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rare events in nonequilibrium systems
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We provide an algorithm based on weighted-ensemble (WE) methods, to accurately sample systems at steady
state. Applying our method to different one- and two-dimensional models, we succeed in calculating steady-state
probabilities of order 10−300 and reproduce the Arrhenius law for rates of order 10−280. Special attention is
payed to the simulation of nonpotential systems where no detailed balance assumption exists. For this large class
of stochastic systems, the stationary probability distribution density is often unknown and cannot be used as
preknowledge during the simulation. We compare the algorithm’s efficiency with standard Brownian dynamics
simulations and the original WE method.
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I. INTRODUCTION

Rare events are ubiquitous in many biological, chemical,
and physical processes [1,2]. Whereas the density of states is
known in systems at thermal equilibrium, interesting phenom-
ena often occur in nonequilibrium systems [3]. Unfortunately,
many such problems are inaccessible for analytic methods.
Therefore computer simulations are a widely used tool to
estimate the density of states or transition rates between
them [4,5]. Since standard Brownian dynamics simulation
(BDS) [6,7] provides computational costs that are inversely
proportional to the state’s probability, specialized methods
[8–10] have to be used to adequately sample rare events, i.e.,
states with low probability or low transition rates.

In the last decades, flat histogram algorithms [11] have been
developed, allowing one to evenly sample states with highly
different probabilities. These algorithms are implementations
of umbrella sampling [12], where each state is sampled accord-
ing to a given probability distribution, the so-called umbrella
distribution. Within nonequilibrium umbrella sampling [13]
the space of interest is divided into different but almost
evenly sampled subregions. The interaction between different
regions occurs solely due to probability currents between them,
whereby the probability distribution within a region is then
calculated by performing Monte Carlo simulations.

In order to calculate low rates between a starting and a
final state, forward flux sampling methods can be used (for
a review see [14]). These methods consider a sequence of
surfaces between these states and introduce walkers (copies
of the system) to perform weighted trajectories according
to the underlying dynamics. If walkers cross one of the
surfaces, getting closer to the final state, new walkers with
lower weights are introduced. Finally, many walkers with
particular low weights reach the final state. Consideration of
the particular weights allows one to calculate very low rates in
a finite simulation time. Recently, extensions to these methods
have been developed to calculate both transition rates using
umbrella sampling [15] and probability distributions using
forward flux sampling [16] algorithms.
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In this work, we present an algorithm, based on the
previously developed weighted-ensemble (WE) Brownian
dynamics simulation [17–20], which allows one to calculate
the stationary probability density function (SPDF) as well as
transition rates between particular states. As in WE simulations
the space of interest is divided into several subregions and
the probability of finding the system in them is calculated
by generating equally weighted walkers in each region. By
moving to the underlying dynamics, the walkers transport
probability between the subregions. Thus, WE methods are
usually applied to systems of Brownian particles moving in a
potential landscape [18,21].

We are interested in an algorithm which allows simulations
of stochastic dynamical systems that a priori do not obey
detailed balance for probability fluxes or suppose some special
topology of the flow [22–26]. As a test bed, however, we use
two classes of systems for which the stationary PDF can be
computed analytically. The first is that of Brownian particles
in conservative force fields under the influence of additive
noise. The second is the class of canonic dissipative systems
(see Appendix A) which are able to enhance self-oscillatory
oscillations. If transformed to the energy variable and phase,
the corresponding probability flow in these variables vanishes
[24,27,28]. Beyond these two simple examples, our goal is to
develop an algorithm which does not assume that neither the
deterministic nor the stochastic items [see Eq. (1)] underlie
such conditions. Thus, no information on the SPDF can be
used for the simulations.

In general the algorithm can be applied to arbitrary
dynamical systems of the form

ẋn = fn(x) + gn(x)ξn(t), n = 1, . . . ,d, (1)

where d is the number of stochastic time-dependent degrees
of freedom xn(t); the functions fn(x) describe the determin-
istic velocities for the nth direction; and ξn(t) represents
zero-mean Gaussian noise with δ-like correlation function
〈ξn(t)ξm(t ′)〉 = δnmδ(t − t ′). The noise intensity along the nth
direction is scaled by the functions gn(x), which in general
depend on the vector x = (x1,x2, . . . ,xd )T . We are interested
in high-precision sampling of the stationary probability current
Jst(x) and the SPDF pst(x) of finding the system in the
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d-dimensional cube [x1,x1 + dx1], . . . ,[xd,xd + dxd ] with a
finite resolution. We specify the resolution by the number
Mn,res of evenly spaced supporting points along the nth
direction, for which we determine pst(x).

This article is organized as follows: In Sec. II we introduce
the new algorithm, based on WE methods [17], that allows one
to calculate low probabilities and rates. In Sec. III, we study
one- and two-dimensional model systems and analyze the
algorithm’s efficiency compared to BDS and WE techniques.
Finally, we discuss the results (Sec. IV) and present a short
conclusion (Sec. V).

II. THE ALGORITHM

First, for the sake of clarity, we restrict ourselves here to
particle motion in one dimension, d = 1, under additive noise.
The deterministic part of the dynamics, Eq. (1), can always be
represented as a conservative force, f (x) = −U ′(x). The noise
strength is scaled by the parameter D; we put g(x) =

√
2D.

