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Abstract. In the model for continuous opinion dynamics introduced by Hegselmann and Krause, each
individual moves to the average opinion of all individuals within an area of confidence. In this work we
study the effects of noise in this system. With certain probability, individuals are given the opportunity to
change spontaneously their opinion to another one selected randomly inside the opinion space with different
rules. If the random jump does not occur, individuals interact through the Hegselmann-Krause’s rule. We
analyze two cases, one where individuals can carry out opinion random jumps inside the whole opinion
space, and other where they are allowed to perform jumps just inside a small interval centered around
the current opinion. We found that these opinion random jumps change the model behavior inducing
interesting phenomena. Using pattern formation techniques, we obtain approximate analytical results for
critical conditions of opinion cluster formation. Finally, we compare the results of this work with the noisy
version of the Deffuant et al. model [G. Deffuant, D. Neu, F. Amblard, G. Weisbuch, Adv. Compl. Syst.
3, 87 (2000)] for continuous-opinion dynamics.

1 Introduction

In a social system, the opinion of the individuals deter-
mines the character of their mutual interactions. But at
the same time, the formation and subsequent evolution
of people’s opinion are complex phenomena affected by
affinities and contracts between the members of the so-
ciety. This complex behavior is specially observed in sit-
uations when a common decision needs to be taken by
the individuals. During such a cooperative task it usually
happens that either a single position emerges or the pop-
ulation evolves to a state of coexistence of different opin-
ions. It is natural to talk about those processes within the
framework of interacting particles, this being one of the
reasons why nowadays many physicists address the study
of opinion formation in large groups using ideas borrowed
from statistical physics and non-linear science [1,2]. The
introduction of new information-communication technolo-
gies and the availability of large data sets have also con-
tributed to develop this interdisciplinary research field.

In recent years, two models where the opinion of an
individual can vary continuously have raised the inter-
est of the scientific community [3,4]. Such continuous
models have been introduced independently by Deffuant
et al. (DW Model) [5] and Hegselmann and Krause (HK
model) [6–9]. The two models implement the so-called
bounded confidence mechanism by which two individuals
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only influence each other if their opinions differ less than
some given amount [10,11]. Another common important
ingredient of both models is an agreement mechanism,
by which individuals that satisfy the bounded confidence
condition adjust their opinions towards an average value.
The fundamental difference between the models is mate-
rialized in the definition of who communicates with whom
at once [12]. In the DW model, two randomly chosen in-
dividuals meet and a pairwise averaging is implemented,
while there is an extra parameter that controls how fast
the opinions converge [13,14]. This model is suitable to de-
scribe situations where individuals meet in small groups
and exchange information face-to-face. In the HK model,
the communication takes place in large groups and indi-
viduals move their own opinions to the average opinion of
all individuals which lie in the area of confidence.

Although one expects considerable differences between
the two models when the number of individuals is large,
it has been well established that they always lead to a fi-
nal state in which either perfect consensus is reached or
the population splits into a set of opinion clusters each
of them holding exactly the same opinion [3,15]. How-
ever, in real social systems, public opinion does not reach
such ideal states of complete consensus. In this regard and
with the aim to make models of continuous opinion dy-
namics more realistic, recent works have introduced ad-
ditional elements of randomness to the DW model. This
new ingredient has been interpreted as a “self-thinking”
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or “free-will”, where individuals change their opinion in a
random way [16,17], as the death of an individual and the
birth of a new one [18,19], or simply, as the replacement
of individuals by new ones in systems where the total size
is not fixed [20].

Nowadays, with the introduction of new information-
communication technologies, an effective global exchange
of information in large groups is easily achieved. In this
sense, we believe that the HK model deserves more atten-
tion, particularly when a sort of randomness is added to
the original rules [21]. Following this motivation, in this
paper we generalize the HK dynamical rules to incorpo-
rate additional random elements, or “noise”. Our aim is
to analyze which aspects of the original dynamics are ro-
bust against noise and which additional complex collec-
tive phenomena can emerge as a result. In our general-
ization, individuals are allowed to change spontaneously
their opinion with certain probability [16,17]. If this ran-
dom jump does not occur, individuals can then perform
interactions through the HK’s rules. We analyze two cases
of noise that have been already successfully implemented
in the DW model [16,17]: in the first case, individuals are
allowed to perform opinion random jumps to any point in
the full opinion space, while in the second case, individu-
als can perform a random jump in their opinion to a new
value located inside a small interval centered around the
current opinion. We show that these new ingredients are
able to induce novel phenomena in the HK model. In both
cases, we have found an order-disorder transition above a
critical value of the noise intensity. In the disordered state
the opinion distribution tends to be uniform, while for the
ordered state, a set of noisy opinion clusters are formed.
Using a linear stability analysis we derive approximate
conditions for the stability of noisy opinion clusters. Our
analytical results are in qualitative agreement with Monte
Carlo simulations.

