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We consider the competition of two mechanisms for adoption processes: a so-called complex threshold
dynamics and a simple susceptible-infected-susceptible (SIS) model. Separately, these mechanisms lead,
respectively, to first-order and continuous transitions between nonadoption and adoption phases. We consider
two interconnected layers. While all nodes on the first layer follow the complex adoption process, all nodes on
the second layer follow the simple adoption process. Coupling between the two adoption processes occurs as
a result of the inclusion of some additional interconnections between layers. We find that the transition points
and also the nature of the transitions are modified in the coupled dynamics. In the complex adoption layer, the
critical threshold required for extension of adoption increases with interlayer connectivity whereas in the case of
an isolated single network it would decrease with average connectivity. In addition, the transition can become
continuous depending on the detailed interlayer and intralayer connectivities. In the SIS layer, any interlayer
connectivity leads to the extension of the adopter phase. Besides, a new transition appears as a sudden drop of the
fraction of adopters in the SIS layer. The main numerical findings are described by a mean-field type analytical
approach appropriately developed for the threshold-SIS coupled system.
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I. INTRODUCTION

Dynamical collective phenomena emerging from interact-
ing units show nontrivial dependencies on the topology and
other characteristics of the network of interactions. Examples
of this dependency in complex networks occur in synchro-
nization phenomena [1–3], in ordering dynamics, where
coarsening only occurs below a critical effective dimension [4],
or in the appearance of new types of phase transitions, such
as explosive percolation or explosive synchronization [5–10].
In these phenomena, an additional important aspect is the
multilayering of the network or the existence of underlying
interdependent networks [11–14]. In general, dynamical pro-
cesses in this type of networks are not reducible to dynamics
in a single effective network [15,16] and new forms of phase
transitions and changes in the order of the transition have been
found in such multilayared and interdependent networks [17–
23]. While most studies of dynamics in complex networks
isolate a single dynamical process, many real situations involve
the coupling of two processes, a situation most naturally
described in the context of multilayer and interdependent
networks [11,24–26]. In this paper we consider the situation
of interdependent networks where nodes in each layer are
distinct entities, which follow only one type of contagion
mechanism, but due to interconnections are influenced by the
nodes from both layers. We address the question of the effect
of coupling two dynamical processes featuring, respectively, a
discontinuous and a continuous phase transition.

As a specific illustration we focus on contagion processes
that describe adoption phenomena. The adoption of an innova-
tion or a new technology can follow from processes of simple
or complex contagion [27–29]. In simple contagion a node in
the network adopts by interacting with a single neighbor who
has already adopted, in the same way as in an infection process.
On the contrary, in complex contagion, adoption requires
simultaneous exposure to multiple neighboring nodes that have
already adopted, so that adoption depends on the global state
of the neighborhood. A prototype model for simple contagion
is the susceptible-infected-susceptible (SIS) model, known to

have a continuous transition to the adoption phase for a critical
value of the infection rate [30,31]. Complex contagion is
described by a threshold model [32], which has a discontinuous
transition [33] to the adoption phase at a critical value of
the fraction of neighbors required for individual adoption. A
number of recent studies [34–36] consider different aspects
of this model, including comparison with available data
from online interactions [28,37–39]. While coupling of two
simple [40–47] or two complex [48–50] contagion processes in
multilayared and interdependent networks has been discussed
in different situations, our goal here is to consider the coupling
of a SIS and a threshold contagion models, each of them
running in one of two interdependent network layers. The
proposed setup is motivated by the study of the adoption
of a given innovation by two interdependent populations
each of which follows a different contagion mechanism, or
alternatively the coupled adoption of two different innovations
each one associated with a different contagion mechanism.
Concerning the fundamental question of the coupling of a
continuous and a discontinuous phase transition, we find that
not only the transition points and the nature of the transitions
can change, but also new transitions appear. These changes
turn out to depend on the interlayer connectivity and on the
asymmetry between the average intralayer connectivity of the
two layers.

This paper is organized as follows. In Sec. II we define
the model and give precise dynamical rules for the evolution
of the state variables. In Sec. III we introduce a mean-field
approximation, which allows us to derive evolution equations
for the density of adopters in each layer and study the fixed
points and their stability, finding the phase diagram in the
uncoupled and coupled cases. The more technical details of
the derivation of the evolution equations for the density of
adopters in the threshold and SIS layers are given, respectively,
in Appendixes A and B. In Sec. IV we show the results of
numerical simulations and compare them with the analytical
predictions of the previous section. In Sec. V we discuss the
continuous or discontinuous orders of the different transitions
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found in the model. Finally, in Sec. VI we summarize the main
conclusions.

II. MODEL

We consider two interdependent [11,17–19] layers. Each
layer � = 1,2 has N� nodes connected as a random Erdös-
Rényi (ER) topology with average degree k�. Additionally,
there are M interlinks randomly connecting nodes in both
layers. Throughout the paper, we consider equal size lay-
ers, N1 = N2 ≡ N and denote by m = M/N the average
number of interlinks per node. Each node holds a binary
state variable s�,i , � = 1,2, i = 1, . . . ,N , taken as s�,i = 0
(not adopter, neutral) and s�,i = 1 (adopter). Nodes in the
two layers are distinct entities such that each individual is
subjected to only one type of contagion mechanism, not to two
simultaneously.

