zealots: Not only do the absorbing or consensus states at
x = ±1 disappear, but the most probable configuration of the
system becomes one where equal fractions of agents with
different opinions coexist. The dramatic change in passing
from z = 0 to z = 2 is due to the global influence of zealots and
will be relaxed in Sec. IV, upon considering partial influence
with two communities.

Concerning xm, the location of the maxima of P (x), we
obtain |xm| = 1 if ab/hb < 1/N and xm = 0 if ab/hb > 1/N ,
provided z = 0, while it is xm = 0 for z � 2. As depicted in
Fig. 5, xm experiences a discontinuous transition at the critical
point (5) for z = 0 [Fig. 5(a)], while the transition disappears
for z � 2 [Fig. 5(b)].

B. Unbalanced case

We consider in this section M = 1 and z+ �= z−, a situation
schematically represented in Fig. 6. Now the dynamics of the
system can be seen as that of a noisy voter model with two
effective noise coefficients, a+

u for pessimistic to optimistic
transitions and a−

u for the reciprocal ones, and an effective
herding constant hu (the subscript u refers to the unbalanced
case). If the total number of zealots is z and �z = z+ − z−,
the new effective noise and herding parameters can be written
as

a±
u = ab ± �z

2N
hu, hu = hb, (6)

with hb and ab given by Eq. (4). Hence, the symmetry breaking
induced by the zealots involves the noise contribution to the
dynamics, the herding being modified by the total number of
zealots z regardless of their preferred opinions. The form of
the new coefficients can be interpreted with an agent-based
analysis of the dynamics, as we did in the balanced case.

As can be inferred from a study of a more general case to be
carried out in Sec. V and also in a different way in Appendix C,
the system can present two new phases (see Fig. 7). If the
noise-herding ratio is smaller than the critical value

(a/h)c = 1

2(N + z)

(
2 − z + N + 1

N − 1
|�z|

)
, (7)

the system is in the extreme asymmetric (EA) phase char-
acterized by P (x) having one minimum and one maximum
at the extreme values of the magnetization [at − sgn(�z)
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FIG. 5. (a) and (b) Position of the maxima of P (x) and its different
phases as a function of a/h when (a) (a/h)c > 0 and z = 0 and
(b) (a/h)c � 0 and z � 2. The insets show schematically the shape
of the probability distribution P (x): bimodal for (a/h) < (a/h)c and
unimodal for (a/h) > (a/h)c. (c) Probability distribution (grayscale)
as a function of x (vertical axis) for different values of a/h (horizontal
axis) and z = 0.

and sgn(�z), respectively]. For a/h � (a/h)c, the absolute
maximum of the previous phase moves to intermediate values
of the magnetization and a local minimum appears at x =
sgn(�z), the system being now in the asymmetric unimodal
(AU) phase, where P (x) displays a single maximum at xm �= 0.

The critical value given by Eq. (7) becomes negative when
z > 2 N+1

N−1 + |�z| ≈ 2 + |�z|. In this case, the system always
exhibits the AU phase, regardless of the value of a/h. As in the
balanced case, then, the zealotry destroys the preference for the
consensus states favoring configurations where macroscopic

N − nn

z+ z−

FIG. 6. Schematic representation of the system with one commu-
nity of optimistic (green circles on the left) and pessimistic (red circles
on the right) agents, influenced by z+ optimistic (green square on the
left) and z− (red square on the right) pessimistic zealots. The different
sizes of the squares indicates the different number of opposite zealots.

fractions of agents with different opinions coexist. As we will
see in Sec. IV, if zealots do not act upon all agents, new phases
will appear for small values of a/h.

If we focus on the behavior of the maximum of the
distribution xm, it is xm = sgn(�z) in the extreme asymmetric
phase, while it changes continuously as a function of a/h in
the asymmetric unimodal phase as

xm =
N+1
N−1�z

2(N + z)[a/h − (a/h)c] + N+1
N−1 |�z| (8)

(see Appendix C). Contrary to the balanced case, now xm

changes continuously in the transition, as shown in Fig. 7. The
breaking of symmetry due to the unbalance in the number of
optimistic and pessimistic zealots transforms the discontinuous
behavior of xm into a continuous one.