For such systems, the SPDF is known to be

pst(x) = Z−1
st e− U (x)

D , (2)

where Zst is a normalization constant.
We are interested in finding numerically the system’s SPDF,

pst(Xj ), at a set of Mres evenly spaced supporting points Xj

in a finite part of the physical space, given by x ∈ [L−,L+].
The region of interest is divided into M ! Mres subregions
of size #x = L+−L−

M
, the ith subregion is bounded by

(xi,xi+1), i = 0, . . . ,M − 1, with xi = i#x + L−. Support-
ing points are given explicitly by Xj = L− + (j − 1

2 )#Xres,
j = 1,2, . . . ,Mres, with #Xres = ' M

Mres
(#x (see Fig. 1). Here

'z( denotes the largest integer less than or equal to z.
Let us introduce the probability Pi(t) of finding a particle

in the ith subregion at time t , and the corresponding set
P(t) = (P0(t),P1(t), . . . ,PM−1(t)). Initially, no information on
the system is available, thus, each subregion is given an
arbitrary amount of probability Pi(0), simply fulfilling the
normalization condition

∑M−1
i=0 Pi(0) = 1. Naturally, equili-

bration can be accelerated if one already has information on
the SPDF of the system [Eq. (1)]. In that case, one can choose
P(0) close to the set Pst, which optimally approximates the
SPDF:

Pst,i =
∫ xi+1

xi

dxpst(x). (3)

However, in general no such information is required.

A. Time evolution

After setting the initial set P(t = 0), the time evolution of
the P(t) → P(t + h) is performed using three steps. We start
with the redistribution step, in which N walkers (copies of the

FIG. 1. Scheme of the interpolation points xi and the supporting
points Xj used in the numerical calculations. In this scheme we have
used ' M

Mres
( = 4.

system) are uniformly distributed in each subregion. Besides
their individual positions xk

i (t), where i = 0, . . . ,M − 1 de-
notes the particular subregion and k = 1, . . . ,N the individual
walkers, each walker possesses a given amount of weight qk

i (t).
This is nothing but the present probability in the ith subregion
distributed to the N walkers, which yields

qk
i (t) = Pi(t)

N
. (4)

Note that one does not need to introduce walkers in subregions
with Pi(t) = 0.

After the redistribution step has been performed, Eq. (1)
is integrated for all walkers, using a Brownian dynamic
simulation step h and an arbitrary integration scheme. This
integration step realizes the time evolution xk

i (t) → xk
i (t + h).

Here walkers transport probability between the subregions. As
walkers are independent of each other, it is important to note
that the particular time evolution of each one of the N × M
walkers is due to different sample paths in the stochastic parts
of the Langevin equation.

Finally, the updating step is performed, in which the new
probabilities Pi(t) → Pi(t + h) are calculated by summing up
the weights of all walkers that are currently located in the
particular subregion,

Pi(t + h) =
∑

i ′,k|xk
i′ (t+h)∈(xi ,xi+1)

qk
i ′ (t). (5)

In what follows, we name the sequence of redistribution,
integration, and updating steps as running step. After an
equilibration time Ttherm, the set P(t) reaches a station-
ary regime, where the Pi(t)’s fluctuate around their mean
values 〈Pi〉.

B. Calculating the stationary probability

The individual 〈Pi〉 are estimated by averaging over a total
amount of NT sets P(t$), $ = 1,2, . . . ,NT , taken, after the
system has reached the stationary regime, every nav running
steps: t$ = Ttherm + ($ − 1)navh. It turns out that the mean
probabilities 〈Pi〉 coincide with the stationary probability Pst,i
[see Eq. (3)], for compatibly chosen time step h and the size
of a subregion #x (see Sec. II E).

Finally, the SPDF on the supporting points pst(Xj ) is
calculated by adding the adjacent 〈Pi〉 and dividing by the
size #Xres (in order to have a properly normalized PDF):

pst(Xj ) = 1
#Xres

j' M
Mres

(−1∑

i=(j−1)' M
Mres

(

〈Pi〉. (6)

C. Calculation of the probability current

The stationary probability current Jst(x) at position x can be
easily calculated by adding up (with the right sign) the weights
of all walkers, passing x to the right and to the left per unit
time. In practice, x should be the boundary of a subregion. If
x = xi , the current J (xi,t) is given by

J (xi,t) = 1
h

( ∑

i ′,k∈Ri

qk
i ′ (t) −

∑

i ′,k∈Li

qk
i ′ (t)

)
, (7)

063311-2



WEIGHTED-ENSEMBLE BROWNIAN DYNAMICS . . . PHYSICAL REVIEW E 87, 063311 (2013)

and Ri indicate these walkers which cross the boundary
moving rightwards, i.e., xk

i ′(t) > xi ∧ xk
i ′(t − h) < xi . Alter-

natively, Li assign walkers transporting weight leftwards,
xk

i ′(t) < xi ∧ xk
i ′ (t − h) > xi .

Averaging over NT such estimates, taken in the stationary
regime, leads to the average current 〈J (xi)〉, which converges
towards Jst(xi) for NT → ∞.

