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We consider a system of identical van der Pol oscillators, globally coupled through their
velocities, and study how the presence of competitive interactions affects its synchronisation
properties. We will address the question from two points of view. Firstly, we will investigate
the role of competitive interactions on the synchronisation among identical oscillators. Then,
we will show that the presence of a fraction of repulsive links results in the appearance of
macroscopic oscillations at that signal’s rhythm, in regions where the individual oscillator is
unable to synchronise with a weak external signal.

Subject Index: 034, 055

§1. Introduction

Synchronisation,1) or the ability of coupled oscillators to adjust their rhythms,
is a property that arises in many systems, from pacemaker cells in the heart firing
simultaneously as a result of their interaction,2) to the fetal heart rate adjusting its
pace to maternal breathing, as an example of forced synchronisation.3)

Typically, oscillators with different frequencies are able to synchronise owing
to a sufficiently strong positive coupling among units. However, interactions in
Nature are often repulsive and, surprisingly, it was found that under some particular
circumstances, repulsive interactions can actually enhance synchronisation: thus, the
presence of negative links can prevent the instability of the fully synchronised state
when it compensates an excessive number of positive links,4) or its sparse presence
can enhance synchronisation in small-world networks.5) Most interestingly — since
it is not always desirable to achieve a state of full synchronisation — the presence of
repulsive links can give rise to new forms of synchronisation,6) which sometimes can
be described as glassy or glassy-like,7)–10) or it can lead to clusters of fully phase-
synchronised oscillators.11) Additionally, the beam-forming abilities of a system of
repulsively coupled Stuart-Landau oscillators were considered in Ref. 12).

Thus far, studies have mostly focused on nonidentical phase oscillators, and sev-
eral coupling schemes have been chosen, such as local13) or long-range,5) and purely
repulsive6) or assuming a competition between repulsive and attractive.14) Like in
Ref. 14), we want to isolate the effect of different proportions of repulsive interac-
tions by considering identical oscillators. However, rather than establishing how full
synchronisation becomes unstable as the fraction p of repulsive links increases,14) our
focus will be on the characterisation of the different configurations that emerge as p
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grows, and their implications for signal transmission when the system is subjected
to an external forcing. Moreover, unlike in Ref. 14), we will not consider phase os-
cillators, but instead van der Pol oscillators,15) which implies that phase, amplitude
and frequency synchronisation are taken into consideration.

The establishment of the role of the coupling structure on synchronisation, in-
dependently of the detailed specification of the nodes dynamics, can rely on the
study of the Laplacian matrix.16),17) We will identify and characterise a transition
region from synchronisation to desynchronisation by analysing the eigenmodes of the
Laplacian matrix corresponding to different proportions of repulsive links, adapting
a formalism developed in Refs. 18) and 19).

The second part of the paper will be devoted to exploring the role of competitive
interactions in the synchronisation of the system with an external periodic signal.
We will choose a signal whose frequency lies outside the region of entrainment for
an uncoupled oscillator, as well as for an all attractively coupled system. This prob-
lem is closely related to a second theoretical framework, that of resonance studies,
which emphasise the importance of an intermediate disorder on the response to a
weak signal, where disorder can be noise,20),21) diversity,22)–24) or competitive inter-
actions.18),25) In the latter cases18),25) it was found that an intermediate fraction
of repulsive links was able to amplify the response to an external signal, in bistable
systems where the external signal was the only source of movement. In the present
case, an optimal response should correspond to an adjustment between the intrin-
sic frequency of the oscillators and that of the external signal; as we will see, that
optimal response is achieved at an intermediate proportion of repulsive links in the
case of strong fast signals, whereas weak slow signals are best responded when all
the links are negative.

The outline of this paper is as follows: in §2, we will introduce the model;
we show that an increase in the proportion of repulsive links leads to a loss of
synchronisation in §3; and in §4, we show how the presence of repulsive links accounts
for an enhanced response to external signals; in §5, we will briefly mention some
extensions; conclusions are drawn in §6.

§2. Model

We consider an ensemble of van der Pol oscillators15) {xi(t), i = 1, . . . , N}, glob-
ally coupled through their velocities ẋi, and subjected to an external periodic forcing
of amplitude A and frequency Ω. The dynamics is described as

ẍi = −xi + µ(1 − x2
i )ẋi +

C

N

N∑

j=1

Jij (ẋj − ẋi) + A sin(Ωt), (2.1)

where the nonlinearity parameter µ is a positive constant and C is the coupling
strength.