The next section presents the HK model in the pres-
ence of noise. Section 3 contains extensive results on the
model behavior obtained by Monte Carlo simulations. The
order-disorder transition is analyzed through a linear sta-
bility analysis in Section 4. Section 5 is devoted to compare
the noisy HK model with the noisy DW model. Conclu-
sions are presented in Section 6.

2 The noisy Hegselmann-Krause model

The original HK model was introduced as a nonlinear ex-
tension of previous models of social influence [6,7,22]. In
this section, we consider a modification of the model in
which noise is added to the original HK rules, resulting in
a random change of an individual’s opinion. To begin the
analysis, let us consider a system composed by N individ-
uals (i = 1, . . . , N). At (discrete) time n each individual
i is endowed with a continuous opinion xn

i , taking val-
ues in a continuous one-dimensional interval xn

i ∈ [0, L],
where L is the range of opinion space. At time-step n a
randomly chosen individual i has a probability m of spon-
taneously changing his opinion to a new random value,
and a probability 1−m to move to the average opinion of

all individuals (including himself) which lie in his interval
of confidence of width 2ε. The case m = 0 corresponds to
the HK rules, in which the opinion of the individual i, at
the next step n + 1, is given by

xn+1
i =

∑

j:|xn
i −xn

j |≤ε

xn
j

|{j : |xn
i − xn

j | ≤ ε}| , (1)

where the sum is over the individuals j whose opinions
differ from xn

i by at most ε, and |{j : |xn
i −xn

j | ≤ ε}| is the
number of such individuals. The procedure is repeated by
selecting at random another individual and so on [8,23].
We would like to notice that in the original HK model the
update was done synchronously rather than by randomly
choosing the agents [6,7]. This change may affect conver-
gence times to the final steady state. The parameter ε,
which runs from 0 to L, is the confidence parameter. We
introduce the time variable t = n/N measuring the num-
ber of Monte Carlo steps (MCS), or the number of opinion
updates per individual.

As far as the range of the random jumps (the max-
imum interval in which individuals can change sponta-
neously their opinions) is concerned, we distinguish two
simple scenarios.

(1) Unlimited random jumps to any point inside the in-
terval [0, L], meaning that the new opinion xn+1

i can
take any value in the whole opinion space [0, L] [16].

(2) Bounded random jumps inside the interval [−γ, γ],
with γ ≤ L. i.e. the new opinion xn+1

i will lie in the
interval (xn

i − γ, xn
i + γ) [17].

In both scenarios, the new random value is adopted uni-
formly within the allowed interval. In the second case,
it is possible that opinions leave the bounded opinion
space [0, L]. To avoid this problem, we will consider ad-
sorbing boundary conditions in which opinions that try to
go away towards the left or towards the right of the in-
terval [0, L] are set to 0 and L, respectively. The more
convenient from the mathematical point of view periodic
boundary conditions, where the opinion space [0, L] is con-
sidered to be wrapped on a circle, will be also considered
in particular cases as properly mentioned. For each partic-
ular case, the type of final configurations reached by the
system will depend on the values of the threshold ε, the
noise intensity m, and/or the parameter γ. Although we
will keep the notation L when referring to the range of
opinion space, all the results of this paper are for L = 1.
Results for other L values can be easily translated from
ours by making the rescaling ε → ε/L and γ → γ/L.

This noisy HK model can be described in terms of an
approximate density-based master equation for the prob-
ability density P (x, t) that an individual holds opinion x
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at time t. This equation can be written as

∂P (x, t)
∂t

= (1 − m)

×
[∫

L

dx1P (x1, t) (δ(x − 〈x〉x1) − δ(x − x1))
]

+ m [G(x, t) − P (x, t)] , (2)

where 〈x〉x1 is the average position of the individuals
within distance ε of opinion x1, i.e.