D. Implementation of boundary conditions

The implementation of boundary conditions for the prob-
ability current or the SPDF is straightforward. Right now,
absorbing boundaries are already implemented at L− and
L+, since walkers that pass these boundaries are not located
in any subregion. Therefore, their weights would get
lost in the next updating step. To avoid this, reflect-
ing boundary conditions at L+ can be implemented by
setting xk

i (t + h) → 2L+ − xk
i (t + h) for all walkers with

xk
i (t + h) > L+. Hence, the probability current at L+ will be 0.

Reflecting boundaries at L− can be implemented analogously.

E. Convergence criteria

1. One-dimensional systems

In order to ensure that 〈Pi〉 and 〈J (xi)〉 converge towards the
stationary probability distribution and the probability current
of Eq. (1) for NT → ∞, the time step h and the size of a
subregion #x have to fulfill specific criteria. This is due to the
redistribution step, where walkers are uniformly distributed
in each subregion. This implicates statistical errors, since
they can reach positions in a subregion that are inaccessible
or, at least, more improbable. Therefore, walkers can more
easily escape from potential minimums or reach regions
of low probability. This effectively flattens the probability
distribution, leading to more probability in regions of low
probability, for instance, around local maxima of U (x), and
less probability in the potential minima. In order to overcome
this problem, earlier works [17,18] have stored the positions
and weights of all walkers. In the next redistribution step,
walkers were only spaced on the stored positions according to
the weights belonging to them. This requires a lot of computer
memory, especially for large N and M .

However, we found that one does not need to store these
information, if the subregions are small enough to ensure that
walkers have a non-negligible probability of leaving them
during one integration step. We first consider the case of
additive noise g(x) =

√
2D. As a measure of how far a walker

can step, due to the fluctuations, in one time step, we use the
diffusion length Ldif = 2

√
Dh. Thus, the size of a subregion

#x should be small compared to the diffusion length Ldif :

#x - 2
√

Dh. (8)

The distance a walker can pass during an integration step is
determined not only by Ldif , but also by the deterministic
dynamics, leading to a step length Ldet = f (x)h at first order.
Usually f (x) changes very rapidly at the boundaries of the
simulation area, which produces high deterministic velocities
and regions of low probability. Walkers can only reach these
regions, if the fluctuation are strong enough to balance the

deterministic force, i.e., if

|f (x)|h < 2
√

Dh (9)

for all x ∈ [L−,L+]. This leads to a condition for the time step
h:

h < hmax := 4D

maxx∈[L−,L+] f 2(x)
. (10)

Hence, lower time steps allow one to sample regions far from
the potential extrema and, for instance, the tails of the SPDF. If
a larger time step is chosen, the 〈Pi〉 will run to 0 in subregions
with a higher deterministic force. Since it is often difficult to
fulfill Eq. (10) in the entire simulation area, one should choose
a time step which allows one to fulfill Eq. (8).

2. Multidimensional systems

In general, our method can be applied to stochastic
dynamical systems in arbitrary dimension d ! 1 [Eq. (1)].
For the foundation of the algorithm, we refer to Appendix C.
However, in order to ensure convergence in a finite region A,
the criteria for the time step h and the size of a subregion #xn

should be fulfilled along any direction. The condition for the
time step [Eq. (10)] then becomes

h ≈ min
1"n"d

( 4Dn

maxA(fn(x))2

)
, (11)

where Dn is the noise intensity along the n direction, i.e.,
gn(x) =

√
2Dn. The criterion for the size of a subregion along

the nth directions [Eq. (8)] reads

#xn - 2
√

Dnh. (12)

However, there might be directions without any noise
(Dn = 0). In that case the length of a subregion should ensure
that walkers can leave it due to the deterministic term fn(x),
leading to

#xn " fn(x)h. (13)

Otherwise, information on the deterministic dynamics gets
lost during the redistribution step, since walkers that stay in
a subregion do not produce any change in the Pi and are
again randomly placed in their subregion during the next
redistribution step.

If, for simplicity, we want to keep equally sized subregions,
then the common value #xn should be equal to the minimum
value of Eq. (12) or Eq. (13) with respect to all x in the
simulation area for each of the d directions. This simple
criterion can lead to a huge number of subregions, especially
in high-dimensional spaces.

To appropriately reduce the number of subregions, we can
chose the #xn to fulfill the local criteria along direction
n. This was implemented by a grouping algorithm, which
groups original subregions into larger ones as long as walkers
can leave these due to the deterministic term [Eq. (13)].
Depending on the system, this procedure greatly reduces the
total number of larger subregions Mgroup. If the grouping
algorithm is used, N walkers are randomly placed in each of
these larger subregions and a probability Pi of finding a walker
in the corresponding area is introduced. We find that such a
grouping greatly reduces the computational costs, since fewer
subregions and therefore fewer walkers are required. Since
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walkers jump out of these regions until the next redistribution
step starts, the algorithm still approximates the correct SPDF.

3. Multiplicative noise

Since the criteria were derived for additive noise, we
briefly discuss the more general case of position-dependent
noise strength gn(x), which is assumed to be nonzero in
the simulation area. After a corresponding interpretation,
i.e., Ito [29,30], Stratonovich [31,32], and others is chosen,
the deterministic part, fn(x), in the inequalities, Eq. (12)
or Eq. (13) for #x and Eq. (11) for the time step, should
be accommodated to fn(x) + q

∑d
m=1 ∂xm

gn(x)gm(x), where
q = 0 in the Ito case and q = 1

2 in the Stratonovich case,
respectively. So, for the Stratonovich interpretation, we must
include the new deterministic part and D → g(x)2

2 in the
inequalities, providing the values of the parameters h and #x.
In order to minimize the computational effort, the subregions
should be scaled to locally fulfill these inequalities. After the
subregions have been chosen, the integration steps can be
performed. Note that the choice of a integration scheme can
already correspond to a certain interpretation [7].