In the first layer, � = 1, nodes change their states through
a complex adoption process [28,29], following a variant of
the threshold model rules [32]: a neutral node switches to
the adoption state when the fraction of its adopter neighbors
is above a threshold value θ . It is assumed that adoption is
irreversible and an adopter can not go back to the neutral
state. On a single, uncoupled, network the threshold model
displays a discontinuous transition [33] at a critical value θc,
which decreases as 1/k1. Below the critical threshold θ < θc

all nodes in the system become eventually adopters, while for
θ > θc adoption does not spread and only the initial group of
adopters remains.

In the second layer, � = 2, nodes evolve by a simple
adoption process following a variant of the SIS dynamics:
adoption spreads by pairwise interactions between adopter
and neutral nodes. The probability that an interaction between
a nonadopter and an adopter node leads to adoption in the
neutral node is λ. SIS dynamics does allow adopter nodes to
become neutral again. A single, uncoupled network, displays
a continuous phase transition at a critical value λc: when
λ < λc all nodes end up in the nonadopter state, while for
λ > λc there is a nonvanishing fraction of nodes that become
adopters. For our particular rules, we find λc = 1/k2, see
Sec. III C 1.

When the networks are coupled, m > 0, the detailed
dynamics is as follows: we start at t = 0 with a small seed
of adopters in the first layer (one randomly chosen node and
all its neighbors in the first layer) and a single adopter in
the second layer. At successive time steps t > 0 we choose
randomly one layer � and one node i from this layer, and its
state is updated according to the following rules (see Fig. 1 for
a schematic representation of these rules).

(i) If the node belongs to the first layer and
(a) s1,i(t) = 0, then s1,i(t + 1) = 1 if at least a fraction

θ of its neighbors (from both layers) are adopters,
(b) s1,i(t) = 1, nothing happens. Adopters cannot be-

come neutral.
(ii) If the node belongs to the second layer and

(a) s2,i(t) = 0, then all neighbors (from both layers) of
the node are visited sequentially. Adoption from any contact
arises with probability λ.

(b) s2,i(t) = 1, then it goes back to neutral state.

FIG. 1. Schematic representation of the model’s dynamics in two
layers forming an interdependent network in which a node can interact
with neighbors from both layers. In the upper layer (Thr) nodes
change their states through a complex adoption process following a
threshold model rules. In the lower layer (SIS) nodes evolve by a
simple adoption process following the SIS type of dynamics.

III. MEAN-FIELD APPROACH TO SYSTEM’S DYNAMICS

A. Threshold layer

Threshold dynamics on a single network had been pre-
viously described analytically (e.g., see Refs. [33,48,51]). In
these treatments the authors used assumptions that are not valid
in our particular case because of the coupling between two
different types of dynamics. For instance, we can not assume
in the SIS layer that a node can change its state at most once
during the evolution, or it is not convenient to treat the network
as treelike for large m values. Therefore, we develop in this
paper an approach based on a mean-field-type approximation
in which local fractions are replaced by global averages. As
shown in Appendix A, under this approximation the evolution
equation for the fraction of adopters in threshold layer is

β
d〈s1(t)〉

dt
= [1 − 〈s1(t)〉]Prob[〈s1(t)〉n � θ ], (1)

with β = N1
N1+N2

and 〈s1〉n is the average fraction of neighbors
that are adopters.

Although it is possible to relax this condition, to proceed
further we assume that each site i in the first layer has exactly
k1 neighbors in layer 1 and m neighbors in layer 2. Within the
mean-field approximation it can be assumed that the average
fraction of neighbors, which are adopters is a weighted average
of the average number of neighbors in each layer:

〈s1〉n = k1〈s1〉 + m〈s2〉
k1 + m

. (2)

The probability to find exactly j adopters among the k1 + m

neighbors, given that the fraction of adopters is 〈s1〉n, follows
a binomial distribution

B(〈s1〉n,j ) ≡
(

k1 + m

j

)
(〈s1〉n)j (1 − 〈s1〉n)k1+m−j . (3)

To find the probability that a neutral node becomes adopter,
we sum all cases when j � �(k1 + m)θ�, where �x� denotes
the largest integer not greater than x. This yields

Prob[〈s1(t)〉n � θ ] =
k1+m∑

j=�(k1+m)θ�
B(〈s1〉n,j ). (4)
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The binomial distribution Eq. (3) can be approximated by a
Gaussian distribution with mean (k1 + m)〈s1〉n and variance
(k1 + m)〈s1〉n(1 − 〈s1〉n), leading to

Prob[〈s1(t)〉n � θ ]

≈ 1

2
erfc

[�(k1 + m)θ )� − 1/2 − (k1 + m)〈s1〉n)√
2(k1 + m)〈s1〉n(1 − 〈s1〉n)