〈x〉x1 =

∫ x1+ε

x1−ε
uP (u, t)du

∫ x1+ε

x1−ε P (u, t)du
. (3)

In this average, the denominator is the normalization by
the probability mass in the interval [x1 − ε, x1 + ε] while
the numerator is the first moment in that interval. In
equation (2) the term proportional to m describes the
random jumps, whereas the one proportional to (1 − m)
represents the original HK rules. For unlimited random
jumps, the function G(x, t) is the homogeneous distribu-
tion Ph(x, t) = 1/L [16], whereas for bounded random
jumps with adsorbing boundary conditions [17],

G(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(x)
∫ γ

0 dx
′ γ−x

′

2γ P (x
′
, t)

+
∫ x+γ

0
dx

′

2γ P (x
′
, t), if x ≤ γ,

∫ x+γ

x−γ
dx

′

2γ P (x
′
, t), if γ ≤ x ≤ L − γ,

δ(x − L)
∫ L

L−γ dx
′ −L+γ+x

′

2γ P (x
′
, t)

+
∫ L

x−γ
dx

′

2γ P (x
′
, t), if x ≥ L − γ.

(4)
Before we continue with the analysis, let us summarize
some of the most relevant features observed in the original
noiseless HK model (m = 0) [23]. Equation (2) with m = 0
provides a mean-field description (in the sense that corre-
lations between agents’ opinions have been neglected) of
the process of selecting a random individual and changing
his opinion to the average of the individuals in a neigh-
borhood of size 2ε. Starting from uniformly distributed
random opinions, Monte Carlo simulations show that for
ε > 0 the system either reaches a final state of complete
consensus or splits into a number of opinion clusters sepa-
rated by a distance larger than ε. In the case of L = 1 and
uniform initial distribution of opinions, P (x, t = 0) = 1
for x ∈ [0, 1] and P (x, t = 0) = 0 otherwise, the result
given by the master equation is that for ε ≥ 0.19 only
one big cluster emerges and the steady state distribution
is P∞(x) = limt→∞ P (x, t) = δ(x − 1/2), whereas for
smaller values of ε a series of bifurcations and nucleation
of clusters occur. In this clustering regime it is found that
P∞(x) =

∑nc

i=1 miδ(x− xi) with |xi − xj | > ε for all i �= j
and

∑nc

i=1 mi = 1, where nc is the number of opinion clus-
ters, xi is the position of a cluster and mi its mass. Unlike
other bounded confidence models, the final state of the

noiseless HK model evolving from uniform initial condi-
tions does not exhibit the so-called minor or low-populated
clusters at the extreme and between high populated clus-
ters [3,23]. Minor clusters can appear when starting from
more asymmetric initial conditions or as small clusters
at intermediate steps (transients) moderating a consensus
through small changes within a metastable state [24].

3 Monte Carlo simulations

It is a well-known fact that in continuous opinion dynam-
ics the master equation and the Monte Carlo simulations
do not always agree due to finite-size induced fluctuations
and to having neglected the correlations between agents.
In this section, we present the main phenomena obtained
from Monte Carlo simulations with a finite system of N
individuals and initial conditions randomly and uniformly
distributed in the opinion space interval [0, L].

3.1 Unlimited random jumps

In this subsection, we will analyze the impact of unlim-
ited opinion random jumps on the original HK model. As
it was mentioned above, a randomly chosen individual can
change with probability m his opinion to a random opin-
ion inside the full interval [0, L]. Otherwise, with proba-
bility 1 − m the individual interacts with their compati-
ble neighbors following the HK’s rule. We will show that
the interplay between the confidence parameter ε and the
noise intensity m induces very interesting phenomena.

One of the most distinct features of the noiseless HK
model [3,23] is the lack of asymptotically stable low-
populated opinion clusters at the extremes and between
high populated clusters when the initial condition is uni-
form in opinion space. The absence of this class of minor
clusters, which are typically observed in other models of
continuous opinion dynamics, is a consequence of the fully
connected and mutual convergence of all the individuals
since the very beginning. In other continuous opinion dy-
namics systems, like the DW model, the interaction is be-
tween randomly chosen pairs of individuals and therefore
some opinions are not able to interact enough times to
enter the basin of attraction of the big clusters. Never-
theless, when noise is introduced, one notices in the HK
model the appearance of low-populated clusters for cer-
tain values of ε. For example, Figure 1 shows time series
of the opinions from Monte Carlo simulations for values of
ε such that only one (Fig. 1a) or three (Fig. 1b) clusters
are formed when m = 0. Figure 1a shows that for m > 0
a pattern of three opinion clusters is established. The two
extreme clusters are low populated and the central one is
composed by the vast majority of agents. Figure 1b shows
a similar case but for a lower value of ε. In this case, it is
clear that low-populated opinion clusters also appear be-
tween clusters with higher populations. Under this type of
noise the whole opinion space can be covered and therefore
low-populated clusters have more chance to be established
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Fig. 1. Time series in opinion space for m = 0.02. (a) The case
ε = 0.27, where only one big cluster is formed when m = 0.
(b) The case ε = 0.127, where only three big clusters are formed
when m = 0. The number of individuals is N = 1000, but
only 100 randomly chosen among them are plotted to avoid
saturation of the plot. Note the formation of low-populated
opinion clusters at the extremes and between high populated
clusters when m > 0. The opinion space runs from 0 to L = 1.
The initial condition at t = 0 was uniform in [0, 1] and data
starts to be plotted after long enough simulation time.