F. Simulation techniques

Simulations were performed on an Intel Xeon CPU E31245
@ 3.30 GHz processor with 16 Gb DDR-3 RAM. The
algorithm described above was implemented in a C++ program
for one- and two-dimensional systems. Runs of the algorithm
are specified by the time step h, the size of a subregion #x
(#y in two-dimensional problems), the simulation area, given
by L− and L+ (L±

x , L±
y ), the number of walkers per subregion

N , the thermalization time Ttherm, and the number of running
steps between two sets of P denoted nav. The numerical
integration of the Langevin equation, (1), was done using a
Heun scheme [7,33,34]. A resolution of Mres = 200 was used
in any direction.

To compare the results with other methods, we also perform
BDS using NBrown initially uniformly placed particles in
the simulation area. Integration was done using the Heun
scheme with integration time step hBrown. After a thermal-
ization time Ttherm,Brown the particles’ positions were recorded
after time intervals #tBrown. The BDS was given a running
time Trun (real CPU time) which usually equals the time our
algorithm needs to produce its results. After Trun the BDS
was stopped and the SPDF was calculated using the recorded
particle positions. We set Ttherm,Brown = Ttherm, hBrown = h, and
#tBrown = navh to make the results comparable.

Additionally, simulations of the WE method [17,18] were
performed using 200 subregions per direction (same as Mres
for our algorithm). To allow comparability, the integration
time step and integration scheme were chosen similar to those
of the particular runs of our algorithm. The time evolution
was performed similarly to our method, except that particle
positions and weights were stored and used in the redistribution
step. Here N particles per subregion were distributed to stored
positions according to the positions’ weights.

III. MODEL SYSTEMS AND RESULTS

A. One-dimensional system

In order to demonstrate the implementation of the al-
gorithm, we study overdamped Brownian motion in a
bistable potential U (x) = − x2

2 + x4

4 . Correspondingly, we put
f (x) = x − x3 and g(x) =

√
2D in Eq. (1), which results in a

bistable system which is often used to study bistable systems
or stochastic resonance therein [25,35]. The two stable states
come up to the potentials’ minima, located at x = −1 and
x = 1, respectively. The corresponding SPDF is given by
Eq. (2). For a low noise strength, the SPDF attains sharp
peaks at the potential minima and decreases down to low
values at the borders and the local maximum, for instance, for
D = 0.01pst(0) ≈ 3.887 × 10−11, while pst(±1) ≈ 2.79895.

1. Equilibration

At first, we study the equilibration process, performing
simulations with different numbers of walkers per subregion
N . Results are shown in Fig. 2. Analyzing the time dependence
of the probability Pi(t), we find that the longest thermalization
time occurs at the local maximum of U (x). Note that runs with
larger N thermalize at lower t , but one needs more integration
steps.

After thermalization has been achieved, we evaluate the
coefficient of variation of the probability, given by

c(xi) =
√

〈(Pi − 〈Pi〉)2〉
〈Pi〉

, (14)

where averages 〈· · ·〉 are performed for a fixed number NT of
sets P and different N and xi . We find it to scale according to

1√
N

(data not shown).

2. Stationary probability density function

We start by calculating the SPDF pst in the region [L−,L+]
for a low noise strength (D = 0.01). The values for the time
step h and the box size #x are summarized in Table I
and fulfill the inequalities (10) and (8) sufficiently. Using
the results shown in Fig. 2, we set the thermalization time

FIG. 2. (Color online) PDF at x = 0 obtained from Pi by
PDF(t) = Pi (t)

#x
for a subregion containing x = 0 for D = 0.01 and

different numbers of walkers per subregion N . Parameters are chosen
as in run 1 (see Table I).
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TABLE I. Time step h and box size #x according to conver-
gence criteria Eqs. (10) and (8), where we choose h = hmax

2 and
#x = 1

20 Ldif .

Run L− L+ h #x M

1 −1.4 1.4 0.011 0.001 048 69 2 670
2 −1.75 1.75 0.001 5 0.000 387 297 9 037
3 −2.5 2.5 0.000 1 0.000 107 75 46 404

Ttherm = 50 for a run with N = 2. Time averages after
thermalization were calculated over an ensemble of NT = 104

sets P. Results for the SPDF are shown in Fig. 3. The algorithm
calculates the tails of the distribution down to 10−300 correctly,
after a running time Trun ≈ 27 h. We also calculate the SPDF
using BDS using NBrown = 104, which stops estimating at a
level of 10−6 after the same running time. Further runs were
performed (see Table I, runs 2 and 3), approximating the tails
down to 10−10 (Mgroup = 1136) and 10−48 (Mgroup = 6789)
after a running time of ≈30 s and ≈10 min, respectively (data
not shown).

Simulations for different values of #x
Ldif

indicate that insignif-
icant deviations from the analytic SPDF occur for #x > 1

20 .