]
, (5)

where erfc[x] is the complementary error function. This turns
out to be a good numerical approximation for not too large
values of k1 + m (an error small than 0.1 in the whole range
of θ for k1 + m = 10). In the limit of large k1 + m this can be
further approximated by

Prob[〈s1(t)〉n � θ ] ≈ 1

2
erfc

⎡
⎣ θ − 〈s1〉n√

2
k1+m

〈s1〉n(1 − 〈s1〉n)

⎤
⎦. (6)

We still need a final ingredient to derive the evolution equation
for 〈s1(t)〉. As we are studying the evolution in a finite system,
if the probability Prob[〈s1(t)〉n � θ ] is smaller that 1/N1, it
means effectively that the condition can not be reached in the
finite system. Therefore, we introduce the function

G(x) =
{

Prob[x � θ ], if Prob[x � θ ] � 1
N1

,

0, if Prob[x � θ ] < 1
N1

,
(7)

and then write the evolution equation as:

β
d〈s1(t)〉

dt
= (1 − 〈s1〉)G

(
k1〈s1〉 + m〈s2〉

k1 + m

)
, (8)

where we have used Eq. (2). This is the final mean-field
equation for the evolution of the density of adopters in the
threshold layer.

B. SIS layer

In the usual susceptible-infected-susceptible (SIS) model
of infection [30,31], the evolution rules are that a randomly
chosen agent, which happens to be adopter (infected state) can
either infect one of its neighbors with a given probability or
can go back to the neutral (susceptible state); if the randomly
chosen agent is already in the neutral state, nothing happens.
Here we use a slightly modified version of the SIS rules that
we believe are more appropriate to model adoption processes.
In this version, the neutral node is the one adopting from its
adjacent neighbors adopters. The way of interaction remains
the same, pairwise interactions between nodes are considered,
but the direction of interaction has been changed from outgoing
(original SIS for infection) to ingoing (adoption process). In
this way we keep the symmetry in the interaction between
the threshold and the SIS layers and we implement two-way
influence between complex and simple adoption layers. By a
similar reasoning to the one developed before for the threshold
layer, we can derive the mean-field equation for the fraction of
adopters in the SIS layer (details of the derivation are given in
Appendix B)

(1 − β)
d〈s2(t)〉

dt
= −〈s2〉 + (1 − 〈s2〉)(1 − e−λ(k2〈s2〉+m〈s1〉)).

(9)

Equations (8) and (9) are the starting point of our analytical
treatment. In the next section we discuss the fixed points and
their stability. For the sake of brevity we adopt henceforth the
notation x1 ≡ 〈s1〉, x2 ≡ 〈s2〉.

C. Fixed points

1. Independent layers

We first analyze the fixed points in the absence of coupling
between the layers, m = 0.

For the first, threshold, layer, Eq. (8) has always the stable
fixed point x∗

1 = 1. New fixed points appear as solution of the
equation

G(x∗
1 ) = 0. (10)

If �k1θ� = 0, the sum in Eq. (1) is always equal to 1 and
there are no new fixed points. They appear when �k1θ� = 1,
or θ = �θ ≡ 1/k1, as now the sum Eq. (1) misses the term
with j = 0 and hence it is equal to 1 − (1 − x∗

1 )k1 . According
to its definition, G(x∗

1 ) = 0 if 1 − (1 − x∗
1 )k1 < 1/N1 or x∗

1 <

1 − (1 − 1
N1

)
1/k1 ≈ (N1k1)−1, for large N1. When θ = 2�θ the

sum Eq. (1) misses two terms and the interval of fixed points
is given by the condition 1 − (1 − x∗

1 )k1 − k1x1(1 − x∗
1 )k1−1 <

1/N1, or x∗
1 �

√
2

N1k1(k1−1) , for large N1. The appearance of an

enlarged interval of fixed points continues until θ = 1, where
the only term in the sum in Eq. (1) is (x∗

1 )k1 and the interval of
fixed points is x∗

1 < N
−1/k1
1 < 1. The complete phase diagram

for the uncoupled threshold layer is plotted in Fig. 2, left panel.
If the initial condition x1(0) falls inside the shaded area, then
it remains there. If, otherwise, the initial condition is outside
the shaded area, then the dynamics leads to the only stable
stationary solution, x∗

1 = 1, corresponding to global adoption.
As the initial condition can not be smaller that 1/N1 (one single
adopter) one must consider adoption possible only whenever
x∗

1 > 1/N1. In our particular version of the threshold model
for a wide range of reasonable values of N1 and k1 this occurs
for θ = θc = 2/k1. A more precise treatment was presented in
reference [33]. It was found there that the condition for θc for
threshold dynamics on ER graphs is

k1Q(K∗ − 1,k1) = 1, (11)

where Q(a,x) is the incomplete gamma function and K∗ =
�1/θc�. When the initial group of adopters is sufficiently small
(three orders of magnitude less than the number of nodes) an
approximation for θc ≈ 1/k1 can be used. Both in this more
detailed calculation, and in our simple treatment, it is found
that θc varies as the inverse of the number of neighbors k1.