out of the range of interaction of highly populated clus-
ters. In fact, they start to increase their population when
increasing the noise intensity m.

Similarly to [16], we report a bistable behavior for nar-
row bands of ε near the bifurcation transitions between
one stable configuration and the next one. As is typical in
bistable situations, we observe that the inherent fluctua-
tions of a finite-size system induce transitions between one
state and back. These jumps are, for instance, observed in
Monte Carlo simulations for ε = 0.242 not far from the
transition from one big cluster to two big ones. Figure 2b
shows several jumps between both states. Also note that
low-populated clusters always exist and play a key role in
the transitions (see Figs. 2b and 2c).

3.2 Bounded random jumps

We now allow individuals to perform, with probability m,
jumps limited to the interval [−γ, γ] centered around their
current opinion. We found that, when adsorbing boundary
conditions are considered, noisy opinion clusters still form
for small and moderate noise intensity m. However, for γ

Fig. 2. Time series in opinion space for unlimited jumps at
three values of ε for m = 0.02 and N = 1000 (only 100 agents
are plotted to avoid saturation of the plot). At ε = 0.270
(a) a single high populated cluster dominates over two lat-
eral low-populated clusters. At ε = 0.230 (c) two polarized
opinion cluster appear. At ε = 0.242 (b) the system randomly
jumps between these two states. The panels represent values of
the confidence parameter ε for which the noiseless HK model
(m = 0.0) is near a transition from one big cluster to two big
ones. Note also in (a) the formation of low-populated extreme
opinion clusters that play an important role for jumps. The
opinion space runs from 0 to L = 1 and data starts to be
plotted after long enough simulation time.

small the clusters do not form symmetric patterns around
the mean opinion 0.5. Instead, the centers of mass of each
one of them perform a random walk along the whole opin-
ion space until eventually they collide to form only one big
opinion cluster. Figure 3 shows the successive merging of
clusters occurring after collisions.

For large values of γ, a stable pattern of opinion clus-
ters with a reduction of their wandering is observed. Under
these conditions, one can also find regions of bistability
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Fig. 3. Time series of the opinion distribution for bounded
jumps with ε = 0.05, γ = 0.04, and m = 0.05. Opinions form
clusters that execute random walks, and successive merging of
clusters occurs after collision. At very long time (not shown)
only one big cluster of finite width remains. In this simula-
tion adsorbing boundary conditions are considered. The opin-
ion space runs from 0 to L = 1 and only 100 opinions are
plotted out of N = 1000.

Fig. 4. Time series of the opinion distribution for bounded
jumps with ε = 0.252, γ = 0.495, and m = 0.07. Note the
transition from one big cluster with two sidebands to a state
of only two big clusters. We were unable to find transitions
back to one single cluster. The opinion space runs from 0 to
L = 1 and only 100 opinions are plotted out of N = 1000.

where the inherent fluctuations of our finite system take
the system from one state to another. For the case pre-
sented in Figure 4, transitions back were not found even
for very long simulation times. The figure just shows an
early jump from a state of a big opinion cluster and two
smaller ones to a state of two big opinion clusters.

4 Order-disorder transitions

In many systems, one of the main effects of noise is to
induce an order-disorder transition. In this sense, opinion
dynamics is not the exception [16–18,25,26]. In general we
expect that when in our noisy model the intensity m is
larger than a critical value mc, the patterns of opinion
would become blurred such that the corresponding max-
ima of the distributions P (x, t) are not evident, implying
the destruction of opinion clusters and the establishment
of a highly homogeneous state far from the boundaries.