IV. PARTIAL INFLUENCE

Here we generalize the study of the preceding section by
allowing the zealots to directly influence only part of the
system. In the general setup introduced in Sec. II we need
to consider a system made of two communities: one with
N1 agents directly connected to the zealots and another with
N − N1 agents with no connections to zealots. The main
objective is to describe the behavior of the voters as a whole,
allowing N1 to vary from 0 to N and distinguishing again
between a balanced and an unbalanced number of optimistic
and pessimistic zealots.

A. Balanced case

We consider M = 2 with z+
1 = z−

1 and z+
2 = z−

2 = 0, as
schematized in Fig. 8. Numerical simulations of this case unveil
a phenomenology similar to that depicted in Fig. 2. The system
exhibits two phases separated by a critical value (a/h)c, which
now depends on the number of zealots z1 = z+

1 + z−
1 , N , and

N1. For a/h � (a/h)c the system is in the symmetric bimodal
phase, while for a/h � (a/h)c the system is in the symmetric
unimodal phase. Regarding the value of the maximum of the
distribution xm, the situation is completely analogous to that
of the one-community case, as depicted in Fig. 5.
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FIG. 7. Shown on top is the position of the maxima of P (x) and its
different phases as a function of a/h when (a/h)c > 0 and �z > 0.
The insets show schematically the shape of the probability distribu-
tion P (x): extreme asymmetric for (a/h) < (a/h)c and asymmetric
unimodal for (a/h) > (a/h)c. Shown on the bottom is the probability
distribution (grayscale) as a function of x (vertical axis) for different
values of a/h (horizontal axis).

In order to derive an expression for (a/h)c in this case we
can proceed as in the previous sections by trying to figure out
how the dynamics of a single agent changes if we were to
absorb the entire effect of the zealots into global noise and

N1

N − nn

z+
1 z−1

FIG. 8. Schematic representation of the system of M = 2 com-
munities, only one directly influenced by the same number of
optimistic and pessimistic zealots.
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FIG. 9. Phase diagrams with simulation (symbols) and theoretical
(lines) results for a system with N = 200 agents and z+
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1 = z1/2

with z1 = 0 (dashed line), 2 (squares), 4 (circles), and 6 (triangles).

herding constants, now denoted by ab and hb. In doing so,
we approximate the dynamics by an effective one where all
agents are equivalent. Consider first the herding constant. Upon
eliminating the zealots, a fraction of N1/N copying processes
is eliminated, hence h is reduced by N1z1

N(N+z1)h. The previous
elimination produces a modification of the effective noise: We
have to add to the parameter a the contribution of the zealots,
now N1z1

2N(N+z1)h for each possible transition. Hence, we have

ab 	 a + N1z1

2N (N + z1)
h,

hb 	 h − N1z1

N (N + z1)
h, (9)

which in fact would be exact expressions if the two com-
munities had the same statistical properties. Observe that the
new constants are a generalization of Eqs. (4) to situations
of two communities. From Eqs. (9) we can also infer the
effect of zealotry on the system: The effective noise increases
with a term proportional to N1z1/(N + z1), while the herding
decreases with the same factor.

The effective coefficients can be now used to derive the
critical expression (a/h)c, given by the condition ab/hb =
1/N , since the system at this approximation has the same
phenomenology as that of the noisy voter model:

(a/h)c = 1

N

[
1 − (N + 2)z1

2N (N + z1)
N1

]
(10)

(see Sec. V for an alternative derivation based on a master-
equation study). The domain of validity of the different phases
is better visualized by considering a phase diagram in the
(a/h,N1/N) plane. In this diagram, Eq. (10) gives a critical
line dividing the space parameters into two disjoint, symmetric
bimodal and symmetric unimodal, regions, as shown in Fig. 9.
Without the influence of zealots, i.e., with z1 = 0, Eq. (10) is
a horizontal line in the phase diagram, the dashed line of the
left plot of Fig. 9. Upon increasing the number of zealots, the
critical line moves toward the bottom of the diagram, making
the SB phase narrow. In other words, for a given N1 and by
increasing a/h, the system may transition from the SB to the
SU phase, at a smaller a/h for larger z1. Eventually, the number
of zealots is so high so that if N1 � N∗

1 (z1) the only feasible
phase for the system is the SU phase, that is to say, there is no
value of a/h for which the system can stay in the SB phase.
The critical value N∗

1 (z1) is given by imposing (a/h)c = 0,

N∗
1 (z1) = 2(N + z1)