The coupling between the oscillators i and j is given by the term Jij = Jji. As
a result of the interaction, the velocity ẋi of the oscillator i may get closer to that
of the oscillator j, or it can get farther apart. In the first case, Jij = 1, and we call
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the interaction attractive. Otherwise Jij = −1 and we call it repulsive. Specifically,
we establish the value of Jij according to a given probability p:

Jij = Jji =

{
−1, with probability p,

1, with probability 1 − p.
(2.2)

The single van der Pol oscillator is a paradigmatic example of a nonlinear os-
cillator. It possesses a stable limit cycle as a result of its nonlinear damping term
µ(1 − x2

i ): for small oscillations, |xi| < 1, the system experiences negative damp-
ing and the oscillations grow, while for |xi| > 1, the positive damping causes the
oscillations to decrease. Therefore, independently of the initial conditions or small
perturbations, its amplitude of oscillations reaches a constant (equal to 2), while
its detailed shape and period T depend on µ, approaching T ≈ (3 − 2 ln 2)µ for
large µ. In this case of large µ # 1, the oscillations are called relaxational and are
characterised by the presence of discontinuous jumps intercalated by periods of slow
motion.

§3. Desynchronisation among unforced oscillators, A = 0

We have numerically solved Eq. (2.1), to investigate the effect of different prob-
abilities of repulsive links. If the initial velocity ẋi is the same for all units, then the
interaction term Jij (ẋj − ẋi) is zero and the oscillators evolve independently. The
results that follow throughout the paper refer to the case where both xi and ẋi are
randomly chosen from a uniform distribution on the interval [−1, 1], and we verified
that other different random initial conditions produce essentially the same results.
Figure 1 shows the trajectory (left panels) and respective limit cycles (right panels)
of two typical individual oscillators for some probabilities p of repulsive links. In
all the cases, the essential characteristics of the van der Pol oscillator, such as a
steady amplitude and the existence of two time scales, are preserved by this type
of coupling, as it is reflected by the fact that the stable limit cycles (Fig. 1, right
panels) maintain their basic shape. Having identical natural frequencies, when the
coupling constant C is sufficiently strong, the position of the oscillators becomes
synchronised when all the interactions are attractive (Fig. 1, for p = 0). As the
proportion of repulsive links grows, both the amplitude and phase of the oscillators
start to desynchronise (Fig. 1, p = 0.4). Finally, a further increase in the proportion
of repulsive links (Fig. 1, p = 0.60 and p = 1.0) drives the system to a configuration
where the global variable X(t) = 1

N

∑
i xi(t) is zero, with several groups oscillating

in antiphase, with a decreased frequency and an increased amplitude of oscillations.
The examples in Fig. 1 for p = 0.60 and p = 1.0 illustrate the case of two oscillators
that belong to two clusters oscillating in antiphase.

In general, there can be more than one pair of clusters oscillating in antiphase,
but we can show that if only one pair of clusters forms such that the oscillators in
one cluster are in antiphase with respect to the other, then both clusters have the
same number of elements. Consider a cluster consisting of n oscillators with position
xi = ai and another one of N −n oscillators with position xi = −ai. The interaction
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term between oscillators i and j is given by Jij(ẋj − ẋi) = Jij(ȧi − ȧi) = 0 if they
belong to the same cluster, and it is given by Jij(−2ȧi) if they belong to different
clusters. Thus, the evolution equations for two oscillators, each one in a different
cluster, are given by

äi = −ai + µ(1 − a2
i )ȧi + C

(
1 − n

N

)
(2ȧi)(2p − 1), (3.1a)

−äi = ai − µ(1 − a2
i )ȧi + C

n

N
(2ȧi)(1 − 2p), (3.1b)

where we have considered that the fraction of repulsive and attractive links is the
same for both oscillators, that is, we have neglected the variance in the binomial
distribution, an approximation that improves with increasing system size N . For
(3.1a) and (3.1b) to hold simultaneously, we must have n = N

2 . Hence, the clusters
have the same number of elements, and therefore, the average position of the system,
X(t), is zero.