3. Probability current

Next, we present that our algorithm can be used to calculate
the escape rate to pass the energy barrier at xmax = 0. Such
problems are typical for chemical reactions [36] and in the
field of neuroscience [37].

Initially, only N particles are assigned at the subregion in-
cluding xmin = 1, so approximating an initial δ-like probability
distribution for t = 0. Furthermore, an absorbing boundary
right behind the local maximum (xabs = −0.01) is included.
To fulfill normalization of the SPDF, walkers that reach xabs
are reinjected immediately at xmin. The escape rate to pass the
barrier is given by the probability current J (xmax). For low
noise intensities, the probability current on top of the potential

FIG. 3. (Color online) Estimates for the stationary probability
density obtained from the algorithm for run 3 (see Table I) and by
using a Brownian dynamics simulation for D = 0.01 with N = 2
walkers per subregion. Inset: The region of probabilities higher than
10−10. Analytic results were obtained from Eq. (2).
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FIG. 4. (Color online) Time dependence of the probability current
J (xabs) obtained from our algorithm for L− = −0.02, L+ = 1.39, and
decreasing noise intensities (from top to bottom). The time step is set
at h = hmax

2 and #x = 1
20 Ldif . Note that hmax and Ldif vary according

to Eqs. (10) and (8), respectively, resulting in longer running times
for smaller D.

barrier can be described using the Arrhenius law, namely,

J (xmax) ∝ e− #U
D , (15)

where #U = U (xmax) − U (xmin) = 0.25. Since strong fluctu-
ations are rare, but possible, we use J (xabs) to approximate
J (xmax). Probability currents J (xabs) were recorded for each
time step and averaged over a sequence of nav = ' 0.1

h
(

running steps, resulting in 〈J (xabs)〉. Figure 4 shows the time
dependence of ln〈J (xabs)〉. After a relaxation regime, where the
current decays exponentially, the current reaches its stationary
value. The values of ln〈J (xabs)〉, averaged over the stationary
regime, are shown in Fig. 5 for different noise intensities.
Fulfilling the criteria described above, the algorithm repro-
duces the Arrhenius law well down to ln〈J (xmax)〉 ≈ −650,
corresponding to a current J (xmax) ≈ 10−286.
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FIG. 5. (Color online) Stationary probability current as a function
of the inverse noise strength obtained by time averaging the data
partly shown in Fig. 4 in the stationary regime. Error bars show three
standard deviations of the stationary data.
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FIG. 6. (Color online) Relative fluctuations plotted over the num-
ber of integration steps, needed for equilibration, for the algorithm
(black) and standard (WE) simulation (red). The number of walkers
per subregion is shown for each point. Simulations were done for run
1 and 2 (compare Table I).

4. Efficiency compared to that of weighted-ensemble Brownian
dynamics simulation

In order to compare the efficiency of two algorithms,
estimating the SPDF of a system given by Eq. (1), important
quantities are the transient time required to first reach the
steady state. Once the algorithm reaches the steady state,
we quantify the size of the fluctuations by the coefficient of
variation, Eq. (14), at the potential’s local maximum x = 0.
The computation time mainly depends on the number of
integrations Nint needed to reach the stationary regime. In order
to compare the efficiency, the size of fluctuations [Eq. (14)]
in the local minimum relative to pst(0) ≈ 3.88717 × 10−11

during the stationary regime is plotted over Nint in Fig. 6.
The most effective algorithm would be located close to the
origin. Comparing the efficiencies of the WE method [17,18]
and our algorithm, we find that WE simulations with low
N equilibrate more rapidly. However, the precision greatly
depends on the fluctuations during the stationary regime.
To produce results of the same precision [same c(0)] both
algorithms need approximately the same Nint. Usually WE
simulations were performed using thousands of walkers per
subregion, resulting in a low value of c(0). Here runs of our
algorithm producing the same c(0) need a much lower N and
have memory requirements independent of N .

B. Two-dimensional systems

1. Poincaré oscillator

As an example of a two-dimensional system with a
known SPDF, we consider the Poincaré oscillator [27,38,39],
represented by the dynamical system

ẋ = y, ẏ = (α − x2 − y2)y − x +
√

2Dξ (t), (16)

where ξ (t) represent δ correlated white Gaussian noise with
zero mean. Using the energy function H (x,y) = 1

2 (x2 + y2),
which depends only on the distance to the origin, one can
calculate the associated SPDF:

pst(x,y) = Z−1
st exp

(
αH (x,y) − H 2(x,y)

D

)
, (17)

FIG. 7. (Color online) Contour plots of the SPDF (D = 0.1
and α = 1) obtained from the algorithm (black), using the pa-
rameters L−

x = L−
y = −3, L+

x = L+
y = 3, Ttherm = 8, NT = 103,

h = 0.01, Mx = 189 737, My = 1897, Mgroup = 1 688 940, and
N = 2 (#y = 1

20 Ldif ), and the analytic solution (red), Eq. (17).
Contour lines are labeled according to represented values of the SPDF
and show the rotational symmetry. The SPDF possesses its global
maximum at H (x,y) = α

2 , corresponding to the unit circle for our
choice of α, and a local minimum in the origin. Running time ≈5 h.