(N + 2)z1
N, (11)
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FIG. 10. Probability distributions of the global magnetization
(black) and partial magnetization of the first community (blue) and
second community (red) for a system with N = 200, N1 = N/2, z+

1 =
z−

1 = 1, and a/h = (a/h)c. While the global system is in a uniform
phase (as indicated by the flatness of the probability distribution), the
first community is in the symmetric bimodal phase and the second
community is in the symmetric unimodal phase.

which is always larger than N∗∗
1 ≡ 2N/(N + 2) 	 2 and

smaller than N for z1 > 2. Hence, for N1 < N∗∗
1 the two phases

are possible, regardless of the number of zealots z1, while for
N1 > N∗∗

1 the SB phase disappears for N1 > N∗
1 (z1).

So far, we have focused on global properties of the system,
disregarding specific features of the two communities. In
fact, the fundamental assumption in the derivation of Eq. (9),
and hence Eqs. (10) and (11), is that of the same statistical
properties of the two communities. However, this is not the case
in general: If N1 is small enough, for example, the fluctuations
of the magnetization of the first community are expected to
be larger than those of the second one (see Appendix A for a
quantitative comparison). Moreover, there are cases close to the
critical points where the global magnetization has a uniform
probability function (uniform phase) while the communities
are each in a different phase (see Fig. 10). Nevertheless,
the statistical differences between communities turn out to
be irrelevant for the determination of the global behavior of
the system, as the excellent agreement between theory and
simulations shown in Fig. 9 reveals.

B. Unbalanced case

For the unbalanced case, we consider a system with two
communities M = 2, with only one being influenced by opti-
mistic and pessimistic zealots in different numbers z+

1 �= z−
1 ,

as in Fig. 11. Following similar steps as in the balanced
case, we provide first numerical simulations of the trajectories
and their corresponding probability functions for the different
phases the system may exhibit. As it is apparent from Fig. 12,
the trajectories and probabilities are asymmetric; the opinion
of the system tends to be that of the majority of zealots.
Besides the extreme asymmetric and asymmetric unimodal
phases already found for the one-community case, Fig. 12
shows the existence of a new asymmetric bimodal (AB)
phase characterized by the probability distribution having two
relative maxima at the extreme values of the magnetization
(see the top row of Fig. 12). There are two critical values
of a/h that separate the three aforementioned phases: asym-

N1

N − nn

z+
1 z−1

FIG. 11. Schematic representation of the system of M = 2 com-
munities, only one directly influenced by different numbers of
optimistic and pessimistic zealots.

metric bimodal for (a/h) < (a/h)c,1, extreme asymmetric for
(a/h)c,1 < (a/h) < (a/h)c,2, and asymmetric unimodal for
(a/h) > (a/h)c,2. When reaching the transition point (a/h)c,1
by increasing the value of (a/h), the smallest relative maxi-
mum of P (x) (located at the value of the magnetization oppo-
site to the one preferred by the majority of zealots) becomes
a relative minimum. Analogously, the absolute maximum at
x = sgn(�z1) becomes a relative minimum when reaching
a/h < (a/h)c,2 by increasing the value of (a/h).

By reasoning similar to that used in Sec. IV A, the effective
coefficients are

a±
u = ab ± N1�z1

2N (N + z1)
h,

hu = hb, (12)

with ab and hu given by Eq. (9). These rates are now used
to compute the critical lines according to the general theory
described in Appendix C for a one-community system:

(a/h)c,i = 1

N

[
1 − (N + 2)z1

2N (N + z1)
N1

]

+ (−1)i
(N + 1)N1

2N (N − 1)(N + z1)
|�z1| (13)

for i = 1 and 2. Equation (13) coincides with (7) for N1 = N

and with Eq. (10) for �z1 = 0, as expected for consistency.
This approach is also consistent with the more general one of
Sec. V.

In Fig. 13 we show the region of existence of the different
phases in the parameter space (a/h,N1/N ) for some repre-
sentative situations. The phase space is divided by the two
critical lines (a/h)c,1 and (a/h)c,2 into three disconnected
regions, corresponding to the AB (bottom), EA (center), and
AU (top) phases. In general, the positions of the two critical
lines on the phase diagram depend very differently on the total
number of agents N and on the number of zealots z+

1 and z−
1 .