We use this result — considering two clusters with the same number n of elements
— to compute, in the case p = 1.0, the increase in the amplitude of a single oscillator.
Defining bi(t) ≡ ai(t)q

1+ C
µ

, and setting p = 1.0, n = N
2 , in (3.1a), we find that bi(t)

satisfies the van der Pol equation:

b̈i = −bi + µ̃(1 − b2
i )ḃi (3.2)

with µ̃ = µ + C. The amplitude of bi(t) tends to |bi| = 2, and, hence, the amplitude
of oscillations of the original variable is |ai| = |bi|

√
1 + C

µ = 2
√

1 + C
µ . For µ = 10

and C = 20, the predicted amplitude is ai = 3.46, as we can observe in the left panel
of Fig. 1 for p = 1.0.

We can describe the last configuration characterised by a zero value of the aver-
age position X(t) as a disordered situation at the macroscopic level in the sense that

Fig. 1. Trajectories (left panels) and phase portraits (right panels) of two individual oscillators,
for various probabilities p of repulsive links. Regardless of initial conditions, the van der Pol
oscillator reaches steadystate oscillations with a constant amplitude. In the right panel, we
represent the corresponding limit cycles in the phase plane of (x, ẋ): as p grows, the distinction
between slow and fast motions becomes clearer which is manifested in the more abrupt angles
in the limit cycles for p = 0.6 and p = 1.0. N = 100, C = 20, µ = 10, A = 0.
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the oscillators are desynchronised in relation to the average position, although there
are several clusters of oscillators synchronised amongst themselves. To quantify this
disordering role of repulsive links, we define, following Ref. 24), the complex variable
zi = xi + iẋi, the average z̄ = 1

N

∑N
i=1 zi and the variance of zi normalised by the

average value of the modulus squared, σ2[zi]:

σ2[zi] =

〈
N−1 ∑N

i=1 |zi − z̄|2

N−1
∑N

i=1 |zi|2

〉
, (3.3)

here and henceforth, 〈· · · 〉 denotes a time average.
The normalised variance can take values between σ2[zi] = 1 for maximum disor-

der, and σ2[zi] = 0 when all oscillators are synchronised amongst themselves. From
this, we choose24) a measure of order that reduces to the Kuramoto order parame-
ter26) when all units oscillate with the same amplitude:

ρ =
√

1 − σ2[zi]. (3.4)
As dispersion increases, ρ decreases from ρ = 1 to ρ = 0. As we show in Fig

2, there is a clear synchronisation-desynchronisation transition for an intermediate
fraction of repulsive links, which does not depend much on the coupling strength C.

To characterise the desynchronisation further, it is useful to look into the be-
haviour of the field that an oscillator feels as a result of the interaction with other
units. The average number of effective links F = 1

N2

∑
ji Jij, in a given run can in

general be different from the particular number an oscillator has, fi = 1
N

∑N
j=1 Jij ,

given that the probability of repulsive links p follows a binomial distribution with
the corresponding variance.

We want to know if there is a correlation between the fraction of repulsive links
an oscillator has and its synchronisation with the overall majority. That is described
by the following quantity G:

G =

〈
1
N

∑

ji

ẋj ẋi [fi − F ]

〉
=

〈
Ẋ

∑

i

ẋi [fi − F ]

〉
, (3.5)

with Ẋ = 1
N

∑
j ẋj being the mean velocity. We observe that the order-disorder

transition region p ∼ [0.4, 0.45] which we identify in the left panel of Fig. 2, is
accompanied by an increase in the influence on an oscillator of its particular coupling
configuration, as signalled by the peak in G (Fig. 2, right panel). The oscillators
with a higher than average number of repulsive links form a loosely synchronised
group in a different slow region than the one where the majority concentrates.

The partial independence of the state of the oscillator on the global configuration
opens the possibility of the existence of several different global states, and thus
hints at the existence of metastable states. We can relate this behaviour to the
coupling structure, by the spectral analysis of the associated Laplacian matrix J ′

ij =
Jij − δij

∑N
k=1 Jkj ,18) where δij is Kronecker’s delta. We begin by rewriting Eq. (2.1)

as a system of two equations that highlight a fast motion for the xi variable and a
slow motion for the yi variable:
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Fig. 2. Measures of disorder ρ, Eq. (3.4), (left panel) and G, Eq. (3.5), (right panel). Averages over
100 runs, and N , µ and A as in Fig. 1.

ẋi = µ



xi −
1
3
x3

i − yi +
D

N

N∑

j=1

J ′
ijxj



 , (3.6a)

ẏi =
1
µ

[xi − A sin(Ωt)] , (3.6b)

where D = C
µ .