(see Appendix A). Since noise applies only to the y direction,
the lengths of a subregion #x and #y in the x and y
directions are calculated by Eqs. (13) and (8), respectively. The
minimum of |fx(x,y)| = |y| is equal to 0, therefore, we choose
#x = #y h, which corresponds to a first-order approximation
of |fx(x,y)| in the next subregion. Results for the SPDF are
shown in Fig. 7. Interestingly, the algorithm approximates
better the SPDF along the direction where no noise was
applied. Here the SPDF is sampled down to 10−30. We found
that the algorithm slightly oversamples the analytic SPDF in
the tails. This is due to the statistical errors made during the
redistribution step. By reducing the size of a subregion, this
error can be reduced further. Along the y direction, noise is
applied. Here the behavior is similar to the one-dimensional
example (see above). For runs with larger #y (results not
shown) the algorithm slightly oversamples the SPDF in the
origin.

2. Bistable system with colored noise

As a further example, we calculate the SPDF of the two-
dimensional system

ẋ = x − x3 + y, ẏ = − 1
τ

y + 1
τ

√
2Dξ (t), (18)

where τ denotes the time scale separation between x and the
colored noise y. The white Gaussian noise ξ (t) has already
been described above. This system has been studied in [40]
and [41]. As in the bistable system we have studied above,
the SPDF has maxima at (x,y) = (1,0) and (x,y) = (−1,0).
However, for some combinations of τ and D, the SPDF
possesses a local minimum at (x,y) = (0,0). Plots of the SPDF

063311-6



WEIGHTED-ENSEMBLE BROWNIAN DYNAMICS . . . PHYSICAL REVIEW E 87, 063311 (2013)

FIG. 8. (Color online) Contour plots of the SPDF of Eq. (18)
(D = 0.1, τ = 2, and τ = 2.5) obtained from the algorithm
(black) and BDS (red) of the same running time. Parameters:
(top) L−

x = L−
y = −1.5, L+

x = L+
y = 1.5, Ttherm = 10, NT = 103,

h = 0.0889, Mx = 14 319, My = 1273, Mgroup = 165 003,
N = 2 (#x = #y h, #y = 1

20 Ldif ), NBrown = 103; (bottom)
L−

x = L−
y = −1.5, L+

x = L+
y = 1.5, Ttherm = 12, NT = 103,

h = 0.0889, Mx = 17 899, My = 1591, Mgroup = 206 957, N = 2
(#x = #y h, #y = 1

20 Ldif ), NBrown = 103. Running times are
19 min (top) and 21 min (bottom).

are depicted in Fig. 8. Our algorithm samples the SPDF down
to 10−12, whereas BDS breaks down at a level of 10−6. The
minimum, occurring for τ = 2.5, was clearly found by the
algorithm.

3. FitzHugh-Nagumo system

As the last example, we consider the widely used FitzHugh-
Nagumo system [42], which is often used in the field of
neuroscience [43] or to study synchronization [44,45] and

coherence phenomena [46], represented by

ẋ = 1
ε

(x − x3 − y) +
√

2Dxξx(t),

ẏ = γ x − y + b +
√

2Dyξy(t). (19)

Here ε denotes the time-scale separation between the activator
variable x and the inhibitor variable y. ξx(t) and ξy(t), represent
independent zero-mean δ-correlated Gaussian white noises.
We want to study the stationary probability density in the case
of Dx = Dy = D for a time-scale separation ε = 0.1. We set
the parameters according to Ref. [47] to b = 1.4, ε = 0.1, and
γ = 2. Thus, the system is in the excitable regime. Since the
deterministic part of the equation for the activator variable
increases very rapidly if x is increased, we have to choose a
time step h = 0.01, which is small enough that the walkers’
steps are small compared to 1 but allows us to fulfill the criteria
for the size of the subregions. Contour plots of the SPDF are
shown in Fig. 9. Regions of low probability, especially, are
much better sampled using the algorithm. In the case of low
diffusion [D = 0.01 (Fig. 9, top)] the algorithm runs down
to 10−16, whereas the BDS stops at a level of 10−6. The
minimum, especially, is much better sampled by our algorithm.
Note that the local maximum located in the surroundings of
(x,y) = (0.7,0.5) was not found by BDS. For higher diffusion
values [D = 0.1 (Fig. 9, top)], significant differences can be
found only in the tails.

IV. DISCUSSION

A. One-dimensional system

In the one-dimensional system (see Sec. III A) we suc-
ceeded in approximating the SPDF down to 10−300. If equally
sized subregions are used, a huge number of subregions has
to be implemented, in order to fulfill the convergence criteria
(see Sec. II E). However, by evaluating the SPDF according
to Eq. (6) the additional computational costs also reduce the
fluctuations of the estimated SPDF. If the subregions are too
large, the theoretical SPDF is overestimated by the algorithm
in potential minima and underestimated in the potentials’
maxima.

We also managed to calculate escape rates of size 10−286.
Although the finite size of a subregion leads to small errors, in
the calculated SPDF, the Arrhenius law is well reproduced for
such low probability currents.

