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Abstract We study a model for continuous-opinion dynamics under bounded confidence.
In particular, we analyze the importance of the initial distribution of opinions in determining
the asymptotic configuration. Thus, we sketch the structure of attractors of the dynamical
system, by means of the numerical computation of the time evolution of the agents density.
We show that, for a given bound of confidence, a consensus can be encouraged or prevented
by certain initial conditions. Furthermore, a noisy perturbation is added to the system with
the purpose of modeling the free will of the agents. As a consequence, the importance of the
initial condition is partially replaced by that of the statistical distribution of the noise. Never-
theless, we still find evidence of the influence of the initial state upon the final configuration
for a short range of the bound of confidence parameter.

Keywords Social simulation · Opinion dynamics · Continuous opinions · Bounded
confidence

1 Introduction

The models of “opinion dynamics” focus on the processes of opinion formation within a
society consisting of an ensemble of interacting individuals with diverse opinions. A wide
variety of models, inspired by statistical mechanics and nonlinear physics, have been devel-
oped in order to deal with the different phenomena observed in real societies [1]: emergence
of fads, minority opinion survival and spreading, collective decision making, emergence
of extremism and so on. One of the main problems addressed by some of these models is
whether the opinion formation processes within a society will eventually lead to the emer-
gence of a consensus, with a vast majority of the agents adopting the same opinion, or to the
fragmentation of its constituent individuals into different opinion groups.
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In opinion dynamics, each agent is characterized by an opinion from a certain space,
which is a dynamical variable evolving in accordance with some rules. These behavioral
laws codify a variety of internal and external factors governing the evolution of an agent’s
opinion, such as the social influence of its acquaintances, the social pressure of a group or the
influence of advertising. Regarding the opinion variable, models can be broadly classified as
discrete opinion models, where opinions can only adopt a finite set of values, and continuous
opinion models, where opinions are real numbers in a finite interval and thus two interacting
agents can always reach a compromise in an intermediate opinion.

Discrete models have traditionally been predominant in the physics literature, due to their
correspondence with spin systems. They have been applied to analyze situations where in-
dividuals are confronted with a limited number of options, such as choosing among a few
political parties in an election or between two languages in a language competition situa-
tion. On the contrary, continuous models are applied when a single issue is considered and
opinions can vary continuously, for example, from “completely against” to “in complete
agreement”. Typical examples of continuous opinion issues are the degree of agreement re-
garding the legalization of drugs or abortion, or predictions about macroeconomic variables.

Two models of continuous opinion dynamics were introduced around 2000 and, ever
since, have received much attention [2]: the model of Hegselmann and Krause [3], and that
of Deffuant, Weisbuch et al. [4, 5]. The former was first introduced in a mathematical con-
text as a nonlinear version of older consensus models [6], while the latter was developed in
the context of a European Union project for the improvement of agri-environmental policies.
Both models implement basically two mechanisms or rules for the evolution of the agent’s
opinion variables. On the one hand, there is a mechanism of social influence, by which two
interacting agents tend to bring their opinions closer and, eventually, they reach a compro-
mise in the midpoint opinion. On the other hand, both models take into account a mechanism
of homophily, in particular a bounded confidence rule, in the sense that agents do only inter-
act if their opinion difference is less than a given threshold value. In other words, an agent
will only take into account the opinions of other agents if they differ less than a bound of
confidence ε from its own opinion, simply ignoring the rest of them.

The main difference between the Hegselmann-Krause model and the Deffuant, Weisbuch
et al. model (from now on, DW et al.) is the communication regime. In the case of DW et
al., the communication is pairwise, i.e., agents meet in random pairwise encounters after
which they compromise or not. On the contrary, in the Hegselmann-Krause model the com-
munication takes place in groups, as each agent moves its own opinion to the average of the
opinions of all the agents within a bound of confidence, including itself.

In the following, we will focus on the DW et al. dynamics, which leads to final states
where either a perfect consensus has been achieved, or the individuals split into a finite
number of opinion clusters, depending on a parameter representing the confidence bound
of the agents. In this paper, we study the influence that the initial distribution of opinions
among the agents has upon the configuration of these final states. The fundamental question
to answer is: can we, by imposing a given initial condition, force the system to arrive at
a consensus, or, equivalently, prevent a consensus and force it to split in several opinion
groups? Thus, we try to prove that the use of different initial distributions does not only
have an effect in the average final opinion, but also in the fact that a consensus is found or
not for a certain threshold level. To this end, we analyze, by means of numerical simulation,
the effect of introducing a bias in the initial distribution towards the extremes or the center
of the opinion space, with a parameter which allows for a continuous change between these
two situations. In order to check the impact of the symmetry of the initial distribution, this
analysis is performed both in a symmetric and in an asymmetric context. We find that, for a
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given value of the confidence bound parameter, the initial condition has a strong importance
in determining the final state of the system, not only the position of the final opinion groups
being affected, but also the total number of these clusters. Furthermore, we also analyze the
influence of the initial conditions in the case of a DW et al. model including an additional
element of randomness in the form of a noise [7, 8]. This noisy term can be thought of as
a free will, since the agents are given the opportunity to change their opinion independently
of their acquaintances. Concerning this noisy case, we find that, even if the noise hides most
of the importance of the initial distribution, the latter has still some noticeable effects upon
the final configuration.