We focus on Eq. (3.6a), letting the slow variable yi be a constant. We now
introduce the eigenvalues Qα and eigenvectors eα = (eα

1 , . . . , eα
N ) of the Laplacian

matrix, with the normalisation condition
∑

i eα
i eβ

i = δαβ,

N∑

j=1

J ′
ije

α
j = Qαeα

i . (3.7)

Let us assume that the state of a unit i is xo
i at a given time, where xo

i is
randomly drawn from an even distribution, such that the average 1

N

∑N
i=1 xo

i = 0,
all the odd moments about the mean are zero, and the variance of the distribution is
1
N

∑N
i=1(x

o
i )

2. We perturb the initial states as xo
i + si, and express the perturbation

si in the eigenbasis of the Laplacian, so that

si =
N∑

α=1

Bαeα
i . (3.8)

We aim to see how the interaction with other units affects the reaction to perturba-
tions, in particular, for the intermediate values of the proportion of repulsive links.

After expanding Eq. (3.6a) in the eigenbasis of the Laplacian, we then multi-
ply the resulting equation by eα

i and average over all elements i. Given that the
eigenvectors eα

i are independent of the initial conditions xo
i , we will assume for sim-

plification that 1
N

∑N
i=1 xo

i e
α
i ∼ 1

N2

∑N
i=1 xo

i

∑N
i=1 eα

i = 0. The evolution equation for
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the amplitude of the α-th mode becomes

1
µ

dBα

dt
= −1

3

N∑

i=1

∑

β,γ,η

eβ
i eγ

i eη
i e

α
i BβBγBη +

(
C

µ

Qα

N
− k

)
Bα, (3.9)

where k ≡ 1
N

∑N
i=1(x

o
i )

2 − 1 is a quantity related to the variance of the initial
conditions.

From this equation, we see that the positive Laplacian eigenvalues Qα contribute
to the growth of the amplitude of perturbations.17),18) Therefore, it is useful to see
how different probabilities of repulsive links affect the eigenvalues and the charac-
teristics of the respective eigenvectors. The participation ratio PRα = 1/

∑N
i=1[e

α
i ]4

is a classical measure of localisation,28),29) which estimates the number of oscillators
that participate significantly in a state eα: for a state localised on a fraction f of
elements, PRα tends to f .

In the left panel of Fig. 3 we plot the participation ratio PRα as a function of
the Laplacian eigenvalues Qα for some probabilities p of repulsive links. While for
extreme probabilities p of repulsive links, the number of possible values for Qα is very
restricted, we find that for intermediate levels of p, the distribution of Qα is broader
and the eigenvalues at both tails of the spectrum are more localised. We also note
that as p increases, the eigenvalues become dislocated towards higher values, and
when p = 0.5, there are as many positive as negative possible eigenvalues. For values
of p that coincide with the transition from synchronisation to desynchronisation seen
in Fig. 2, there exists a significant number of positive eigenvalues that have a low
participation ratio, which is illustrated for p = 0.42 in Fig. 3. This is understandable
when we remember that the transition region is characterised by a heightened depen-
dence of the state of an oscillator on its particular coupling structure (Fig. 2, right
panel), which determines that some oscillators are more synchronised than others,
which is another way of saying that the disorder is localised.

However, the contribution of the coupling term to the maintainance of a per-
turbed state may not be sufficient to avoid the decay to the initial state. Even when
the eigenvalues are positive, Bα can be zero depending on the sign and magnitude of
the several terms in Eq. (3.9), which varies for different realisations of the Laplacian
matrix. On a first approximation, that is mostly valid for localised modes and does
not hold in every case,19) we can neglect the coupling between modes, assuming that∑N

i=1 eβ
i eγ

i eη
i e

α
i ≈ 0 unless β = γ = η = α. The equation for an uncoupled α-mode

becomes
PRα

µ

dBα

dt
= −1

3
B3

α + PRα

(
C

µ

Qα

N
− k

)
Bα. (3.10)

According to Eq. (3.10), unless Qα > kNµ
C , Bα tends to zero, and any deviation from

the initial state vanishes. Otherwise, mode α is said to be an open mode.
To concretise the impression left by the observation of the left panel of Fig. 3,

that the transition region p ≈ 0.42 seems to correspond to a localisation of positive
modes (those with an associated positive eigenvalue), we will define “localised” modes
as the ones whose participation ratio is less than 0.1N , and define a measure M of
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Fig. 3. Left panel: we plot the participation ratio PRα for the Qα eigenvalues. As the probability of
repulsive links p grows, the eigenvalues become dislocated towards higher values. The eigenvalues
whose participation ratio is below the dashed line are localised. Right panel: the measures of
localisation M , the measure of disorder G, and the spectral power amplification R, all have the
maximum value at roughly the same p. For better viewing, we multiplied M by 4, and G by
0.1. N = 100. In the case of M and k = 0.2, we have C = 20 and µ = 10.