For the second, SIS, layer, Eq. (9) always possesses the
solution x∗

2 = 0. This is stable up to λ � λc ≡ 1/k2. A
transcritical bifurcation leads to a new, stable, fixed point
x∗

2 ∈ [0,1/2] for λ > 1/k2 appearing as a solution of

e−λk2x
∗
2 = 1 − 2x∗

2

1 − x∗
2

. (12)
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FIG. 2. Phase diagram in the independent layer case m = 0. Left-side panel shows the case of the threshold layer for k1 = 10, N1 = 1000.
Here the dashed area and the line x1 = 1 is the set of stable fixed points. The right panel displays the steady state fraction of adopters for the
SIS model k2 = 10, N2 = 1000. Dashed line presents results for usual model of infection, solid line presents our model of simple adoption.

The complete phase diagram for the uncoupled threshold layer
is plotted in Fig. 2, right panel. For λ � λc, and independently
on the initial condition, the system tends to the only stable
fixed point x∗

2 = 0. For λ > λc the dynamics leads to the stable
solution x∗

2 > 0 corresponding to partial adoption. Note that
the fixed point satisfies x∗

2 � 1/2 and hence no more than half
of the agents become adopters. In the usual SIS model [30,31]
considered on single network the critical value of adoption
probability is the same as in our case, i.e., λc = 1/k2 and above
this value the fraction of adopters grows as x∗

2 = 1 − 1
λk2

(see
the dashed line in the right panel of Fig. 2).

2. Coupled layers

We now consider the case m > 0.
x∗

1 = 1 is still a fixed point for Eq. (8). The corresponding
solution x∗

2 is obtained from Eq. (9)

e−λk2x
∗
2 = eλm 1 − 2x∗

2

1 − x∗
2

. (13)

It is easy to show graphically that this solution exists for all
values of λ and it belongs to the interval x∗

2 ∈ [0,1/2], although
in general x∗

2 has to be found numerically as a a function of
λk2 and λm. The stability of the fixed point (x1,x2) = (1,x∗

2 )
is analyzed by means of the eigenvalues of the matrix of first
derivatives: (

∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ2
∂x1

∂ẋ2
∂x2

)
(14)

evaluated at (1,x∗
2 ). The two eigenvalues μ1,2 are

μ1 = −β−1G(1,x∗
2 ), (15)

μ2 = −1 + k2λ(1 − x∗
2 )(1 − 2x∗

2 )

(1 − β)(1 − x∗
2 )

. (16)

While it is clear that μ1 < 0, a graphical analysis shows that
the second eigenvalue μ2 is always negative as well and the
fixed point (1,x∗

2 ) is, hence, stable.

Other fixed points might appear as simultaneous solutions
of the equations:

G

(
k1x1 + mx2

k1 + m

)
= 0, (17)

e−λ(k2x2+mx1) = 1 − 2x2

1 − x2
, (18)

satisfying the conditions x1 ∈ [0,1],x2 ∈ [0,1].
Replacing x1 from the second equation into the first we

arrive at the single condition

G

(
k1
λ

log
( 1−x2

1−2x2

) + (m2 − k1k2)x2

m(k1 + m)

)
= 0. (19)

An analysis similar to the one performed in the case m = 0
shows that this equation is satisfied in a range of values
x2 ∈ [0,x∗

2 ] only when θ > �θ ≡ 1/(k1 + m) (otherwise the
function G is identically equal to 1). However, it might occur
that x∗

2 is such that the corresponding value for x∗
1 obtained

from Eq. (18) does not belong to the interval [0,1]. One must
then increase θ until the condition x∗

1 ∈ [0,1] is satisfied.
Furthermore, as we discussed above, we must require that x∗

1
is greater that 1/N1. When these conditions are met, besides
finding the fixed points x∗

1 ,x∗
2 , one finds the critical value θc

as a function of λ and the other parameters, k1, k2, m, N1 of
the model. The resulting line θc(λ) is plotted as a solid line in
Fig. 3 and it has been plotted on top of the numerical results
in Fig. 4.

To prove that x∗
2 is different from zero whenever λ > 0,

we expand Eq. (18) around λ = 0 and replace x∗
1 = 1 to

obtain x∗
2 = mλ + O(λ2). As a way of example, the whole

dependence of x∗
2 (m) displayed in Fig. 8 is obtained by a

numerical solution of Eq. (18) fixing λ = 0.01, x∗
1 = 1.

When analyzing the values of x∗
1 and x∗

2 corresponding to
the fixed points, it turns out that if λ < 1/k2 both values x∗

1
and x∗

2 are close to zero, but when λ > 1/k2, x∗
1 is still close to

zero, but x∗
2 takes a value larger than the solution of Eq. (12).

This means that the number of adopters in the SIS layer is
always larger in the coupled case than in the uncoupled layers.
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FIG. 3. Phase diagram in the coupled layer cases k1 = 12, k2 = 3 (left) and k1 = 3, k2 = 12 (right). In both cases it is m = 10, N1 = N2 =
1000.