For the specific values of the right plot of Fig. 13, while the
critical line (a/h)c,1 does not change very much with �z1, as
long as it is small compared to N , the critical line (a/h)c.2
moves from almost a horizontal line for z1 = |�z1| to (a/h)c,1
for �z1 = 0. When the number of optimistic and pessimistic
zealots becomes equal, the two critical lines coincide and we
recover the results of the balanced case.
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FIG. 12. Simulations results for the trajectory x(t) and probability
function P (x) of a system of N = 200 agents, with N1 = N/2, z+

1 =
1, z−

1 = 0, and z2 = 0 for the following cases (from top to bottom in
the figure): (i) a/h < (a/h)c,1, (ii) a/h = (a/h)c,1, (iii) (a/h)c,1 <

a/h < (a/h)c,2, (iv) a/h = (a/h)c,2, and (v) a/h > (a/h)c,2. Time
is measured in units of h−1. The solid lines on the last two plots of
P (x) are theoretical approximations derived in Appendix B.

As for the case of one community, the absolute maximum of
the probability function changes continuously with a/h, even
at the critical point (a/h)c,2. In contrast, the relative maximum
disappears discontinuously at (a/h)c,1 (see Fig. 14).

V. GENERAL CASE

After having discussed particular cases in the previous sec-
tions, we focus now on the phase diagram and its critical lines
for a general case of M communities with different numbers
of zealots affecting different communities. After a systematic
numerical study, we confirm the general unbalanced case of

10-4

10-3

1/N
10-2

10-1

 0  0.2  0.4  0.6  0.8  1

a/
h

N1/N

10-4

10-3

1/N

10-2

 0  0.2  0.4  0.6  0.8  1

a/
h

N1/N

FIG. 13. Phase diagrams for a system of N = 200 agents. On the
left z+

1 = 1 and z−
1 = 0 and on the right z+

1 = 5 and z−
1 = 0 (squares),

1 (circles), 2 (up triangles), 3 (down triangles), 4 (diamonds), and 5
(pentagons).

the previous scenarios, namely, that the system may stay in
the asymmetric bimodal, extreme asymmetric, or asymmetric
unimodal phases, which correspond to three regions separated
by the critical lines (a/h)c,1 and (a/h)c,2, in a way analogous
to the unbalanced case of M = 2. This is the most general
situation, since it contains the balanced ones as a limit: The
EA phase disappears, since (a/h)c,1 and (a/h)c,2 become the
same line, and AB and AU phases become SB and SU phases,
respectively. Thus, in order to unveil the structure of the phase
diagram, the only thing needed is to determine the location of
the two critical lines for which we apply here a line of reasoning
based on an analysis of the master equation.

The critical lines of the phase diagram correspond to values
of the parameters of the system where the probability P (n)
exhibits some peculiarities for n = 0,N . In general, however,
P (n) does not obey an autonomous equation and we have to
consider first the probability of finding the system in a state
S = {n1, . . . ,nM}, with the function p(S) = p(n1, . . . ,nM ).
It obeys the following master equation valid for steady-state
conditions:

M∑
k=1

[(E+
k − 1)π−

k (S)p(S) + (E−
k − 1)π+

k (S)p(S)] = 0,

(14)

where we have made explicit the dependence of the rates Eq. (1)
on the state of the system and E±

i are operators acting on
an arbitrary state function f (S) as E±

i f (S) = f (n1, . . . ,ni ±
1, . . . ,nM ).

a/h

(a/h)c1

(a/h)c2

1

−1

xm

 0

 0.2

 0.4

 0.6

 0.8

 1

4,95⋅10-3 1/N 5,1⋅10-3

|x
m

|

a/h

FIG. 14. Shown on the left is a schematic representation of the
maxima of the probability function for the case of z+

1 > z−
1 . Shown

on the right are the numerical (symbols) and theoretical (lines) results
for the absolute maximum for a system of N = 200 agents, with
z+

1 = 1, z−
1 = 0, and N1 = N/200,N/20,2,0 (from top to bottom).
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For n = 0, the only possible state is S = (0, . . . ,0) for
which the master equation implies

M∑
k=1

π−
k ({0, . . . , 1︸︷︷︸

k

, . . . ,0})p({0, . . . , 1︸︷︷︸
k

, . . . ,0})

=
(

M∑
k=1

π+
k ({0, . . . ,0})