localisation18) as M = N2
L

NON , where NL is the number of positive open localised
modes, i.e., those satisfying PRα < 0.1N , and NO is the total number of positive
open modes. This measure takes its maximal value for the probability that has the
greatest number of localised positive open modes, and no extended positive open
mode.

As we see in the right panel of Fig. 3, the peak in G (Eq. (3.5)), which signals
the transition region (Fig. 2), coincides with a localisation of the open modes of the
Laplacian when we consider small enough variances, or k ≈ 0. As expected, the
results obtained from the numerical simulation of Eq. (2.1) do not show such a de-
pendence on the initial conditions as observed in this bistable approximation, since
the position of the oscillators is always changing with time. Arguably, the consider-
ation of the effect of coupled modes would allow for a more precise coincidence with
a lesser dependence of the opening of modes on the initial conditions.

§4. Synchronisation with the external signal, A != 0

In this section, we will see how competitive interactions affect the response to
an external periodic signal. Since in general there can be several frequencies present
in the output of the global variable X(t) = 1

N

∑
i xi(t), we say that the system is

synchronised with the external signal when the highest peak in the Fourier spectrum
corresponds to that frequency.

When the natural frequency of oscillations coincides with the external forcing
frequency, synchronisation is achieved for vanishing A, and as the two frequencies
diverge, stronger forcing are needed to entrain the system. We will call a signal strong
when its amplitude is greater than the amplitude of oscillation of the unforced van
der Pol unit, and we will call it fast when its frequency is higher than the natural
frequency of the individual van der Pol oscillator. In the case of coupled oscillators
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with some proportion of repulsive links, a slow signal can in general be more easily
followed by the system: a weak fast signal does not have time to have any effect
regardless of the proportion of repulsive links, while a strong slow signal is more
easily responded even without the presence of repulsive links. Therefore, we will not
consider these cases.

We will distinguish between strong fast and weak slow signals, because the mech-
anism of synchronisation differs in the two cases, although, in both cases, competitive
interactions are required for an enhanced response.

4.1. Strong fast signals benefit from intermediate p

In Fig. 4, we plot the synchronisation regions and their relative strength, as
measured by the spectral power amplification factor27) R, given by

R = 4A−2
∣∣〈e−iΩtX(t)〉

∣∣2 . (4.1)

R is roughly proportional to the square of the normalised amplitude of the oscillations
of X(t) at the frequency Ω, being R < 1 when the amplitude of oscillations of the
forced system is smaller than the amplitude of the external signal.

When p = 0 (Fig. 4, left panel), the synchronisation region with respect to
the frequency Ω and amplitude A of the external signal has the typical triangular-
like shape seen on Arnold tongues.1) An intermediate fraction of repulsive links
(p = 0.43, Fig. 4, right panel) pushes the synchronisation borders beyond the p = 0
values, allowing for synchronisation of faster signals at weaker forcing.

Figure 5 shows the steady-state trajectory of the macroscopic variable X(t),
for different probabilities p of repulsive links, and illustrates the fact that a certain
proportion of repulsive links is required for the system to adjust its rhythm to that
of the external signal (Fig. 5, p = 0.40), whereas Fig. 6 confirms that this optimal
response only occurs for an intermediate range of the probability of repulsive links.
It should be noted that when entrained, the oscillators adjust their frequency while

Fig. 4. We plot the spectral power amplification R in the synchronisation regions for p = 0 (left
panel) and p = 0.43 (right panel), when the natural frequency of the oscillator is ≈ 0.39. For
better viewing, we use a color code that saturates for R ≥ 2. N,C and µ as in Fig. 1.
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Fig. 5. Time evolution of the macroscopic variable X(t) when the system is forced by an external
sinusoidal fast signal (lighter color) of amplitude A = 5 and frequency Ω = 1.0, for several
probabilities of repulsive links p. N,C and µ as in Fig. 1.

keeping their natural amplitude (Fig. 5); therefore, the spectral amplification factor
R is smaller than 1, when A > 2. As expected, the more the natural frequency
deviates from the forcing frequency, the stronger the signal needs to be in order
to entrain the system: namely (Fig. 6), for a forcing frequency Ω = 1, the signal
strength needs to be A = 12 instead of A = 5, when the natural frequency ω = 2π/T
is ≈ 0.19 (µ = 20) instead of ≈ 0.39 (µ = 10).