In summary, for m > 0, the structure of the fixed points of
Eqs. (8), (9) is as follows:

I: x∗
1 = 1, x∗

2 ≈ 0.5, for θ � θc.
IIa: x∗

1 � 0, x∗
2 � 0, for θ > θc and λ < 1/k2,

IIb: x∗
1 � 0, x∗

2 > 0, for θ > θc and λ > 1/k2.

FIG. 4. Fractions of adopters in threshold layer 〈s1〉 (left column),
and in SIS layer 〈s2〉 (right column) as a function of θ and λ for m = 10
and k1 = 3 and k2 = 12 (top), k1 = k2 = 6 (middle), k1 = 12 and
k2 = 3 (bottom). Results come after computer simulations performed
for a network of N1 = N2 = 1000 nodes, where both layers are ER
random networks, and are averaged over 500 realizations of networks
and 500 realizations of the dynamics for each network configuration.
The continuous lines displayed in the SIS column come from the
full stability analysis of the mean-field dynamical equations; the
horizontal line is λ = 1/k2. The arrows indicate transitions between
the regions that will be discussed in other figures.

These three regimes have been identified in Fig. 3 for a
particular value of the system parameters. In the next sections
we will compare the results of our analytical treatment with
those obtained in computer simulations.

IV. NUMERICAL RESULTS COMPARED WITH
ANALYTICAL FINDINGS

We have performed numerical simulations of the dynamical
rules of the model. We run the dynamics until the steady
state is reached (absorbing state in threshold layer but still
active in SIS) and then measure the fraction of adopters
in each layer s� = 1

N�

∑N�

i=1 s�,i and its average 〈s�〉 over
many realizations and network configurations. The results
of numerical simulations shown in Fig. 4 evidence that
the main effect of the number of interconnections m is
to facilitate adoption in the coupled layer system and that
there is great correlation between the adoption areas in both
layers.

Our numerical findings are generally well described by the
mean-field-type analysis described in Sec. III. The analytical
approach is able to predict the main trends observed in Fig. 4,
namely the splitting of the parameter space in distinct regions:
region I characterized by the values 〈s1〉 ≈ 1, 〈s2〉 ≈ 0.5; and
region II characterized by a low value 〈s1〉 � 0, further split in
regions IIa: very small 〈s2〉 � 0, and IIb: larger but still small
〈s2〉 > 0. The border between regions IIa and IIb corresponds
to λ = 1/k2, the critical value in absence of coupling between
the layers (see Sec. III C 1). We now describe in details the
main features of the different transitions that occur between
these regions and whose exact nature depend on the intralayer
(k1,k2) and interlayer m connectivities.

We first focus on the variation of the adoption region in the
threshold layer. As observed in Fig. 4 for a particular value
m = 10 (although results are qualitatively the same for other
m values), in the coupled layer system 〈s1〉 still experiments a
transition from the adopter I to the neutral II phase. Evidence
of this transition is provided in the left panels of Fig. 5 where
we plot, for m = 10 and different values of the intralayer
connectivities (k1,k2), the variation of 〈s1〉 as we cross (i)
from region I to region IIa (left top panel) varying θ , (ii) from
region I to region IIb varying θ (left middle panel), and (iii)
from region II to region I varying λ (left bottom panel).
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FIG. 5. Fractions of adopters in threshold layer (left column) and
in SIS layer (right column) as a function of θ (λ) when λ (θ ) is fixed
and for m = 10. Top panel shows results when λ = 0.05, middle
panel when λ = 0.5, and bottom panel when θ = 0.25. Red circles
correspond to the case k1 = k2 = 6, green triangles to k1 = 12 >

k2 = 3, and blue squares to k1 = 3 < k2 = 12. Symbols present the
results from computer simulations and solid lines with corresponding
colors stand for analytical solutions.

For fixed λ the transition between regions I and II occurs
at a critical threshold θc(λ,m) that varies with m and λ in
an intricate way. As λ increases towards λ = 1, θc tends to a
constant value that depends both on the intralayer (k1, k2) and
interlayer (m) connectivities. On the one hand, θc(λ = 0,m >

0) is necessarily smaller than the critical value θc(m = 0) for
the uncoupled case: neighbors in the second layer can not
become adopters, hence decreasing the fraction of adopter
neighbors of a node in the first layer and making adoption
more difficult. On the other hand, the increase of θc(λ > 0,m)
with m seems to go against intuition, since in a single layer
θc varies as the inverse of the number of neighbors, which
now is k1 + m. However, the number of adopters in the second
layer can increase due to its own dynamics and, through the
interlayer connections, favor the spread in the first layer. The
combined effect leads to an increase in the critical threshold
value θc for λ,m > 0.