This effect can be analyzed using Monte Carlo simula-
tions or the corresponding density-based master equation.
We now present a linear stability analysis of the master
equation in order to obtain analytical conditions for the
existence of opinion clusters under noise. In particular,
the linear stability analysis of the unstructured solution
of equation (2) is performed. Then, the obtained expres-
sions are compared with Monte Carlo simulations. If one
neglects the influence of the borders or assumes that the
opinion space is wrapped on a circle, the steady solution
Ph(x) = 1/L is an approximation to the unstructured
steady solution of equation 2. It allows us to introduce
P (x, t) = 1/L + Aq exp(iqx + λHK

q t), where λHK
q repre-

sents the growth rate of periodic perturbations, q is the
corresponding wavenumber (so that 2π/q is the period-
icity of the perturbation), and Aq the amplitude. After
introducing this ansatz in equation (2) we find the growth
rate of the mode q:

λHK
q = (1 − m)

[
sin(qε)

qε
− cos(qε)

]

+ mH(q). (5)

The function H(q) is equal to −1 for the case of unlim-
ited random jumps inside the whole opinion space. For
bounded random jumps inside the interval [xn

i −γ, xn
i +γ],

we consider the case of small values of γ because in
this case the boundary effects become less important and
the linear stability analysis of the homogeneous state
Ph = 1/L becomes valid. In this situation, the second
case of equation (4) applies in the majority of cases and
H(q) = sin(qγ)

qγ − 1. When the growth rate λHK
q is pos-

itive, the homogeneous state is unstable and the subse-
quent evolution gives rise to cluster formation, a situation
identified with order, whereas a negative growth rate im-
plies that the homogeneous state is stable and clusters
can not form, a sort of disordered state. In the ordered
state, very large (small) wavenumbers correspond to short
(long)-wavelengths or to many (few) opinion clusters.

4.1 Unlimited random jumps

In this case, the opinion jumps are homogeneous around
the whole opinion space and therefore H(q) = −1. To an-
alyze the impact of noise on the growth rate, Figure 5
shows λHK

q versus qε for several values of noise intensity
m. From this figure, one can observe that there is a single
wavelength q with the largest growth rate. For large m,
the maximum growth rate becomes negative, the homoge-
neous state is stable and clusters do not develop. This hap-
pens for m > mc ≈ 0.51, independently of ε. This result
tells us that well-developed patterns of opinion clusters
are possible only for m < mc, and that the unstructured
state is unstable in this region. The wavenumber corre-
sponding to the growth rate that dominates and sets the
wavelength is qmax ≈ 2.8/ε. This gives us an estimation
of the number of opinion clusters by recognizing that the
associated periodicity is 2π/qmax and then the number of
clusters in the unit interval is nHK ≈ 0.4/ε (nHK ≈ 0.4L/ε
in the [0, L] interval). These conclusions can be verified in
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Fig. 5. This figure shows the growth rate, λHK
q , for the case

of unlimited random jumps with noise intensities m = 0.0, 0.3,
0.51, 0.6, from top to bottom. It shows that the growth rate
becomes negative for m > mc ≈ 0.51.

Fig. 6. Group dynamics for unlimited jumps as a function
of noise intensity m and confidence parameter ε. This figure
presents cases for m = 0.3 (a–b), and m = 0.6 (c–d) at ε =
0.05 (left panels) and 0.125 (right panels). Its shows that for
m > mc ≈ 0.51 an unstructured state dominates (except close
to the borders, where boundary effects prevail) and opinion
clusters do not develop. But, for m < mc, opinion clusters exist
even for very small values of ε. The opinion space runs from 0
to L = 1 and only 100 opinions are plotted out of N = 1000.
Data is plotted after a long enough simulation time.

Figure 6 which shows time series from Monte Carlo sim-
ulations. For strong noise, m > mc, perturbations decay
with time and the uniform state is restored. Whereas, for
weak noise intensity, m < mc, perturbations are magni-
fied and patterns of opinions are established. This result
also means that opinion clusters would be still observed
for very small values of ε, if m < mc.

4.2 Bounded random jumps

In this case the confidence mechanism is generalized by
allowing individuals to change their opinions randomly

Fig. 7. Growth rate for the case of bounded random jumps.
Panels (a and b) show γ = 0.1. In (a) the growth rate for cases
ε < εc ≈ 0.068 is presented with m = 0.0, 0.3, 0.45, 0.5, from
top to bottom. Growth rate becomes positive at a well-defined
non-zero q. In (b) the growth rate for cases ε > εc ≈ 0.068 is
presented with m = 0.0, 0.45, 0.65, 0.8, from top to bottom. In
this situation, the appearance of positive values occurs first at
values of q close to zero and therefore an expansion in powers of
q is possible. Panels (c and d) show the same but for γ = 0.4,
where εc ≈ 0.28. In (c) m = 0.0, 0.3, 0.45, 0.5, from top to
bottom. In d) m = 0.0, 0.45, 0.55, 0.65, from top to bottom.