The next section presents the DW et al. model in greater depth, as well as a brief review
of some results published in recent years regarding this model and its extensions to take into
account the free will of the agents by adding noisy perturbations. In Sect. 3 we present the
different initial conditions tested and the measures used to characterize these distributions
and to quantify the results obtained. We present as well the general features of the simula-
tions performed. Sections 4 and 5 are devoted to the presentation of the results. In the first
one we study the importance of the initial distribution of opinions for the stationary result of
the original DW et al. model, while in the second one we analyze the case in which a noise
is added to the system. We draw, in Sect. 6, some general conclusions from the results of
our study.

2 The DW et al. Model and Its Noisy Extension

We will review, in a first subsection, the model developed in Refs. [4, 5] in its original
agent-based form, i.e., with its dynamics or behavioral rules defined for a finite population
of N agents. We will also present a redefinition of the system as a density-based model, as
introduced by Ben-Naim, Krapivsky and Redner [9] and by Lorenz [10], where the dynamics
is defined on the density of agents in the opinion space. We have used this second approach
for the computation of all the results presented in this paper. Finally, we will describe in
Sect. 2.2 the introduction of noise in the original model, in order to capture the free will of
the agents.

2.1 The Original Model

In order to define the original agent-based version of the model, we begin by considering
a group of N agents, where we denote by xi(t) the real number representing the opinion
that individual i has at time step t about a given topic. Without loss of generality we take
xi(t) ∈ [0,1]. The behavioral rules defined for the agents basically state that, at each time
step, a pair of individuals, say i and j , is randomly chosen. Then, if their opinions are close
enough, that is, if they satisfy |xi(t) − xj (t)| < ε, being ε the bound of confidence, they are
respectively adjusted as

xi(t + 1) = xi(t) + µ
[
xj (t) − xi(t)

]
,

xj (t + 1) = xj (t) + µ
[
xi(t) − xj (t)

]
,

(1)

remaining unchanged otherwise. The iteration of this dynamical rule leads the system to a
static final configuration which, depending on the parameters µ and ε, can be a state of full
consensus or one of fragmentation, where the individuals split in several opinion clusters of
different sizes. This definition generates a mean field model, since all the agents have the
same probability to be chosen as interaction partners.
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The parameter µ, which is restricted to the interval (0,0.5], can be thought of as the per-
suasibility of the individuals, since it states how far an agent is willing to change its opinion.
It basically fixes the speed of convergence and, because of this, it has some importance in
determining the final number of clusters [11, 12]. In particular, for intermediate and large
values of µ, the speed of convergence will be so fast in the extremes of the opinion space
that some small amount of agents will be left around that region with no possibility of com-
munication with the rest of the individuals. These agents will therefore not be able to change
and moderate their opinions, forming two minority clusters of extremists. On the contrary,
for small values of µ, i.e., for slow convergence speeds, all the agents will have the opportu-
nity to meet and interact with others, being influenced by them, and thus slowly converging
to the major clusters. Following most studies, and trying to avoid any further complexity,
we will adopt from now on in this paper the value µ = 0.5, meaning a perfect compromise
between interacting individuals.

The confidence parameter ε is restricted, for the opinion space introduced above, to the
interval ε ∈ [0,1]. It is a measure of the receptiveness of the agents, that is, their willingness
or readiness to interact with other individuals who have ideas different from theirs. It states
how similar to me another individual must be so that I am willing to interact with him. In a
typical realization of the agent-based dynamics starting from uniformly distributed random
initial opinions, a consensus is obtained for large values of the confidence parameter, ε ≥
0.5, while a fragmentation into opinion clusters separated by distances larger than ε can be
observed for smaller values, whether these clusters are large or small.

The first density-based approach to the DW et al. model, developed in [9], basically
involved changing the scope from a finite number of agents to an idealized infinite number
of individuals which are distributed in the opinion interval as defined by a density function.
Therefore, the system is described in terms of a master equation for this density function
P (x, t)dx, defined as the fraction of agents that have opinions in the range [x, x + dx] at
time t ,

∂

∂t
P (t, x) =

∫ 1

0
dx1

∫

|x1−x2|≤ε

dx2

[
P (t, x1)P (t, x2)

(
2δ

(
x − x1 + x2

2

)

︸ ︷︷ ︸
Fraction joining state x

−
(
δ(x − x1) + δ(x − x2)

)
︸ ︷︷ ︸

Fraction leaving state x

)]
, (2)

where the persuasibility of the agents is taken as µ = 0.5. According to this dynamical rule,
the two first moments of the opinion distribution, i.e., the total mass and the mean opinion,
are conserved. In particular, if we define the kth moment as Mk(t) =

∫
dx xkP (t, x), then

it can be easily found that Ṁ0 = 0 = Ṁ1. For ε ≥ 0.5 it is shown in [9] that a stationary
solution is found asymptotically for t → ∞ as Pst (x) = δ(x − x0), where x0 is the mean
opinion, that is, only one opinion cluster is formed. On the contrary, for lower values of the
bound of confidence ε < 0.5 it is found by simulation that a finite number of opinion groups
are formed, leading to a stationary distribution as Pst (x) = ∑r

i=1 miδ(x −xi), where r is the
number of clusters, and xi , mi are respectively the position and the mass of cluster i.