)
p({0, . . . ,0}). (15)

For the determination of the critical lines we now make the
approximation that

p({0, . . . , 1︸︷︷︸
k

, . . . ,0}) 	 Nk

N
P (n = 1), (16)

which assumes that if there is only one optimistic agent, the
probability that it belongs to community k is proportional to the
population of that community (an assumption trivially satisfied
for M = 1). This way, since p({0, . . . ,0}) = P (n = 0), we
have

P (n = 1) 	 N

∑M
k=1 π+

k ({0, . . . ,0})∑M
k=1 Nkπ

−
k ({0, . . . , 1︸︷︷︸

k

, . . . ,0})P (n = 0).

(17)

The critical line (a/h)c,1 appears when P (n = 0) changes from
local maximum to local minimum, or P (n = 1) = P (n = 0).
After substituting the rates given by Eq. (1) in Eq. (17) we
obtain

(a/h)c,1 = 1

N (N − 1)

M∑
k=1

Nk

N + zk

[z−
k − 1 − N (z+

k − 1)].

(18)

By symmetry considerations, the other critical line is

(a/h)c,2 = 1

N (N − 1)

M∑
k=1

Nk

N + zk

[z+
k − 1 − N (z−

k − 1)].

(19)

As expected, by taking z+
k = z−

k , the critical lines coincide.

VI. DISCUSSION AND CONCLUSION

In this work we have analyzed the influence of agents that
never change their state (zealots) on the global properties of
the noisy voter model. Only simple situations of all-to-all con-
nection among voters have been considered, but still allowing
different communities of agents to be directly influenced by
a different number of zealots. In the zealot-free case, it is
known that when increasing the noise to herding ratio the noisy
voter model displays a finite-size transition from a symmetric
bimodal phase (where consensus is the norm) to a symmetric
unimodal phase with coexistence of opinions. As explained in
Sec. II, the dynamics of the voters with zealotry is equivalent to
that of heterogeneous (different noise and herding constants)
noisy voters without zealots. This equivalence between models
allows a straightforward explanation of how zealotry acts on
the system for some simple cases.

In the case of a balanced number of optimistic and pes-
simistic zealots with global influence (where zealots act upon
all agents), it turns out that the consensus (SB) phase disappears
and the system is always in the SU phase. This result shows
the dramatic influence of the zealots, even for their lowest
possible number (z = 2). If the balanced number of zealots
influences only a fraction N1/N of the total population, then
the symmetric bimodal phase can still be present as long as
the fraction N1/N is smaller than some critical value as given
by Eq. (11) and summarized in Fig. 9 for a particular case.
Similar results have been found on a kinetic model of opinion
dynamics [44].

In the unbalanced scenario where unequal numbers of
optimistic and pessimistic zealots influence the whole popula-
tion, the main result is the appearance of asymmetric phases
which tilt the distribution of opinions towards the one favored
by the majority of zealots. Increasing the noise to herding ratio,
the model displays a transition from an EA phase (where the
maximum of the probability distribution occurs at the con-
sensus value favored by the zealots) to an AU phase, where
the maximum, still being tilted towards the zealot-favored
opinion, is located far from the extreme consensus opinion,
indicating again a strong qualitative influence of the zealots on
the system. The extreme asymmetric phase does not exist for
a sufficiently large population of zealots, i.e., z > 2 + |�z|,
�z being the difference between the number of zealots of
each type. If the unbalanced number of zealots acts only upon
a sufficiently small fraction of the population N1/N , then a
new, AB, phase can appear. This phase is characterized by
a probability distribution showing relative maxima at both
consensus states.

In the general case of several communities k = 1, . . . ,M

and sets of zealots acting on a particular community, the
phenomenology is similar to the one described above. If all
communities suffer the influence of a balanced number of
zealots z+

k = z−
k ∀k, then the possible outcomes are the SB

or SU phase, depending on the particular value of the noise
to herding ratio, as determined by Eq. (18). This is also the
situation when the optimistic-pessimistic balance is conserved,
for instance, if N1 = N2 = N/2, and z+

1 = z−
2 and z−

1 = z+
2 .

In other cases, three asymmetric phases (extreme, unimodal,
or bimodal) can be present in a region of the parameter space
as defined by the two lines (a/h)c,1 and (a/h)c,2 given by
Eqs. (18) and (19), as shown in Fig. 13 in a particular case.
Again, not all the phases are compatible with all possible
numbers of zealots and of their links.