We plot in Fig. 6 the transition value θc as a function of m for
a particular value λ = 0.5 (again, similar results are obtained
for other values of λ). There appear to be clear differences
between the cases k1 > k2 and k1 � k2. When k1 > k2, the
critical threshold changes visibly only when m > k1, i.e.
when the number of interlayer connections overcomes the
number of connections inside the threshold layer. It then grows
steadily towards the limiting value θc = 0.5. When k1 � k2,

 0

 0.2

 0.4

 0.6

 0.8
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k1=k2=6
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FIG. 6. Critical value of the threshold θc as a function of the
interconnectivity m for λ = 0.5. Same symbols and line meanings
than in figure 5.

θc increases with the number of interconnections up to a
maximum at m ≈ 10 and then decreases until the limiting
value of θc = 0.5. It is interesting to note that in a single
network it is not possible to exceed the value θc = 0.5 [52],
whereas at least four coupled networks are needed to observe
global adoption above θ = 0.5 [48]. We find that this limit
is overcome for just two layers, which couple simple and
complex contagion processes.

On the SIS layer the most remarkable feature appearing
when m > 0 is the disappearance of the neutral phase: for fixed
θ and m > 0, 〈s2〉 is always larger than zero for λ > 0, or, in
other words λc(m > 0) = 0. This occurs as there are always
adopters in the first layer (at least the initial group of adopters
remain) and adoption always spreads from them to the second
layer due to the interlayer connections. The second noticeable
effect of the interlayer connectivity on the SIS layer is the
appearance of a new transition when crossing from region I to
region II. This shows up as a drop in the fraction of adopters
〈s2〉 exactly at the same values of (θ,λ) for which the first layer
experiments its transition from adopter to neutral global states,
as shown in Figs. 4 and 5.
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FIG. 7. Jump of the fraction of adopters in threshold layer �〈s1〉
at the transition point θc as a function of m and for λ = 0.5. Values
of the θc(m) are shown in Fig. 6. Same symbols and line meanings as
in Fig. 5.
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FIG. 8. Fraction of adopters right above λ1
c = 0 as a function

of m. Different colors represent different values of k1 and k2. Red
circles correspond to the case k1 = k2; green triangles, k1 > k2; and
blue squares, k1 < k2. Symbols present the results from computer
simulations for a network of N1 + N2 = 2000 nodes, where both
layers are ER random networks. Results are averaged over 500
realizations of networks and 500 realizations of dynamics for each
network configuration. We took θ = λ in computer simulations. Solid
lines with corresponding colors stand for analytical solutions.

V. CHARACTERIZING THE ORDER OF TRANSITIONS

A detailed look at Fig. 5 suggests that the order of the
transition in the threshold layer (discontinuous in the absence

of coupling to the SIS layer) might now depend on the
connectivities and, most remarkably, on the exact way some
transition lines are crossed. Quite generally all transitions
between the different regions are discontinuous, except for
the transition I to IIb occurring increasing θ at fixed λ for
k1 � k2, which becomes continuous for sufficiently large m.
The change from discontinuous to continuous transition in that
case is evident from Fig. 7 where we plot the jump of 〈s1〉 at
the transition point. Note, however, that the transition II to I
occurring increasing λ at fixed θ is always discontinuous.

When both layers are coupled the transition in the SIS
layer remains continuous but moves to λ = 0. We have already
shown that for small number of interlayer connections m and
adoption probability λ the fraction of adopters in the SIS
layer grows linearly as x∗

2 ≈ mλ, so proving the continuous
nature of the transition, see Fig. 8 where we plot the stationary
solution of Eq. (18), which fits very well the results obtained
by computer simulations. Interestingly we observe also a new,
second transition in the SIS layer. It appears for the same set
of parameters (θ,λ) as a transition in the threshold layer is
observed.

It appears from the numerical results that in the threshold
layer the order of the transition between the I and IIb regions
depends, for large m and k1 � k2, on whether the transition line
is crossed vertically (at constant θ ) or horizontally (at constant
λ). In fact, it changes from discontinuous to continuous when
λ is fixed and we increase θ going from phase I to IIb
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FIG. 9. Maxima of the fraction of adopters in threshold layer 〈s1〉max as a function of θ for fixed values of λ, different panels present results
for different intralayer connectivities, i.e., (a) k1 = k2 = 6, (b) k1 = 12, and k2 = 3, (c) k1 = 3 and k2 = 12 and as a function of λ for fixed θ ,
(d). In all cases the number of interlinks is set to m = 10.
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(for sufficiently large m and when k1 � k2). However, our
analytical calculations do not predict this change in the order
of the transitions in the threshold layer.