inside a small interval [−γ, γ] centered at the current opin-
ion. As mentioned before, the growth rate in this case in-
volves H(q) = sin(qγ)/qγ − 1 which can also be written
as H(q) = sin(qεγ/ε)/qεγ/ε − 1 to stress the dependence
on ε when the growth rate is plotted as a function of qε.
Figure 7 shows that the growth rate for a given γ exhibits
two regimes as a function of ε. For γ = 0.1 and 0.4, the
critical transitions between these two regimes are located
at εc ≈ 0.068 and εc ≈ 0.28, respectively. Figure 7a shows
the shape of λHK

q as a function of qε for γ = 0.1 and
ε < εc ≈ 0.068. The form of this growth rate allows us
to conclude that the perturbation with the largest growth
rate dominates. However, the maxima of λHK

q and the ap-
pearance of positive values must be obtained numerically.
On the other hand, for ε > εc (see Fig. 7b), the appearance
of positive values of λHK

q when varying the noise intensity
occurs first at values of q close to zero corresponding, as
expected for these large values of ε, to a long-wavelength
instability. In this limit, approximate analytical expres-
sions can be obtained expanding λHK

q in powers of q:

λHK
q =

(1 − m) (1 − μ) ε2

3
q2− 4(1 − m)ε4

5!
q4 +O(q6), (6)

where μ = mγ2

(1−m)ε2 . Because the q4 term is always nega-
tive, the change of the sign of the q2 term identifies

mc =
2ε2

2ε2 + γ2
(7)

http://www.epj.org


Eur. Phys. J. B (2013) 86: 490 Page 7 of 10

as the value below which opinion clusters appear. Within
this approximation and close to the instability threshold
the fastest growing mode is:

qmax ≈
√

5
ε

(1 − μ)1/2
. (8)

Figures 7c and 7d show that the situation is similar for
γ = 0.4. Figure 8 presents the critical lines for existence
of opinion clusters in the parameter space (m, ε) for the
cases considered in this work. In this case, to identify in a
more quantitative way the order-disorder transition from
Monte Carlo simulations with adsorbing boundary condi-
tions, we use the so-called cluster coefficient GM [16,17].
One divides space [0, 1] in M equal boxes and counts the
number of individuals li which, at time step n, have their
opinion in the box [(i− 1)/M, i/M ]. The value of M must
not be so large that particles are artificially considered to
be part of a single cluster, nor so small that statistical
errors are large within one box. A reasonable value seems
to be M = 100, independently of the value of L. Then,
one defines an entropy SM = −∑M

i=1
li
N ln li

N , from which
the cluster coefficient is defined as

GM = M−1
〈
eSM

〉
, (9)

where the over-bar denotes a temporal average in the
long-time asymptotic state and 〈·〉 indicates an average
over different realizations of the dynamics. Note that
1/M ≤ GM ≤ 1. Large values of GM indicate a situation
identified with disorder, while small values of GM indicate
that opinions peak around a finite set of major opinion
clusters (a situation identified with order). The absorp-
tion by the borders prevents the fully homogeneous state
GM = 1, as two opinion clusters are always formed at the
extremes. Therefore, we will consider that the transition
from order to disorder is the location mc of the maximum
value of GM for fixed ε and γ (results plotted in Fig. 8).

5 Comparison with the noisy DW model

The bounded confidence mechanism by which two indi-
viduals only influence the opinion of each other if their re-
spective opinions differ less than some given amount holds
for the DW model and the HK model. The HK model only
differs from the DW model in that the interactions take
place in groups rather than in pairs. In the noiseless DW
model, one starts with a random distribution in opinion
space [0, L] and at subsequent time steps two randomly
chosen agents may change their opinions to the average of
both opinions if their opinions differ less than some given
amount ε (in the standard particular case in which a con-
vergence parameter in the model is equal 0.5). A detailed
analysis of this model shows that the bifurcation of opinion
clusters as a function of ε differs quantitatively from the
noiseless HK model [3]. For instance, they have different
critical values of ε for the consensus transition and, un-
like the HK model, the DW model exhibits low-populated

Fig. 8. Phase diagram on the plane (m, ε) for the case of
bounded jumps obtained from our linear stability analysis
(solid lines) and compared with the results coming from the
occurrence of the maximum value of the cluster coefficient GM

as a function of m for fixed γ, obtained from Monte Carlo sim-
ulations using adsorbing boundary conditions and N = 104