We will follow here a slightly different approach, as developed in [10, 13, 14], involving
a previous discretization of the opinion space into a finite number of opinion classes. The
behavioral rules for the individuals are then translated to dynamical rules for the density
of agents in these resulting opinion classes. Concerning the discretization, we divide the
opinion space [0,1] into n subintervals or opinion classes as [0, 1

n
), [ 1

n
, 2

n
), . . . , [ n−1

n
,1],
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which are labeled as 1, . . . , n. The bound of confidence ε is also naturally transformed into
its opinion classes counterpart [nε], where the square brackets [ ] denote the integer part of
a number. Therefore, the state of the system can be quantified by a vector p(t), where each
component pi(t) is the fraction of the total population which holds opinions in class i, and
the time evolution of the system can be written as a discrete Markov chain. The density-
based dynamics can then be defined as

p(t + 1) = p(t)T
[
p(t)

]
, (3)

where T [p(t)] is a transition matrix depending only on the current state of the system p(t),
and which in the case of DW et al. is

Tij [p] =
{

π i
2j−i−1

2 + π i
2j−i + π i

2j−i+1
2 , if i '= j,

qi, if i = j,
(4)

with qi = ∑n
j '=i,j=1 Tij [p] and

π i
m =

{
pm, if |i − m| ≤ [nε],
qi, otherwise.

(5)

This transition matrix states that the probability of an agent to change from opinion i to
opinion j depends only on the fractions of agents in the opinion classes 2j − i − 1, 2j − i

and 2j − i +1, and only if these classes are not farther than [nε] from i. This is true because
they are the only opinion classes whose average with i results in j . In the case of 2j − i − 1
and 2j − i + 1 it is only half of the agents who jump to j , the other half jumping to j − 1
and j + 1 respectively. This discrete time and discrete opinion approach has been shown to
lead to the same results as the previously presented continuous density-based model [13].

Within this context, the knowledge of P (0) implies the knowledge of the opinion distri-
bution P (t) at any point in time, avoiding the need of different realizations of the process.
This is related to the fact that they correspond to the limit N → ∞, very large number of
agents, and thus to a case without finite-size fluctuations. However, we must stress that the
differences between the agent and the density-based approaches will therefore be greater the
smaller the number of agents [7]. Some examples of disagreement will be commented be-
low. Another interesting advantage of the density-based approaches is that the conservation
of the symmetry can be directly observed, in the continuous case, in the master equation (2)
and, in the discrete case, in the definition of the transition matrix. This latter point implies
that, if the initial distribution of opinions is symmetric around the central point x = 1

2 , then
we will have ∀t that P (t, x) = P (t,1 − x).

In order to determine the attractive cluster patterns for each bound of confidence and
observe transitions of attractive patterns at critical values of ε, bifurcation diagrams are
drawn. The asymptotic results of the model are shown in these graphs, where the location
of clusters is plotted versus the continuum of values of the bound of confidence ε. Bifurca-
tion refers here to the appearance, dominance or splitting of a given cluster. Sometimes it
is useful, when studying cluster patterns, to establish a difference between “major” opinion
clusters, containing a high fraction of the population, and “minor” opinion clusters, contain-
ing a much smaller fraction. The bifurcation diagram for the DW et al. model with uniform
initial density in the opinion space is shown in the plot b of Fig. 4. A detailed analysis [9]
shows that there are in these results four basic modes of bifurcation, which are repeated
in descendant order of the bound of confidence ε and in shorter and shorter ε-intervals.
Let us describe, as an example, the first sequence. For ε ≥ 0.5 only one big central cluster
evolves, gathering the vast majority of the population. As the bound of confidence decreases
from ε = 0.5, we can notice the nucleation of two minor clusters from the boundaries of
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the opinion interval. Around ε ≈ 0.266 there is a bifurcation of the central cluster into two
major clusters. Further decreasing ε, the central cluster has a rebirth as a minor cluster from
ε ≈ 0.222, before suddenly increasing its mass around ε ≈ 0.182, pushing the two major
clusters outwards.

A topic that has received much less attention in the relevant literature is the dependence
of the model on the initial conditions, that is, on the initial distribution of opinions among the
agents. As a first and naive argument, we could notice that the model, as has been presented,
conserves the mass and the mean opinion of the population, so the position of the final
clusters will depend on the mean of the initial distribution. However, also different initial
conditions with the same mean opinion could give rise to different final configurations.
In fact, it can be shown theoretically and confirmed by simulation that any combination
of delta-functions is a steady state solution of the master equation describing the model,
provided these delta-peaks are separated by a distance greater than ε and they conform to
the mean opinion conservation [7, 13]. This will be the object of study in Sect. 4, where we
will show that it is perfectly possible to force or prevent a consensus by varying the initial
distribution of opinions.

2.2 The Model with Noise

A final configuration consisting of one or more delta functions means that all the agents
within one of these opinion groups would share exactly the same opinion, which is clearly
not very realistic. In order to avoid this perfect consensus within each cluster, Pineda, Toral
and Hernández-García presented an extension of the original DW et al. model taking into
account some additional randomness [7]. Thus, a noise is introduced into the dynamics as a
free will, which allows for the agents to change their opinion from time to time to a randomly
chosen value. Thus, the distribution of the noise is uniform in the opinion space. This very
simple implementation of noise is different from some other adaptive noise approaches [15].