To understand the significance of competitive interactions, we recall the results
of the last section. The region of p where the system can be entrained by fast signals

Fig. 6. Spectral power amplification, for C = 20, Ω = 1 and several system sizes N , averages over
100 runs. We note that smaller systems become synchronised at lower fractions of repulsive
links, and are not so dependent on the precise fraction of repulsive links. Additionally, we also
observed (figures not shown) a resonance with system size for different probabilities of repulsive
links. This kind of dependence has been explained elsewhere.18)
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is signalled by the peak in the spectral power amplification R, and coincides with
the localisation region, as given by the peak in M (Fig. 3).

This localisation is crucial for an enhanced response to fast signals, because
disorder places some units in a position where they can be affected by the signal and
then pull some of the other oscillators to whom they are attractively coupled, but
the fact that it is localised allows for a coherence of the collective motion.

4.2. Weak slow signals benefit from very high p

In the previous section, we chose to measure the enhancement at the collective
level, using the macroscopic variable X(t) in our measure of response R, Eq. (4.1);
that corresponded to a synchronisation with the external forcing at the individual
level: the greater the number of entrained oscillators, the greater the response.

We find a different situation when we subject our system to a weak slow sig-
nal, say A = 0.9. A complete amplitude and frequency synchronisation with this
forcing would imply a fast motion, in the interval [−1, 1], without any intercalating
period of slow motion, thus basically destroying the defining feature of a relaxational
oscillator (§2). We find it impossible for such a weak signal to entrain an individ-
ual oscillator. Yet, we observe that for a sufficiently high fraction of repulsive links
(insets of Figs. 7 and 8), there is a near coincidence between the trajectory of the
global variable X(t) and the forcing A sin(Ωt), with an almost imperceptible phase
delay. Therefore, the simplest measure of entrainment, which falls to zero if there is
a perfect synchronisation, is

D =

〈
[X(t) − A sin(Ωt)]2

〉

〈X(t)2〉 . (4.2)

The results plotted in Fig. 7 show that as the probability of repulsive links increases,
the system becomes synchronised with the external signal. Most interestingly, this
synchronisation with the external signal mirrors the loss of synchronisation amongst
oscillators seen in Fig. 2 for the unforced system. In fact, the mechanism responsible
for the synchronisation that appears when the fraction of repulsive links is high has
its roots in the existence of groups oscillating in antiphase in the unforced system.
These antiphase oscillations are visible in the illustrative examples plotted in Fig. 1
for p = 0.6 and p = 1.0, and in the lower-right panel of Fig. 8 when the value of the
periodic signal is zero. When the signal amplitude begins to increase, there appears
an asymmetry in the oscillations favouring the time spent on the slow branch region
that is closer to the value of the signal, as seen in the lower panels of Fig. 8.

While the individual waves get cancelled when units are oscillating in antiphase,
the longer time spent on the slow branch whose value is closer to the signal’s causes
the superposition of the individual waves in that zone (see right panel of Fig. 8 for
p = 1.0). As a result, the global variable becomes synchronised with the external
forcing, even if the individual oscillators are not.
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Fig. 7. Illustration of representative macroscopic trajectories: a weak slow signal is best followed
the more repulsive connections it has. Other parameters: A = 0.9, Ω = 0.01. N,C and µ as in
Fig. 1.

Fig. 8. The slower oscillation corresponds to the external signal, while the higher frequency os-
cillations correspond to either the trajectory of the macroscopic variable X(t) or two typical
individual trajectories. Upper panels: When p = 1.0, we observe the synchronisation of the
macroscopic variable with a signal that is weak and slow. Lower panels: we zoom and plot two
representative individual trajectories. A = 0.9, Ω = 0.01. N,C and µ as in Fig. 1.