(open dots). Clusters appear below these lines, whereas the
disordered state is stable above. (a) γ = 0.1; (b) γ = 0.4. For
ε < εc = 0.068 (case γ = 0.1) and ε < εc = 0.28 (case γ = 0.4),
the solid line is obtained numerically from the change of sign of
the maximum of the growth rate, equation (5), but for ε > εc

the approximate expression (7) is used, which is virtually iden-
tical. In this phase diagram L = 1.

opinion clusters at the extremes and between major clus-
ters even for uniform initial conditions. Nevertheless, they
are similar in the fact that the bifurcation and nucleation
of clusters observed outside the consensus region seems
to repeat itself for decreasing ε in such a way that in-
tercluster distances scale approximately with 1/ε. On the
other hand, the DW model has been also studied under
opinion random jumps and interesting phenomena arising
from this randomness have been reported [16–18]. This
section will be devoted to compare the results presented
in previous sections with those observed in the noisy DW
model.

The first conclusion we arrive is that, under unlimited
opinion jumps, both models exhibit low-populated opin-
ion clusters at the extremes and between high populated
clusters. We also observed in both cases that the number
of individuals belonging to these clusters increases when
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the noise intensity increases. The remarkable fact of bista-
bility regions, reported first in the noisy DW model [16], is
also observed in the noisy HK model. Inside these regions
one finds that inherent fluctuations arising from the finite
number of individuals take the system from one state to
the other and back.

The coarsening process, observed in the noisy DW
model [17], is also presented in the HK model when
bounded random jumps of opinions are allowed to occur
just inside a very small interval centered at the current
opinion. Clusters seem to perform a kind of random walk
in opinion space and they merge when they collide. When
the interval where jumps occur is larger, we observed that
like the DW model the HK model admits a stable pat-
tern of opinion clusters with reduced wandering and with
regions of bistability. But it seems that in the HK model
it is harder to find multiple jumps between one state to
another and back. We just found jumps from one state
to another but the new state never comes back to the
previous one.

The order-disorder transition as a function of noise in-
tensity m is also observed in both models [16,17]. Never-
theless, the linear stability analysis revealed some impor-
tant differences that we would like to discuss in the rest of
this section. The linear stability analysis of the unstruc-
tured solution of the DW’s density-based master equation
under both types of noises and with the opinion space be-
ing [0, 1] with periodic boundary conditions gives for the
growth rate:

λDW
q = 4(1 − m)ε

[
4 sin(qε/2)

qε
− sin(qε)

qε
− 1

]

+ mH(q).

(10)
H(q) is, for both types of noise, the same function as in
the HK case. This result clearly shows that, unlike the
HK model, the first term of the growth rate λDW

q carries
as a prefactor the confidence parameter ε. This difference
makes the time scales between the two models to be differ-
ent, and slows down the DW instability for small ε. Since
the result for a different value of L is recovered by replac-
ing ε by ε/L, we also conclude that unlike the HK model a
faster instability is expected for the DW model in smaller
opinion spaces. More importantly, since the order-disorder
transition is determined by a balance between the m and
the 1 − m terms in equaion (10), the critical noise value
mc below which there is opinion cluster formation is now
a function of ε for both type of noise, at variance with the
HK case.

For the case of unlimited random jumps [H(q) = −1]
one finds that the maximum value of λDW

q is negative
for m > mc and positive for m < mc, where mc ≈
ε/(0.8676 + ε). Alternatively, for fixed m the maximum
growth rate is negative for ε < εc and positive for ε > εc,
where εc ≈ 0.8676m/(1−m) [16]. The absolute maximum
of the growth rate occurs at qmax ≈ 2.8/ε, similar to the
one of the HK model. It means that the number of clus-
ters predicted as a function of the control parameters is,
for both models, nDW = nHK ≈ 0.4L/ε. Note that while
in the HK model one observes the formation of patterns
of opinion clusters for small values of ε if noise intensities

Fig. 9. Opinion dynamics of the HK model (a) and DW
model (b) for noise intensity m = 0.1 and confidence parameter
ε = 0.08 in the case of unlimited jumps. In this case L = 1 and
only 100 opinions are plotted out of N = 1000. For the DW
model, εc(m = 0.1, L = 1) ≈ 0.096. Our analytical calculations
predict that for the HK model the formation of patterns of
opinion clusters occurs even for these small values of ε, but
that this does not occur for DW, as actually seen in the plots.
Data start to be plotted after long enough simulation time.

are small (m < mc = 0.51), in the DW model there is a
minimal value of εc(m, L) below which opinion clusters do
not appear. Figure 9 shows Monte Carlo simulations that
verify these results for m = 0.1 and L = 1. With these pa-
rameter values we get that the critical condition for cluster
formation in the DW model is εc(m = 0.1, L = 1) ≈ 0.096.
It means that for ε = 0.08 the homogeneous state dom-
inates. But, as predicted above, in the noisy HK model
clusters are still possible for these parameter values. In
fact, the number of opinion clusters predicted is nHK ≈ 5,
in agreement with the numerical results displayed in this
same figure.