The dynamics is therefore modified by allowing, at each time step, a randomly chosen
agent to follow the original DW et al. interaction rule with probability (1 − m) or to choose
at random a new opinion with probability m. The probability m is therefore a measure of the
noise intensity. As a result of this extension, there exists a transition between an organized
and a disorganized phase at a critical value of the noise intensity. In the disordered state,
corresponding to quite high noise rates, there is no cluster formation, as noise is stronger
than nucleation processes; on the other hand, in the ordered state, corresponding to lower
noise rates, we can still clearly observe the formation of clusters, even if they broaden with
respect to the noiseless case. Another difference between the original and the noisy models
is that the position of the clusters in the latter case only vary at the bifurcation points, re-
maining constant between them. These features are shown in the plot b of Fig. 8, where the
asymptotic probability distribution Pst (x) is plotted as a function of the bound of confidence
ε for a small noise intensity m = 0.01.

Taking as a starting point the master equation of the original DW et al. model, (2), the
dynamics of the noisy case can be derived as

∂

∂t
P (t, x) = (1 − m)

∫ 1

0
dx1

∫

|x1−x2|≤ε

dx2

[
P (t, x1)P (t, x2)

(
2δ

(
x − x1 + x2

2

)

−
(
δ(x − x1) + δ(x − x2)

))]
+ m

(
Pa(x) − P (t, x)︸ ︷︷ ︸

Noise term

)
, (6)
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where the Pa(x) is the probability distribution of the noise, which will be uniform in our
case. It is clear from Eq. (6) that the net effect of the noise is to move the current opinion
distribution towards the noise distribution with a velocity or intensity per time step m.

An interesting feature of this extension is that the average opinion of the system is not
anymore a constant and it tends to the average of the noise distribution, regardless of that of
the initial condition. The time evolution of the first moment will thus be

dM1

dt
= m

[
Ma

1 − M1
]
,

where Ma
1 is the first moment of the distribution Pa(x).

We devote Sect. 5 to the study of the influence of the initial distribution of opinions in
this noisy case. There, we will show that, even if the importance of the initial condition
regarding the average opinion is replaced by that of the noise distribution, the former has
still some influence in determining the bifurcation patterns.

3 Initial Conditions, Measures and Simulations

We present in this section the two sets of different initial conditions that we have employed
in our simulations, as well as the measure used to characterize and differentiate between
these distributions. Furthermore, we also present in this section some measures developed
in the literature for the analysis of the resulting final configurations. Finally, we also give
some details about the simulations performed.

Regarding the initial conditions, we have used two functional forms for the distributions:
a symmetric quadratic function and an asymmetric piece-wise linear function.

Concerning the quadratic functional form, we chose the distribution to be symmetric
around x = 1

2 . Its general form would then be P (0, x) = c + b(x − 1
2 )2 for x ∈ (0,1). The

normalization condition
∫ 1

0 dx P (0, x) = 1 implies c = 1 − b
12 . This yields the final expres-

sion:

P (0, x) = 1 + b

[(
x − 1

2

)2

− 1
12

]
. (7)

Furthermore, the positivity of this quadratic form requires that the parameter b lies in the
range b ∈ [−6,12]. At b = 0 the quadratic function smoothly changes from a concave
(b < 0) to a convex (b > 0) shape. By construction, the average value of this distribution
is 〈x〉 = 1

2 . The variance can be computed easily as σ 2 = b
180 + 1

12 . If b = 0, the distribution
is uniform in the interval (0,1) and its variance is σ 2 = 1

12 . In order to easily distinguish
between convex and concave distributions, we define the “shifted variance” S2 := σ 2 − 1

12 ,
or S2 = b

180 in this case. It is such that S2 > 0 corresponds to a convex distribution, while
S2 < 0 to a concave distribution, while S2 = 0 corresponds to the uniform distribution. The
minimum and maximum possible values for S2, respecting the positivity of the distribution,
are − 1

30 and 1
15 , respectively.

Afterwards, we also tested the effect of avoiding the symmetry but keeping the average
opinion of 〈x〉 = 1

2 . As this is not possible with a quadratic function, we defined a piece-wise
linear distribution which is no longer symmetric around x = 1

2 . It has a “triangular” shape
and it is given by

P (0, x) =
{

1 + a( 3
10 − x) if x ≤ 3

4 ,

1 + 27
5 a(x − 5

6 ) if x > 3
4 ,

(8)
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Fig. 1 Examples of the symmetric and asymmetric sets of initial distributions of opinions. S2 is the “shifted
variance” of the distributions, defined as S2 = σ 2 − 1/12, being σ 2 = 〈x2〉 − 〈x〉2 the variance and the value
1/12 corresponds to the variance of a uniform distribution in the interval (0,1)

where the parameter a is restricted to the interval a ∈ [−10
9 , 20

9 ] in order to keep the function
always positive. Again, the different terms have been tuned so that the average value of
the distribution is 〈x〉 = 1

2 . The variance is easily found to be σ 2 = 3a
160 + 1

12 . The “shifted
variance”, which makes more evident the convexity/concavity of the distribution, is thus
S2 = 3a

160 in this case. Its minimum and maximum values, regarding the positivity of the
distribution, are − 1

48 and 1
24 , respectively.

Both sets of distributions are exemplified in Fig. 1 for the maximum and minimum values
of the respective a and b intervals. It is evident in this figure that the “shifted variance” S2

correctly distinguishes situations where a majority of agents have initially opinions around
the center of the opinion interval (S2, a, b < 0) from other cases where a majority of agents
have opinions towards the extremes (S2, a, b > 0). The former corresponds to an initial con-
dition which would favor consensus while the latter corresponds to facilitating the splitting
of the population into, at least, two opinion groups.