It is also interesting to analyze the results of the present
work in terms of the competition between zealots of different
opinions willing to have the largest possible number of agents
in the same state as the zealot. It is clear that the best situation
for the zealot is to break the symmetry of the problem going
to the EA phase, but if the symmetry cannot be broken, the
best strategy is rather counterintuitive: In this case the best
situation for each zealot is the bimodal phase in which most
of the population coincides with the state of one zealot for
long periods of time. To achieve this result, the strategy of the
zealot is to interact with a small number of agents [N1 < N∗

1 ,
Eq. (11)] to make sure that for a low enough value of the ratio
of the noise to herding parameters, the system remains in the
bimodal phase (Fig. 9). The reason for that can be understood in
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our mapping of zealots into a heterogeneous noisy voter model:
The action of zealots plays the role of an effective noise that
tends to put the system into the unimodal phase.

In conclusion, we have shown that, in general, upon intro-
ducing zealots in a homogeneous population of (noisy) voters,
the dynamics of the system changes drastically: A breaking
of symmetry can be induced and new phases describing the
global behavior of the system may appear. Although the
aforementioned results have been obtained at the mean-field
level, where all-to-all links connect all voters, we expect a
similar phenomenology for more realistic, high-dimensional
networks, which are the most representative in social systems.
A detailed analysis on the impact of the network dimension
and topology remains an open question.
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APPENDIX A: CLOSED SYSTEM OF EQUATIONS
FOR THE MOMENTS

Consider the master equation for the probability function
P (S) with the general rates in (1) or (2) written as

dP (S)

dt
= J [P ], (A1)

where J [P ] stands for the left-hand side of Eq. (14). The mean
value of generic quantities n

c1
1 n

c2
2 · · · ncM

M , for given integer
values c1, . . . ,cM , can be obtained by multiplying Eq. (A1)
by the same quantity and summing over all possible states:

d

dt

〈
n

c1
1 n

c2
2 · · · ncM

M

〉 =
∑
〈S〉

n
c1
1 n

c2
2 · · · ncM

M J [P,S]. (A2)

Taking into account the fact that P vanishes for nonphysical
values of S and the explicit form of the rates, it is not difficult
to have the general property∑

〈S〉
f (n1, . . . ,nM )E±

k [π∓
k (S)P (S)]

=
∑
〈S〉

π∓
k (S)P (S)E∓

k f (n1, . . . ,nM ) (A3)

for any function f . The latter expression allows us to write
Eq. (A2) as

d

dt

〈
n

c1
1 n

c2
2 · · · ncM

M

〉
=

M∑
k=1

〈[
π+

k (E+
k − 1) + π−

k (E−
k − 1)]nc1

1 n
c2
2 · · · ncM

M

〉
. (A4)

It turns out that the right-hand side of Eq. (A4) is a polynomial
of degree c1 + · · · + cM . This is because

[π+
k (E+

k − 1) + π−
k (E−

k − 1)]nck

k = ck(π+
k − π−

k )nck−1
k

+O
(
n

ck−1
k

)
(A5)
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FIG. 15. Steady-state values of the first moments of the magne-
tization x for a system with two communities M = 2 and N = 200
agents. The right column shows the unbalanced case with z2 = 0,
z+

1 = 1, and z−
1 = 0 and the left column the balanced case with z2 = 0

and z+
1 = z−

1 = 1. Different symbols (simulations) and lines (theory)
inside each plot correspond to N1 = 10 (squares), 100 (circles), and
190 (triangles).

is of degree ck , since π+
k − π−

k is of degree one, as it is apparent
from Eq. (1).

The latter property makes the system of equations for the
moments of degree D to depend only on those of degree less
than or equal to D and then lead to a complicated but close
set of equations for the moments that can be solved exactly
and analytically. As a direct application, we show in Fig. 15
that the first moments of the global and partial magnetizations
for the different components of the community are in general
different.