§5. Further applications: FitzHugh-Nagumo

The single uncoupled van der Pol oscillator can be transformed either into a
linear oscillator by taking µ = 0 or by replacing the nonlinear damping term µ(1−x2

i ),
Eq. (2.1) by a constant, or into an excitable system — a simplified FitzHugh-Nagumo
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— by adding a constant a such that |a| > 1 to Eq. (3.6b) so that the system becomes

ẋi = µ



xi −
1
3
x3

i − yi +
D

N

N∑

j=1

J ′
ijxj



 , (5.1a)

ẏi =
1
µ

[xi − A sin(Ωt) + a] . (5.1b)

Thus, a first direct extension consists of a brief exploration of how those trans-
formations affect our results. Not surprisingly, we did not find an enhanced response
for linear oscillators: both mechanisms of enhancement for slow and fast signals rely
on the existence of a slow motion region. This situation contrasts with the case
studied in Ref. 24). In that paper, the authors studied a system of linear oscillators
with a distribution of natural frequencies. Defining as a measure of diversity the
variance of the natural frequencies, they found an optimal response to an external
signal for an intermediate level of diversity. Interestingly enough, the enhancement
of response also had its origins in an intermediate level of disorder. However, the mi-
croscopic mechanism was rather different: some oscillators had a natural frequency
that resonated with the signal’s frequency, and were able to pull the others due to
the positive coupling. In our case, there is no single oscillator whose frequency can
be entrained by the external signal. On the other hand, the mechanisms we proposed
should be applicable to the FitzHugh-Nagumo model.

The interaction via competitive interactions can play the same role as noise or
diversity, thus enabling rhythmic excursions away from the fixed point. The result
shown in Fig. 9 bears some resemblance to the phenomenon by which we observe that
the periodicity of oscillations becomes maximally ordered for an intermediate level
of noise,31)–33) diversity,34) or competitive interactions.5),36) In our case, however,
and as it was observed in Ref. 35) for the case of active rotators, we do not observe
any oscillations at all unless some interactions are repulsive.

When we force the excitable system with a sufficiently strong fast signal (Fig.
10), it starts to oscillate even for p = 0, and for an intermediate amount of repulsive
interactions, the main frequency of oscillations coincides with the external signal
(Fig. 10, p = 0.40).

On the other hand, when we force a system of FitzHugh-Nagumo elements with
slow weak signals (Fig. 11), we observe bursts with the periodicity of the signal for
p = 0, while for p = 1, the global variable roughly oscillates along with the external
forcing. Even though the periodicity of the external signal is detected for all the
fractions of repulsive links, we can imagine situations where we actually want to
replicate the behaviour of the external signal, and that is only possible when the
fraction of repulsive links is sufficiently large. Both of these results are expected
taking into account the arguments we gave for the van der Pol oscillator case.

§6. Conclusions

We have shown that the presence of repulsive links in a system of globally cou-
pled van der Pol oscillators can enhance the response to an external signal. This
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Fig. 9. Trajectory of the global variable X for different fractions of repulsive links p in the un-
forced FitzHugh-Nagumo system showing a similar phenomenon to coherence resonance. Other
parameters: a = 1.1, N, C and µ as in Fig. 1.

Fig. 10. Trajectories of the global variable X for a system of FitzHugh-Nagumo units in the ex-
citable regime forced by a fast signal, for increasing fractions of repulsive links p. Other para-
meters: a = 1.1, A = 12, Ω = 1, N, C and µ as in Fig. 1. The pointed line shows the external
signal multiplied by 0.1, for better viewing.

phenomenon is verified regardless of whether the signal is strong and fast, or weak
and slow, and it is in every case directly related to a loss of synchronisation and the
existence of a slow-motion region, but the microscopic mechanism of enhancement
is different in each case.

From the point of view of a strong fast signal, the van der Pol oscillator can be
approximated by a bistable system, implying a threshold that is regularly overcome
with the help of an intermediate proportion of repulsive links, by means of the de-
formation of the slow-motion region. In the case of very slow signals, the mechanism
is associated with the tendentiously antiphase oscillations that occur when there is
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Fig. 11. Representative trajectories of the global variable for a system of FitzHugh-Nagumo units
in the excitable regime, a = 1.1, for some probabilities p of repulsive links. Other parameters:
Ω = 0.01, A = 0.9, and N, C and µ as in Fig. 1. The signal is represented in a lighter color.

a majority of repulsive links.
In both cases, the enhancement is directly related to a loss of full synchronisation

when the fraction of repulsive links increases. One can imagine that a different
coupling scheme may enhance or hinder the results we found, since it is known that
the network topology plays a role in synchronisation properties.37)
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