To provide further numerical evidence of the order of the
transitions for different connectivities k1 and k2 and different
ways of crossing the transition lines we have studied the
probability distribution P (s1) of the number of adopters in the
first layer. In Figs. 9 and 10 we plot the location of the maxima
of this distribution for different parameter and connectivity
values. Figures 9(a)–9(c) and 10 show the results when the
transition line is crossed horizontally (varying θ at fix λ) while
Fig. 9(d) focuses on a vertical crossing (varying λ at fix θ ) for
different values of the interlayer and intralayer connectivities.
As shown in those figures, the transition in the threshold layer
crossing horizontally from I to IIa occurring at λ < 1/k2

remains discontinuous for all k1, k2 cases—blue circles in
Figs. 9(a)–9(c)—as so does the analogous transition from I to
IIb occurring at λ > 1/k2 when k1 > k2—green triangles in
Fig. 9(b). This discontinuous nature of the transition is clearly
evidenced by the coexistence of the maxima at s1 = 0 and
s1 = 1 for a range of values of θ . In fact, in the numerical
simulations, one can even observe the typical hysteresis
behavior typical of a discontinuous transition. However, the
same transition from I to IIb in the case k1 � k2 and for a
sufficiently large number m of interlink connections becomes
continuous: only a single maximum of the distribution, varying
continuously from s1 = 1 to s1 = 0 as a function of θ , is
observed—green triangles in Figs. 9(a) and 9(c). To show that
our observation does not depend on the specific choice of k1

and k2 values we plot in Fig. 10 the maxima of the distribution
P (s1) when k1 = 6, m = 10 and for different values of k2. We
see that the order of the transition changes from discontinuous
to continuous when increasing intraconnectivity in SIS layer,
k2. Only when k1 � k2 the transition remains discontinuous.
For this particular example, the order of the transition changes
to continuous for k2 = 4. Figure 9(d) shows evidence of the
discontinuous character of the transition when one crosses
instead the transition line vertically (at constant θ ) from I
to II. As mentioned before, although the second transition
in the SIS layer is caused by the transition in the threshold
layer, the order of the transitions in both layers agree only

 0

 0.5

 1 1
2

3 4567
912

18

1

 θ

 k2

FIG. 10. Maxima of the fraction of adopters in threshold layer
〈s1〉max as a function of θ when k1 = 6, m = 10, and λ = 0.5 for
different values of k2.

when the transition line is crossed horizontally (λ constant),
but differs for vertical crossing (θ constant). In the latter
case the transition in the threshold layer is discontinuous
but at the same time the SIS layer experiences a continuous
transition with a big slope exhibiting substantial jumps in the
average 〈s2〉.

VI. CONCLUSIONS

In summary, we have considered the competition between
two different, simple and complex, adoption processes as a
specific case of competition of a continuous and a first-order
transition on interdependent networks, and we have developed
a mean-field approach appropriate to describe this situation.
We have found that with the presence of interlayer connections
the system reveals a wider range of parameters where global
adoption takes place. Furthermore, both threshold and SIS
layers change their behavior quantitatively and qualitatively.
In the threshold layer the critical value θc increases with the
interlayer connectivity m, whereas in the case of an isolated
single network it would decrease with average connectivity.
The transition remains discontinuous except in the case
of asymmetric intralayer connectivities k1 � k2 and large
intralayer connectivity m, when it becomes continuous. We
also find that the critical threshold reaches a local maximum,
θc > 0.5, located at intermediate values of m. In the SIS layer
the original transition remains continuous but it moves to
λc(m) = 0 for any m �= 0, signaling the disappearance of the
neutral state. A new transition in SIS layer between regions
of low and large number of adopters appears caused by the
interlayer coupling. This new transition can be continuous
or discontinuous according to the particular values of the
interlayer and intralayer connectivities. Remarkably the nature
of the transitions in both layers might depend on the direction in
which the transition lines are crossed. Our results indicate that
interconnection can result in new transitions and modifications
of the nature of preexisting transitions, opening the way to
further research on universal characteristics of the coupling of
network transitions of different order and their dependence on
interlayer and intralayer connectivities.
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APPENDIX A: MEAN-FIELD APPROACH FOR COMPLEX
ADOPTION

We develop in this appendix an approach based on a mean-
field-type approximation in which local fractions are replaced
by global averages.

Let us first introduce the general notation. We denote by
s1,i(t), i = 1, . . . ,N1 the states of agents in the first layer and
s2,i(t), i = 1, . . . ,N2 those in the second layer. An agent i in
layer � is said to be in the adopter state at time t if s�,i(t) = 1;
otherwise, it is in the neutral state when s�,i(t) = 0. We will
use 〈s1,i(t)〉n for the fraction of neighbors of agent (1,i) who
are adopters, i.e., 〈s1,i(t)〉n = 1

n1,i

∑
(�,j )∈n1,i

s�,j (t), being n1,i

the set of neighbors of (1,i) in both layers and s�,j the value
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of the state of such a neighbor, which might belong to the
first layer, s1,j , or to the second layer, s2,j . Once selected,
the state s1,i(t) updates according to the following dynamical
rule: if 〈s1,i(t)〉n is smaller than the threshold θ nothing
happens; otherwise, it becomes an adopter. This can be written
as

s1,i(t + τ ) =
{
s1,i(t), if 〈s1,i(t)〉n < θ,

1, if 〈s1,i(t)〉n � θ.
(A1)

Note that, according to this rule, once a node becomes an
adopter it cannot go back to the neutral state. Therefore,
with the course of time the fraction of adopters in the
system can either increase or stay unchanged, but never
decrease.