Under the stationary regime the Pi fluctuate around their
mean value, estimating the SPDF. By increasing either the
number of averages NT or the number of walkers per subregion
N , these fluctuations can be reduced, leading to a higher
precision. The estimation error scales with N

−1/2
T and N−1/2,

respectively. However, increasing the number of walkers per
subregion also affects the computational costs during the
thermalization. Simulations for different N show that runs
with a higher N become stationary more rapidly, but this does
not compensate for the additional computational costs. We also
find that increasing N slightly improves the sampling of the
SPDF’s tails. Once the system is in the stationary regime the
increase in the computational costs scale linearly with N and
NT . An advantage of simulations with a small N is that one
does not need to perform running steps for subregions with
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FIG. 9. (Color online) Contour plots of the SPDF of Eq. (19)
[D = 0.01 (top) and D = 0.1 (bottom)] obtained from the algorithm
(black) and BDS (red) with the same running time. Parameters: (top)
L−

x = L−
y = −2, L+

x = L+
y = 2, Ttherm = 5, NT = 103, h = 0.01,

Mx = 4000, My = 4000, N = 2 ( #x√
Dh

= 1
10 ), NBrown = 103,

and Mgroup = 314 027; (bottom) L−
x = L−

y = −2, L+
x = L+

y = 2,
Ttherm = 3, NT = 103, h = 0.01, Mx = 1333, My = 1333, N = 2
(#x = #y = 1

20 Ldif ), NBrown = 103, Mgroup = 146 568. Running
times are 27 min (top) and 19 min (bottom). Simulation times for
the BDS were chosen three times larger.

Pi = 0, and the number of such regions naturally increases for
small N . We usually use the smallest possible N = 2 and scale
the estimation error by increasing NT .

B. Comparison with weighted-ensemble Brownian dynamics

Since the general idea of our method was adapted from prior
simulation techniques known as WE sampling [17,18,20], we
want to discuss advantages and disadvantages of our algorithm
in comparison with these techniques. The main difference

in WE techniques is the redistribution step. Here, using
WE techniques, the positions and weights of all walkers are
stored, and new walkers are introduced in the stored positions
considering their particular weights.

In our algorithm, there is no need to store any position or
weight, since walkers are randomly placed in each subregion.
The resulting statistical errors can be neglected if the size of
the subregions fulfills conditions which, unfortunately, lead
to much larger numbers of subregions. By averaging the
probabilities, these extra computational costs contribute to a
reduction of fluctuations in the stationary regime.

Comparison of the computational costs until equilibration
and the achieved precision for a one-dimensional system
shows that both algorithms possess the same efficiency for
high-precision runs. Comparing the efficiency for the two-
dimensional system, Eq. (18), produces quite similar results
(see Appendix B).

C. Multidimensional systems

In the case of two-dimensional systems, we found that
the algorithm outperforms BDSs. However, the number of
subregions needed according to the criteria can be really
high, especially if there are some directions without any
noise. Here it is necessary to size the subregions to fulfill
the criteria locally. The first step in that direction has already
been done by the implementation of the grouping algorithm.
Such grouping algorithms become indispensable when high-
dimensional systems are studied. Since one needs to simulated
the SPDF for each combination of dynamical variables,
the number of subregions increases exponentially with the
system’s dimension. We are quite confident that it is possible
to reduce the computational costs by optimizing the mesh.
The analyzed examples show that the running times depend
greatly on the investigated system. For the bistable system with
colored noise and the FitzHugh-Nagumo system, we obtained
good results within ≈20 min, whereas the algorithm required
about 5 h for the Van der Pol oscillator.

D. Integration scheme

All runs were performed using a stochastic version of
the Runge-Kutta algorithm, known as the Heun algorithm.
Besides an enhanced efficiency in the deterministic part of
the trajectory, for the stochastic part it has a mean-square
error of order h3 [34]. Depending on the interpretation (Ito,
Stratonovich, etc.), higher order schemes can be used (see, for
instance, [7,48]). These schemes allow much larger integration
time steps and, therefore, can speed up the simulation.
Considering the inequalities (13) and (12), one easily finds
that the number of subregions scales according to 1√

h
for

directions with a finite noise strength, but according to 1
h

for
directions with purely deterministic flows. But we did not
compare the algorithm with the WE method using such higher
order schemes.

V. CONCLUSION

We have provided and tested an algorithm that allows the
calculation of low probabilities and low rates. The algorithm
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is based on WE methods but uses a uniform distribution of
walkers within each subregion. In our findings, the resulting
statistical errors can be neglected if one uses subregions that
are small compared to the diffusion length. In contrast to WE
methods, the required memory does not depend on the number
of walkers, which leads to fewer memory requirements for runs
with large numbers of walkers.

Special attention has been paid to nonequilibrium dynami-
cal systems. Applying the method to one- and two-dimensional
model systems, we analyze its efficiency compared to that
of standard BDS. Our method outperforms BDS by several
orders of magnitude, its efficiency is comparable to that of
WE methods in all studied systems, and it leads to impressive
results in regions of low probability and low rates.
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APPENDIX A: STATIONARY PROBABILITY DENSITY OF
THE POINCARÉ OSCILLATOR

Canonic dissipative systems are noise-driven nonlinear
dissipative systems whose stationary probability distribution
P (x,v) depends on the Hamilton function H (x,v); i.e.,
P (x,v) = P (H ). In the case of nonlinear dissipative oscillators
with additive noise the dynamics obeys (m = 1)

ẋ = ∂

∂v
H (x,v),

(A1)
v̇ = − ∂

∂x
H (x,v) + g(H )

∂

∂v
H (x,v) +

√
2Dξ (t).