APPENDIX B: RECONSTRUCTION OF A (DISCRETE)
PROBABILITY DISTRIBUTION FROM ITS MOMENTS

Let P (x) be any probability distribution defined at the
discrete set of points {xi = 2 i

N
− 1; i = 0,1, . . . ,N} and letF

be the Hilbert space of normalizable functions f (x) defined in
that same set with the scalar product 〈f,g〉 = ∑N

i=0 f (xi)g(xi).
Here P (x) can be expanded in any basis of F . Among all
possible bases we choose the orthonormal set of discrete
Chebyshev polynomials {CN

j (x)}Nj=0 [45–47]:

CN
j (x) = 1√(

N+j+1
2j+1

)(2j

j

) j∑
s=0

(−1)s+j

×
(

s + j

s

)(
N − s

N − j

)(N
2 (1 + x)

s

)
(B1)
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[CN
j (x) is of degree j ]. This basis is obtained from the basis of

monomials {xj }Nj=0 by the Gram-Schmidt orthonormalization
procedure. When N tends to infinity, F tends to the space
of square integrable functions in [−1,1] and CN

j (x) to the
Legendre polynomials [47]. The expansion reads

P (x) =
N∑

j=0

qjC
N
j (x), (B2)

where qj are coefficients to be determined. The advantage
of using the base of discrete Chebyshev polynomials is
that the coefficients qj can be easily obtained from the
orthonormality condition 〈CN

j CN
j ′ 〉 = δj,j ′ as qj = 〈CN

j ,P 〉 =∑
i P (xi)CN

j (xi), which is nothing but the average value
〈CN

j (x)〉 with respect to the probability P (x). This way, we
reconstruct P (x) from its moments, a simple way of solving
the so-called moment problem [48,49] for the present case.

In practice, for large N , we can approximate P (x) as

P (x) ≈
K∑

j=0

〈
CN

j (x)
〉
CN

j (x) (B3)

and express P (x) from the knowledge of the first moments
〈xk〉, k = 1, . . . ,K , of the probability distribution. The ap-
proximation turns out to be good if the probability function
is not close to zero. Otherwise, the approximation might not
respect the important condition P (x) � 0. Equation (B2) is
particularly useful with rates at Eq. (1) of the general noisy
voter model with zealots, since we can analytically compute
the moments 〈nj 〉 (and 〈xj 〉) in the steady state, as we showed in
Appendix A.

APPENDIX C: ALTERNATIVE DERIVATION
OF THE CRITICAL LINES

Consider one single community M = 1 and general rates
π±(n). From the master equation for the steady probability
function P (n) of the system, the following useful relation is

easily inferred:

P (n) = π+(n − 1)

π−(n)
P (n − 1) (C1)

for 1 � n � N . This equation, together with the normalization
condition for P (n), provides a closed form for P in terms of
the rates

P (n) =
∏n

k=1
π+(n−k)

π−(n+1−k)

1 + ∑N
l=1

∏l
k=1

π+(l−k)
π−(l+1−k)

. (C2)

Moreover, we can identify the local maximum (minimum) of
P (n), and hence infer the shape of P (n), as those values nm

that satisfy

P (nm − 1) � (�)P (nm) � (�)P (nm + 1). (C3)

Expression (C1) proves that the only possible way P (n) can
have more than one extreme is for the rates to be nonlinear
functions of n (the condition is not sufficient). If the rates are
linear, then P (n) has one extreme at most. If Eqs. (C1) and
(C3) are used with general rates of the form (2), for the one-
community case M = 1, the extreme of P (x) reads

xm = N + 1

N

a+
1 − a−

1

a+
1 + a−

1 − 2h1
N

, (C4)

where xm = 2nm/N − 1.
Now we particularize Eq. (C4) for the rates of the noisy

voter model with global influence of zealots, using Eq. (2) with
k = 1 for the coefficients. This shows that xm = 0 if z+ = z−
(balanced case) and provides Eq. (8) for the unbalanced case.
Furthermore, from Eq. (C4) we also determine the critical value
(a/h)c separating EA and AU phases by imposing xm = ±1.
The resulting expression for (a/h)c coincides with Eq. (7),
which by the way also provides the critical value for the
balanced case. Moreover, for the balanced case, it can be
explicitly seen, by imposing Eq. (C3) for all nc ∈ {2, . . . ,N},
that the uniform solution occurs only when a/h = (a/h)c,
with (a/h)c given by Eq. (7).

The same procedure can be followed by now using Eq. (C4)
with the effective coefficients obtained in Sec. IV, namely,
Eqs. (9) and (12). That way we derive Eqs. (10) and (13) for
the critical lines.
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