We now aim at deriving an approximate equation for the
evolution of the fraction of the number of adopters in layer
1, s1(t) = 1

N1

∑N1
i=1 s1,i(t). We follow closely [53,54] in the

derivation. The ensemble average 〈s1(t)〉 evolves according to
the general, exact, relation:

N1〈s1(t + τ )〉 = N1〈s1(t)〉 + 〈s1,i(t + τ ) − s1,i(t)|{s(t)}〉,
(A2)

where {s(t)} = [s1,1(t), . . . ,s1,N1 (t),s2,1(t), . . . ,s2,N2 (t)] de-
notes the particular realization of the state variables and
〈· · · | · · · 〉 means a conditional average. Considering that time
(as measured in Monte Carlo units) increases by τ = 1/(N1 +
N2) after one individual update, we can write Eq. (A2) in the
form

β
〈s1(t + τ )〉 − 〈s1(t)〉

τ
= 〈s1,i(t + τ ) − s1,i(t)|{s(t)}〉
= −〈s1(t)〉 + 〈s1,i(t + τ )|{s(t)}〉

(A3)

with β = N1
N1+N2

We now make a mean-field-type approxima-
tion and consider that the fraction of neighbors, which are
adopters 〈s1,i(t)〉n is independent of the site i. Hence, the
probability that the fraction of adopters in the neighborhood
of the randomly chosen node i is at least θ is approximated by
Prob[〈s1,i(t)〉n � θ ] ≈ Prob[〈s1(t)〉n � θ ], being 〈s1(t)〉n the
average value of 〈s1,i(t)〉n over all sites i = 1, . . . ,N1. Using
the dynamical rules described in Eq. (A1) we derive:

〈s1,i(t + τ )|{s(t)}〉 = (1 − Prob[〈s1(t)〉n � θ ]) × 〈s1(t)〉
+ Prob[〈s1(t)〉n � θ ] × 1

= 〈s1(t)〉 + (1 − 〈s1(t)〉)
× Prob[〈s1(t)〉n � θ ]. (A4)

Replacing in Eq. (A3) and treating the left-hand side as a time
derivative we obtain

β
d〈s1(t)〉

dt
= [1 − 〈s1(t)〉]Prob[〈s1(t)〉n � θ ], (A5)

which is Eq. (1) in the main text.

APPENDIX B: MEAN-FIELD APPROACH FOR SIMPLE
ADOPTION

We recall that the rules of the adoption process in the SIS
layer are the following: at time t an agent from layer 2 is

randomly selected, let s2,i(t) be the state of this agent. If
s2,i(t) = 1 (adopter) it goes back to the neutral state s2,i(t +
τ ) = 0. If s2,i(t) = 0 (neutral) then it visits sequentially all its
neighbors, having a probability λ of becoming an adopter from
the interaction with anyone of them (of course, if it becomes
adopter in a given interaction, it is not necessary to continue
the sequence of interactions with the neighbors). Namely,

s2,i(t + τ ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if s2,i(t) = 0 and adoption from
any neighbor happens,

0, if s2,i(t) = 0 and adoption does
not happen,

0, if s2,i(t) = 1

(B1)

By a similar reasoning to the one developed before for the
threshold layer, we can derive an exact evolution equation for
the ensemble average of the fraction of adopters in the SIS
layer s2(t) = 1

N2

∑N2
i=1 s2,i(t)

(1 − β)
〈s2(t + τ )〉 − 〈s2(t)〉

τ
= 〈s2,i(t + τ ) − s2,i(t)|{s2(t)}〉
= −〈s2(t)〉+〈s2,i(t + τ )|{s(t)}〉

(B2)

According to the dynamical rules Eq. (B1), the conditional
average is

〈s2,i(t + τ )|{s(t)}〉 = (1 − 〈s2,i〉) × Prob[A], (B3)

where Prob[A] = Prob[Adoption occurs from any neighbor]
= 1 − Prob[Adoption does not occur from any neighbor]. If
κi is the number of adopter neighbors in any layer of site
(2,i) the probability that adoption does not occur for that site
is (1 − λ)κi . In the mean-field approximation we will replace
this probability by the average probability 〈(1 − λ)κi 〉 over
all nodes. We will further assume that the number of adjacent
adopters is given by a Poisson distribution (as in ER networks),
P (κ) = 〈κ〉κ e−〈κ〉

κ! , leading to

〈(1 − λ)κi 〉 =
∞∑

κ=0

〈κ〉κe−〈κ〉

κ!
(1 − λ)κ = e−λ〈κ〉. (B4)

We replace 〈κ〉 = k2〈s2〉 + m〈s1〉. Thus, the probability that
adoption happens is

Prob[Adoption] = 1 − e−λ(k2〈s2〉+m〈s1〉). (B5)

Replacing in Eq. (B2) and identifying the left-hand side as
a time derivative we obtain the mean-field equation for the
fraction of adopters in the SIS layer

(1 − β)
d〈s2(t)〉

dt
= −〈s2〉 + (1 − 〈s2〉)(1 − e−λ(k2〈s2〉+m〈s1〉)),

(B6)

which is Eq. (9) in the main text.
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