Since we are interested in assessing the effect of the initial condition on the final state
of the system, we use some measures of consensus already introduced in the literature to
quantify this final distribution of opinions. In particular, we will use bifurcation diagrams
as already described in Sect. 2.1. For the construction of these diagrams, we need a precise
definition of what a cluster is and what its position in the opinion space is [13]. We define a
cluster with a given precision, in our case 10−3, as a set of adjacent opinion classes each of
them with a fraction of agents or mass greater than the precision threshold and surrounded
by neighboring classes with masses less than this precision. Regarding the position in the
opinion space or the opinion corresponding to a given cluster, we approximate it by the
average opinion of the agents within this group. In order to quantify the degree of consensus
within the population, the mass of the biggest cluster has been pointed out as an appropriate
measure. We define the mass of the biggest cluster as the fraction of agents within the largest
of the clusters [14].

As it will be explained below, the introduction of a noise in the original DW et al. model
allows the system to undergo certain transitions between states which were forbidden in the
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original model. We could argue, in a very naive manner, that this effect is related to the
fact that these states are stable or metastable, i.e., to their relative stability. Thus, only in the
presence of a noise would a transition from a metastable to a globally stable state be allowed.
In order to characterize the relative stability of those states we defined a Lyapunov function
for the DW et al. model, that is, a positive-definite function which always decreases in time,
given the interaction rules of the model, and whose minimum is zero. Let us write here only
the definition of the Lyapunov function, while we leave its proof for a final Appendix:

L [x] =
∑

i>j

(xi − xj )
2, (9)

where x(t) is a vector whose components are the opinions of the agents at time t . In the
absence of noise, only transitions from states with a given value of L to those with a
smaller (or equal) value would be permitted:

L
[
x(t + 1)

]
≤ L

[
x(t)

]
.

Concerning the characteristics of the numerical simulations, and as we have already
pointed out in Sect. 1, we employed an algorithmic approach based on the discrete density-
based reformulation of the DW et al. model developed by J. Lorenz [10, 13]. In particular,
we discretized the opinion space [0,1] into 1001 opinion classes, an odd number being
the only option allowing for one-class central opinion clusters. This one-class central opin-
ion group in class 501 is quite important since, in the symmetric case, it is the only class
which can have a density greater than 0.5. In order to study the bifurcation patterns, we
run the algorithm for 100 evenly distributed values of the bound of confidence parameter,
from ε = 0.1 to ε = 0.6. Furthermore, and with the purpose of analyzing the influence of
the initial condition, we performed the simulations for 100 different values of the initial
distribution parameters a and b, for each value of the bound of confidence.

In the noisy extension of the DW et al. model, we set the intensity of the noise at m = 0.01
in our simulations, in order for the system to be in the “ordered” state, as explained in
Sect. 2.2 and in [7]. The convergence time, that is, the number of time steps needed for the
system to arrive at a converged state with opinion clusters separated by more than a bound
of confidence, is much longer in the noisy than in the noiseless case. Therefore, the 1000
time steps we used for the original model were more than enough in that case, while we
decided to use 50000 for the noisy model in order to ensure a good level of convergence.

4 The Importance of the Initial Conditions in the Noiseless Model

In the noiseless case, when m = 0, the asymptotic steady state distribution Pst (x) =
limt→∞ P (x, t) is basically a sum of delta-functions located at certain points. As we are
only interested in the fundamental changes caused by the variation of the initial conditions,
we have chosen a relatively high threshold level for the detection of opinion groups, 10−3,
in order not to detect the minority clusters but only the major ones.

The mass of the biggest cluster can be observed in Figs. 2 and 3 for the symmetric and
the asymmetric initial condition cases respectively. In these plots, the x-axis represents the
values of the bound of confidence ε, while the y-axis corresponds to the shifted variance S2.
Each point of this plane (ε, S2) is colored according to the values of the mass of the biggest
cluster after stabilization. Parameter regions with major consensus are therefore colored
dark red, while light blue means two equally distributed clusters. In order to give a more
exhaustive idea about the bifurcation patterns which give rise to the masses of the biggest
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Fig. 2 Mass of the biggest cluster for the set of symmetric initial distributions of opinions (quadratic func-
tions) obtained with the noiseless DW et al. model. The black horizontal lines mark the values of the shifted
variance for which cuts of the opinion distribution are shown in Fig. 4

Fig. 3 Mass of the biggest cluster for the set of asymmetric initial distributions of opinions (triangular
functions) obtained with the noiseless DW et al. model. The black horizontal lines mark the values of the
shifted variance for which cuts of the opinion distribution are shown in Fig. 5
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Fig. 4 Bifurcation diagrams for four different symmetric initial distributions of opinions (quadratic func-
tions) obtained with the noiseless DW et al. model

cluster shown above, we present in Fig. 4 the bifurcation diagrams for the four cuts or
horizontal lines marked in Fig. 2, and in Fig. 5 for those marked in Fig. 3.

In Figs. 2 and 3 we see some clear and sharp lines of transition, while some others look
like more smooth and gradual changes. Let us first focus on the symmetric case, Fig. 2,
where we observe an oblique line of sudden transition between dark red and light blue,
which can be shown to mean (see Fig. 4) a bifurcation from one central major opinion
cluster to two smaller and symmetrical clusters. The smooth transition between light and
dark blue represents a gradual decrease of the mass of these symmetrical clusters and the
rebirth of the central one. In any case, the point we would like to stress here is the fact that
these transition lines or regions, their position and smoothness, are highly dependent on the
variance of the initial distribution of opinions, something that is particularly evident for the
sharp transition from consensus to more than one opinion cluster.