Using the energy function H (x,y) = 1
2 (x2 + y2), we get from

Eq. (16) to a representation as a canonic dissipative system:

ẋ = ∂yH, ẏ = ∂y(αH − H 2) − ∂xH +
√

2Dξ (t). (A2)

The corresponding Fokker Planck equation in the x,y phase
space for the SPDF pst(x,y) reads [27]

∂tpst = 0 = −∂yH∂xpst + ∂xH∂ypst

− ∂y(∂y(αH − H 2)pst) + D∂2
ypst. (A3)

Using the ansatz pst(x,y) = pst(H (x,y)), the first two items on
the right-hand side cancel. The remaining second line can be
integrated once. Assuming an exponentially decaying SPDF
at infinitely high energies yields the disappearance of the
irreversible probability flux in the y direction [22,24]. One
finds, afterwards,

pst
d

dH
(αH − H 2) = D

d

dH
pst. (A4)

This leads to Eq. (17).

c(
0,

0)

Nint

algorithm τ=2
weighted τ=2

algorithm τ=2.5
weighted τ=2.5

FIG. 10. (Color online) Relative fluctuations plotted over the
number of integration steps needed for equilibration, for the algorithm
(black) and standard (WE) simulation (red). The number of walkers
per subregion is shown for each point. Simulations were done for the
system Eq. (18). Parameters for runs of the algorithm were chosen
according to Fig. 8 except that N was varied. Runs of the WE method
were performed with the same time step h for 200 boxes per direction.

APPENDIX B: EFFICIENCY COMPARED TO THAT OF
WEIGHTED-ENSEMBLE BROWNIAN DYNAMICS
SIMULATION IN A TWO-DIMENSIONAL SYSTEM

For the two-dimensional system Eq. (18) a comparison
with the WE method has been performed. The coefficient of
variation, Eq. (14), for the subregion including point (0,0) is
plotted over Nint in Fig. 10. The results are quite similar to the
one-dimensional case discussed in Sec III A4. Note that our
algorithm leads to smaller fluctuations c(0,0) for a comparable
number of integration steps Nint for this two-dimensional
system.

APPENDIX C: FOUNDATION OF THE ALGORITHM

In this Appendix we show that the presented algorithm is
described by a corresponding master equation for the prob-
ability distribution density Pi(t) for the case of a Markovian
hopping process between boxes. We use a single index i to label
the boxes, but the argument applies to any spatial dimension
d. We identify the dynamics of the stochastic system which
shall be simulated with the discrete stochastic dynamics of the
walkers. The latter is defined via the matrices of probabilities
per unit time w(i → i ′) which describe the hopping in the
given discretized space. We assume that it shall converge for
sufficiently small time scales and box lengths to the outgoing
dynamics.

Let us assume that we have the probability distribution
density given at time t in every box with index i. It holds that

∑

i

Pi(t) = 1. (C1)

We redistribute the probability in every box to N walkers. In
the result any walker k = 1, . . . ,N of the same box gets an
identical weight:

qk
i (t) = Pi(t)

N
. (C2)

until the next new redistribution.
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At a later time t + h the walkers may still be inside the box
or may have jumped to other boxes. Let Ui denote all possible
box indices which can be reached during a single step from
the i box. Then, in accordance with the assumption above, the
probability is w(i → i ′)h that during h a single walker leaves
the i box and jumps to the box with index i ′ ∈ Ui . With this
hopping the walker k carries the weight qk

i (t) to the new box;
this step is, obviously, connected with a loss in the outgoing
box. Therefore, the loss per particle for this specific hopping
from i → i ′ can be expressed as

w(i → i ′)hqk
i (t). (C3)

The whole loss of weight will be realized in all possible
hopping channels. It is identical for all N particles located
in the present box. Hence, the full loss becomes

Nqk
i (t)

∑

i ′∈Ui

w(i → i ′)h = Pi(t)
∑

i ′∈Ui

w(i → i ′)h. (C4)

Alternatively, one can also introduce U ′
i as the boxes from

which walkers can reach the i box. Then the gain of weight
transferred by every walker arriving at the i box is expressed,
if i ′ ∈ U ′

i , by

w(i ′ → i) h qk
i ′ . (C5)

Again, summing over the different hopping steps, and consid-
ering that all the N walkers inside the box with i ′ ∈ U ′

i reach
the i box, yields the gain

∑

i ′∈U ′
i

w(i ′ → i)hNqk
i ′ (t) =

∑

i ′∈U ′
i

w(i ′ → i)hPi ′(t). (C6)

Therefore, the balance of transported weight results in the
following shift of the full weight in the i box at time t + h
compared to the former one,

Pi(t + h) − Pi(t)

= −Pi(t)
∑

i ′∈Ui

w(i → i ′)h +
∑

i ′∈U ′
i

w(i ′ → i) hPi ′ (t),

(C7)

plus corrections of order O(h2) corresponding to cases in
which two or more walkers jump from one box to another
during the time interval h. After dividing by the time step h and
taking the limit h → 0 we obtain the wanted master equation
for the discretized dynamics in the boxed phase space:

∂tPi(t) = −Pi(t)
∑

i ′∈Ui

w(i → i ′) +
∑

i ′∈U ′
i

w(i ′ → i) Pi ′ (t).

(C8)
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