For bounded random jumps of opinions, we observe
that like in the HK model the growth rate of the DW ex-
hibits two regimes for fixed γ while ε varies. In fact, for
γ = 0.1 and 0.4, the critical transitions between regimes
are given by εc ≈ 0.076 and 0.31, respectively. Similar to
the HK model, for ε < εc the critical line must be obtained
numerically. For ε > εc the appearance of positive values
of λDW

q occurs first at values of q close to zero, identi-
fying again a long-wave instability, and one can find an
approximate analytical expression for the critical condi-
tion given by:

mDW
c =

2ε3

2ε3 + γ2
(11)
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Fig. 10. Phase diagram of the DW model on the plane (m, ε)
for the case of bounded jumps obtained from our linear stabil-
ity analysis (solid lines) and compared with the results com-
ing from the occurrence of the maximum value of the clus-
ter coefficient GM as a function of m for fixed γ, obtained
from Monte Carlo simulations using adsorbing boundary con-
ditions and N = 104 (open dots). Clusters appear below these
lines, whereas the disordered state is stable above. (a) γ = 0.1;
(b) γ = 0.4. For ε < εc = 0.076 (case γ = 0.1) and ε < εc = 0.31
(case γ = 0.4) the solid line is obtained numerically from
the change of sign of the maximum of the growth rate, equa-
tion (10), but for ε > εc the approximate expression (11) is
used, which is virtually identical. In this phase diagram L = 1.
This figure should be compared with Figure 7 in [17] and Fig-
ure 8 of this work. The discrepancies between lines and dots
at large ε arise from the influence of the adsorbing boundary
conditions of the Monte Carlo case, whereas the analytical cal-
culations assume periodic boundary conditions.

(compare with Eq. (7)). The phase diagram for the order-
disorder transition in the DW model in the parame-
ter space (ε, m) is shown in Figure 10, revealing some
differences with the corresponding diagram for HK model
(Fig. 8), especially important at small ε.

6 Conclusions

In this paper, we have analyzed the Hegselmann-Krause
model for continuous opinion dynamics under the influ-
ence of opinion noise. More precisely, we modify the model

by giving each individual the opportunity to change, with
a given probability m, his opinion to a randomly selected
opinion inside the whole opinion space [0, L] or inside the
interval [γ,−γ], centered around the current opinion. The
final behavior, which depends of the confidence parameter
ε, the noise intensity m and the parameter γ, is compared
with the case of zero noise, and with the Deffuant et al.
model [5] for continuous opinion dynamics under similar
types of noise.

Monte Carlo simulations have shown that, for opinion
jumps inside the whole opinion space, the noisy HK model
exhibits low-populated clusters at the extremes and be-
tween highly populated clusters. We found that the mass
of these clusters increases as the noise intensity increases.
Similar to the noisy DW model, we also found regions of
bistability where the fluctuations present in Monte Carlo
simulations are able to induce jumps from one state to an-
other and back. For jumps inside the interval [γ,−γ], the
main dynamics of the system depends strongly on the pa-
rameter γ. For small values of γ, wandering of the clusters
occurs and a coarsening process develops in which opinion
clusters start to collide and merge until a single cluster re-
mains after long time. For large values of γ, the mobility is
reduced and the collision of clusters disappears given rise
to a stable pattern of opinion clusters with certain regions
of bistability.

A density-based master equation is introduced and the
order-disorder transition induced by noise is analyzed us-
ing a linear stability analysis of the unstructured solution
of this equation under periodic boundary conditions. We
have derived analytical conditions for opinion pattern for-
mation for both types of noise. We found qualitative, and
in some cases even quantitative, agreement between the
analytical results and the numerical simulations.

We analyzed in some detail the differences and similari-
ties between the noisy HK model and the noisy DW model.
We found that the most striking difference appeared con-
cerning the dependency of the critical conditions for opin-
ion cluster formation with the confidence parameter ε.

Finally our work stresses that, although the HK and
DW model are similar in nature, their bifurcation behav-
iors and phenomenology as a function of the control pa-
rameters present important differences, also in presence of
noise.
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