Focusing now on the asymmetric initial condition case, we notice in Fig. 3 a rather differ-
ent transition pattern. The main difference is the appearance of a new color or state, turquoise
blue (between green and blue), meaning a mass of around 0.6 but corresponding to a state
with two major opinion clusters, which would be impossible in the previous and symmetri-
cal case. This is due to the fact that the initial distribution is not anymore symmetric around
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Fig. 5 Bifurcation diagrams for four different asymmetric initial distributions of opinions (triangular func-
tions) obtained with the noiseless DW et al. model

the central opinion 0.5, so a cluster can exist with a mass larger than 0.5 and not being lo-
cated at the center of the opinion space. Since, when the shifted variance equals zero, both
initial conditions are equal and uniform, the black solid horizontal line is identical in both
figures.

Four examples of bifurcation diagrams are presented in Figs. 4 and 5 for each set of initial
conditions, corresponding to the cuts marked in Figs. 2 and 3 respectively. By comparison
between these bifurcation diagrams and the previous plots of the mass of the biggest cluster,
we can notice that some of the opinion groups found are actually minority clusters. They are
detected in the bifurcation diagram but, since they have a mass just slightly larger than the
precision threshold 10−3, they have no influence in the mass of the biggest cluster. The most
clear examples of these minority groups are, on the one hand, the two symmetric clusters
appearing on the bifurcation diagram for S2 = −0.02 in Fig. 4 from ε ≈ 0.3 to ε ≈ 0.2 and,
on the other hand, the cluster appearing just from the lower end of the opinion interval from
ε ≈ 0.35 to ε ≈ 0.25 again on the bifurcation diagram for S2 = −0.02 in Fig. 5.

Both Figs. 4 and 5 serve as a confirmation of the strong importance of the initial condition
in determining the bifurcation patterns of the steady state solution in the noiseless DW et
al. model. In the symmetric case, even though the pattern of bifurcations is rather similar in
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each and every example, the points of the bound of confidence axis where the bifurcations
do take place smoothly increase with the variance of the initial distribution of opinions.
This change is particularly relevant for the first bifurcation, which takes place at ε ≈ 0.270
in the uniform case, shown in plot b, but moves from ε ≈ 0.180 in plot a to ε ≈ 0.405 in
plot d. Regarding the case of asymmetric initial conditions shown in Fig. 5, it is not only the
bifurcation points, but also the general bifurcation structure which is perturbed by a variation
of the initial distribution of opinions. In particular, we observe that the bifurcation patterns
shown in plots a, c and d are clearly asymmetric and the first bifurcation point moves from
ε ≈ 0.245 to ε ≈ 0.420.

In order to check whether the particular shape of the initial condition function has any
important influence upon the bifurcation patterns of the model, we also tested a symmetric
initial distribution with the shape of a centered triangle, thus different from the quadratic
one. The results (not shown) obtained being remarkably similar to the case of the symmetric
quadratic condition, we deduce that the particular shape of the distribution does not play a
major role regarding the final asymptotic solution of the model. Therefore, we notice that the
two most important variables for the characterization of the initial condition and its effects
upon the DW et al. model are the symmetry and the variance of the distribution.

5 The Importance of the Initial Conditions in the Noisy Model

If a noise of the type described in Sect. 2.2 is added to the original system, that is, if m > 0,
then the asymptotic solution of the model is not anymore a collection of delta-functions,
but a smooth distribution of opinions. Furthermore, if this noise m is small enough for the
system to be in the ordered state, the smooth steady state solutions will be peaked around
some specific values. In particular, we set the noise intensity at m = 0.01. Although, as
a consequence, the definition of a cluster is not so obvious in this case as in the original
noiseless model, the cluster detection mechanism presented in Sect. 3 aims to give correct
results also in this noisy situation, and so we will use it for the mass of the biggest cluster
plots. However, with regard to the bifurcation diagrams, and following [7], we decided to
show here the whole probability density distribution and not just the position of the major
clusters.

As in the previous subsection, the mass of the biggest cluster is shown, for the noisy
model, in Figs. 6 and 7 for the symmetric and asymmetric initial condition cases respectively.
It is interesting to notice, in a first and general view, that the range of values is slightly shorter
in the noisy case than in the noiseless results. This is mainly due to the fact that the agents no
longer gather in just a small number of opinion classes, but they are distributed all along the
opinion interval. Therefore, even if the distribution is peaked around some popular opinion
classes, a non negligible fraction of the population is dispersed among the rest of the opinion
classes, not taking part in any major opinion cluster. This effect is also clearly observed in
Figs. 8 and 9, which show a logarithmic colormap of the density of agents in each opinion
class for the four cuts marked, respectively, in Figs. 6 and 7. These latter plots are, as already
pointed out, the equivalent of the bifurcation diagrams of Sect. 4.

As before, we can observe in the mass of the biggest cluster plots of Figs. 6 and 7 some
sharp as well as some smooth lines of transition. Comparing with the noiseless case results
in Figs. 2 and 3, we may notice that the transition lines are now mostly straight and vertical
unlike the oblique lines observed before. This feature basically means that the initial con-
ditions are, in this case, less important in determining the final configuration of the system.
However, we can observe a smaller but still noticeable influence in the oblique transition
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Fig. 6 Mass of the biggest cluster for the set of symmetric initial distributions of opinions (quadratic func-
tions) obtained with the noisy DW et al. model with a noise intensity m = 0.01. The black horizontal lines
mark the values of the shifted variance for which cuts of the opinion distribution are shown in Fig. 8

Fig. 7 Mass of the biggest cluster for the set of asymmetric initial distributions of opinions (triangular
functions) obtained with the noisy DW et al. model with a noise intensity m = 0.01. The black horizontal
lines mark the values of the shifted variance for which cuts of the opinion distribution are shown in Fig. 9
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Fig. 8 Bifurcation diagrams for four different symmetric initial distributions of opinions (quadratic func-
tions) obtained with the noisy DW et al. model with a noise intensity m = 0.01

line from S2 = −0.02 to S2 = 0.02 in Fig. 6, and in the small change of the transition line
around S2 = 0.01 in Fig. 7.

We know, by computing the value of the Lyapunov function (9), that the most stable
situation—with L = 0, in particular—is that where all the agents share the same opinion,
and thus form only one cluster. This is the most stable configuration, in the sense of the
Lyapunov function defined before, even if there is a certain small spread in the opinion of
the group participants. A configuration with two clusters corresponds to much higher values
of the Lyapunov function, but still it may constitute a metastable state when the bound of
confidence does not allow for interactions between the agents of both groups. Therefore,
when the system starts from an initial condition very near to the two clusters final state, then
it quickly evolves towards that final configuration. However, when introducing a small noise
in this last situation, then the system is able to overcome the barrier introduced by the bound
of confidence and undergo a transition to the globally stable state of one cluster. This is so
for large and intermediate values of the bound of confidence, for ε > 0.310. On the contrary,
for small values of this threshold, the time needed to arrive at a consensus becomes so large
relative to the noise rate that the system is not able to leave the two clusters state. Regarding
those initial conditions imposing a certain consensus from the beginning, even if their initial
state is already more stable than a two cluster configuration, the presence of noise is able,
for small values of the bound of confidence, to take the system to the two opinion groups
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Fig. 9 Bifurcation diagrams for four different asymmetric initial distributions of opinions (triangular func-
tions) obtained with the noisy DW et al. model with a noise intensity m = 0.01

state, which is the metastable state most easily reached from the noise opinion distribution,
uniform in our case. Jumps between the stable and the metastable configurations have indeed
been reported in the case of a uniform initial condition [7, 8].

We show in Figs. 8 and 9 four examples of bifurcation diagrams, in the form of probabil-
ity density distributions, for each set of initial conditions. In these plots we can clearly ob-
serve some clusters and bifurcation patterns similar to the those in the bifurcation diagrams
of the previous noiseless case. However, we observe two significant differences, apart from
the fact that now we have a smooth distribution of opinions in the final state and not any-
more a collection of delta-functions. On the one hand, the bifurcation points are now very
sharply defined, with no region of progressive transition from one state to the next. On the
other hand, the location of the maximal values of the density does not significantly depend
on the bound of confidence between bifurcation points, unlike the position of clusters in the
noiseless model. This may be due to the fact that the noisy perturbation allows the system to
always arrive at the most stable configuration permitted by the bound of confidence, which
only changes at the bifurcation points, when this confidence distance allows for more clus-
ters to appear. On the contrary, the noiseless model freezes on stable configurations even if
they are not the most stable.

It is important to remark, in Figs. 8 and 9, the considerably long times needed for con-
vergence when the initial conditions strongly force a consensus, as it is the case of the plot a



The Role of Noise and Initial Conditions 147

in both figures, where S2 = −0.02. There, we can see some blurs on the colormap showing
that the system has not perfectly converged even after 50000 time steps.

Unlike the results of the noiseless case, now the bifurcation patterns shown have exactly
the same structure for all the initial distributions tested. Nevertheless, there is still a per-
ceivable influence of the initial conditions, as the location of the bifurcation points clearly
changes among the different plots of the bifurcation diagrams, confirming what was noted
before about the mass of the biggest cluster plots. Excluding the first and unconverged plot a,
the first bifurcation point, from consensus to two opinion clusters, moves from a minimum
value of ε ≈ 0.270 in the uniform initial condition plot b to a maximum of ε ≈ 0.315 in
plot d for both the symmetric and the asymmetric cases.

Another interesting feature to notice in the bifurcation diagrams is the strong difference
between Fig. 9, in this subsection, and 5, in the previous one. They both show the results of
the model starting from an asymmetric initial condition. However, only in the noiseless case
the resulting bifurcation diagram is asymmetric. The graph obtained with the noisy model
for an asymmetric initial distribution is, in fact, equal to the one obtained with a symmetric
initial condition. This is a case of symmetry restored by noise, and it is due to the fact that the
distribution of the noise we use is always symmetric and uniform. As it was proved in [7] and
shown in Sect. 2.2, the prevalent condition, regarding the moments of the final distribution,
is the distribution of the noise. Thus, the mean opinion value to be conserved and the general
bifurcation structure to be found is that corresponding to a uniform distribution.

Again, we checked that the particular shape of the initial distribution has no major ef-
fect concerning the asymptotic solution of the model by simulating also a symmetric initial
distribution with the shape of a centered triangle, thus different from the quadratic one. As
in the noiseless case, we found that the results are remarkably similar to the case of the
symmetric quadratic condition. So we confirm that the symmetry and the variance of the
distribution are still quite good parameters for the characterization of the initial condition
and its effects upon the DW et al. model.

6 Conclusions

We have shown, by numerical simulation, that the asymptotic solution of the original DW
et al. model is highly dependent on the initial condition. As a consequence, we have shown
that it is indeed possible to force or prevent a consensus among a group of agents by just
varying the initial distribution of opinions in a case where the only dynamical mechanism is
a pairwise bounded confidence interaction rule. For instance, systems with an initial distri-
bution of opinions moderately polarized into two different opinion groups will find it much
more difficult to arrive at a consensus, even if the individuals are willing to deal with very
distant opinions. On the contrary, systems with an initial distribution of opinions moderately
consensual will very easily find a globally shared opinion, regardless of how close-minded
the agents are. In particular, we have shown that the transition from consensus to more than
one opinion group can be moved in the range ε ∈ (0.135,0.495) for the symmetric set of
initial conditions we used, while the range is ε ∈ (0.245,0.425) for the asymmetric initial
distributions presented.

However, if the agents have the ability to choose a new random opinion from time to time,
then the possibility to initially prevent a consensus is totally removed and that of forcing a
consensus is substantially reduced. We have shown, both analytically and numerically, that
the importance of the initial condition in determining the asymptotic state of the system
is mainly replaced by the distribution of the noise. Nevertheless, there is still a slight but
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noticeable impact of the initial condition upon the final or steady state, particularly for those
initial distributions showing a moderate consensus. Thus, we observe in the noisy symmetric
case that the transition from consensus to more than one opinion group can be a sharp
transition at ε ≈ 0.315 or a smooth transition taking place in the range ε ∈ (0.235,0.315)

depending on the variance of the initial condition. In the noisy asymmetric case, we observe
a change in this transition in the much shorter range ε ∈ (0.295,0.315).

Given the important differences observed in the noiseless model between the mass of
the biggest cluster plots of the symmetric and the asymmetric sets of initial conditions, it
is clear that the variance of the initial opinion distribution is not the correct or not the only
parameter to take into account. As it can also be noticed in the related bifurcation diagrams,
the variance is not enough to determine if the system will end up in a consensus or not for a
given bound of confidence value. We notice that the symmetry of the initial condition does
also play an important role. Therefore, we would probably need to take into account other
parameters of the initial distribution as, for example, some higher moments.

Regarding the model with noise, the differences found in the bifurcation diagrams and
the mass of the biggest cluster figures between both sets of initial conditions are not as
important as in the original model. In fact, the bifurcation patterns observed in the mass
of the biggest cluster figures show that the initial condition is irrelevant in determining the
final configuration if the variance is strong enough, that is, if we sufficiently encourage the
system to initially split into two main opinion groups at the extremes. Nevertheless, for lower
values of the initial distribution variance, the final configuration of the system still depends
on this initial condition. In particular, the variance is again unable to precisely determine the
existence or not of a consensus, even though it gives a much better prediction than in the
noiseless case.
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Appendix: Lyapunov Function for the DW et al. Model

In order to write a Lyapunov function for the DW et al. process, we need to find a function
L [x(t)], where x(t) is a vector whose components are the agents opinions at time t , which
satisfies

L
[
x(t)

]
≥ 0 ∀t, (A.1)

L
[
x(t + 1)

]
≤ L

[
x(t)

]
∀t, (A.2)

where (A.1) simply means that it is a positive-definite function and (A.2) that it cannot
increase with time.

We will first write a positive-definite function and then prove that it is decreasing in time
for the model interaction rules. Let us write a function which only depends on the distances
between the agents opinions as

L [x] =
∑

i>j

(xi − xj )
2, (A.3)

where we only sum over all terms which are different. Let us then focus on one interaction,
i.e., on the changes occurred to the positions of only two agents in the opinion space, say
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agents i1 and j1. Thus, we may divide the Lyapunov function into two terms, one depen-
dent and the other independent of i1 and j1, and let us call A to the independent part for
simplicity:

L
[
x(t)

]
= A +

∑

i '=i1,j1

(
xi1(t) − xi(t)

)2

+
∑

i '=i1,j1

(
xj1(t) − xi(t)

)2 +
(
xi1(t) − xj1(t)

)2
. (A.4)

Each sum contains N − 2 terms, being N the number of agents. Now we use the new opin-
ions xi1(t +1) and xj1(t +1) that agents i1 and j1 hold after the interaction. It is important to
notice that this interaction does only take place in case the opinions of the agents are nearer
than the bound of confidence ε. However, this does not affect our analysis, as we are only
interested in effective interactions, those which actually take place. The Lyapunov function
after the interaction is

L
[
x(t + 1)

]
= A +

∑

i '=i1,j1

(
xi1(t + 1) − xi(t)

)2

+
∑

i '=i1,j1

(
xj1(t + 1) − xi(t)

)2 +
(
xi1(t + 1) − xj1(t + 1)

)2
. (A.5)

Replacing the new values xi1(t +1) and xj1(t +1) as given by application of the rule Eq. (1)
and subtracting, we get the variation of the Lyapunov as &L = L [x(t + 1)] − L [x(t)]
which, after some algebra, reads:

&L = −2µ(1 − µ)N
(
xi1(t) − xj1(t)

)2
. (A.6)

Therefore, we see that the Lyapunov function L is strictly decreasing in time when any
interaction takes place, and it stays constant when no interaction occurs.
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