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Abstract

We present two collective games with new paradoxical features when they are combined. Besides reproducing the so-

called Parrondo effect, where a winning game is obtained from the alternation of two fair games, there also exists a current

inversion when varying the mixing probability between the games. We show that this is a new effect insofar one of the

games is an unbiased random walk without internal structure. We present a detailed study by means of a discrete-time

Markov chain analysis, obtaining analytical expressions for the stationary probabilities for a finite number of players. We

also provide qualitative insight into this current inversion effect.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the past few years there has been an increasing interest in what is known in the literature as Parrondo’s
paradox [1–3]. This phenomenon shows that the alternation of two fair (or even losing) games can result in a
winning game. These so-called Parrondo games were originally defined as follows: game A is a simple coin
tossing game, where the player wins or loses one unit of capital with probabilities pA and 1� pA, respectively.
For game B the winning probability depends on the capital of the player modulo three, governed by the set of
probabilities fp1

B; p
2
B; p

3
Bg. In the (stochastic) combination of these games, either game A or B is played, with

probabilities g and 1� g, respectively. The games are said to be fair/losing/winning when on average the
player’s capital stabilizes/decreases/increases.

In the first works about Parrondo games, to which we will further refer as the ‘‘original’’ games A and B, the
following parameter values were used: pA ¼ 1

2
� �, p1

B ¼
1
10
� �, p2

B ¼ p3
B ¼

3
4
� �. When � ¼ 0 both games A and

B played separately are fair, whereas if �40 both games turn out to be losing. The Parrondo effect appears
when the stochastic ð0ogo1Þ or periodic combination of these fair/losing games results in a winning game.

These games were first devised in 1996 by the Spanish physicist Juan M.R. Parrondo, who presented them in
unpublished form in Torino, Italy [4]. They served as a pedagogical illustration of the flashing ratchet [5],
where directed motion is obtained from the random or periodic alternation of two relaxation potentials acting
e front matter r 2006 Elsevier B.V. All rights reserved.
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on a Brownian particle, none of which individually produces any net flux. Only recently a quantitative relation
has been established between the Brownian ratchet and Parrondo’s games [6,7].

Cooperative versions of the games, played by a set of N41 players, have also been studied. In Ref. [8], a set
of N players are arranged in a ring and each round a player is chosen randomly to play either game A or B.
The original game A is combined with a new game B, for which the winning probability depends on the state
(winner/loser) of the nearest neighbors of the selected player. A player is said to be a winner (loser) if he has
won (lost) his last game. In Ref. [9] again a set of N players is considered, but for this case game A is replaced
by a redistribution process where a player is chosen randomly to give away one coin of his capital to another
player. When combining this new game with the original game B, the paradox is reproduced.

In this work we present a new version of collective games, where besides obtaining the desired result of a
winning game out of two fair games, another feature appears: the games show under certain circumstances a
current inversion when varying g, i.e., the value of the mixing probability g determines whether you end up
with a winning or a losing game Aþ B. As shown in Ref. [10], it is not possible to obtain a current inversion in
a single player set-up using the standard rules of the original games when game A is state independent. For the
collective games considered here, we are able to obtain a current inversion even if one of the games used (game
A) uses no information at all about the present state of the system. And so this current inversion is a genuine
collective effect, without a corresponding analog in the single player game.

The paper is organized as follows: in Section 2 we present the games in detail as well as a theoretical
analysis; in Section 3 we offer a qualitative picture of the impossibility of a current inversion using the original
games; finally in Section 4 we draw the conclusions.

2. The games

The games will be played by a set of N players. In each round, a player is selected randomly for playing.
Then, with probabilities g and 1� g, respectively, game A or B is played. Game A is the original game in which
the selected player wins or loses one coin with probability pA and 1� pA, respectively. The winning
probabilities in game B depend on the collective state of all players. Again, as in Ref. [8], a player is said to be a
winner or a loser when he has won or lost, respectively, his last game. More precisely, the winning probability
can have three possible values, determined by the actual number of winners i within the total number of
players N, in the following way

pB
i � probability to win in game B ¼

p1
B if i4

2N

3

� �
;

p2
B if

N

3

� �
pip

2N

3

� �
;

p3
B if io

N

3

� �
;

8>>>>>>>><
>>>>>>>>:

(1)

where the brackets dxe denote the nearest integer to the number x.

2.1. Analysis of the games

The main quantity of interest is the average gain of the collection of N players when playing the stochastic
game Aþ B. Since the winning probability of game B only depends on the total number of winners, it suffices
to describe the games using a set of N þ 1 different states fs0;s1; . . . ;sNg. The state si is the configuration
where i players are labelled as ‘‘winner’’ and N � i as ‘‘loser’’. Transitions between the states will be
determined by the forward transition probability pi, the backward transition probability qi, and the
probability for remaining in the same state ri, see Fig. 1.

Denoting as PiðtÞ the probability of finding the system in state si at the tth round played, we can write the
equation governing its time evolution as

Piðtþ 1Þ ¼ pi�1Pi�1ðtÞ þ riPiðtÞ þ qiþ1Piþ1ðtÞ, (2)
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Fig. 1. Different states and allowed transitions for N players. The arrows indicate the state of each player being a winner (arrow up) or a

loser (arrow down).
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with 0pipN and where the transition probabilities are given by

pi ¼
N � i

N
½gpA þ ð1� gÞpB

i �, (3)

ri ¼
2i �N

N
½gpA þ ð1� gÞpB

i � þ
N � i

N
, (4)

qi ¼
i

N
½gð1� pAÞ þ ð1� gÞð1� pB

i Þ�. (5)

These transition probabilities have been obtained through the following reasoning: if we recall that in state i

there are N � i losers and i winners, the only way that we can go forward to state i þ 1 is by choosing a player
labelled as a loser—with probability ðN � iÞ=N—and that player winning the game. So if there is a probability
g of playing game A and a probability 1� g of playing game B, the combined winning probability will be given
by gpA þ ð1� gÞpB

i . Considering these two contributions, the forward transition (3) from state i to state i þ 1 is
obtained. The transition probabilities ri and qi follow from the same reasoning.

The set of transition probabilities ðpi; qi; riÞ must satisfy the normalization condition pi þ ri þ qi ¼ 1, which

implies for the probabilities PiðtÞ that
PN

i¼0 PiðtÞ ¼ 1, as long as
PN

i¼0 Piðt ¼ 0Þ ¼ 1.

This system of N þ 1 equations can be solved in the stationary state, where the probabilities no longer
depend on time PiðtÞ ¼ Pst

i , and the general solution reads

Pst
i ¼

1

Z
p0p1 � � � pi�1qiþ1qiþ2 � � � qN , (6)

where 0pipN and Z is the normalization factor. Once the stationary probabilities are calculated, we can
obtain the average winning probability over all states for the stochastic combination Aþ B (mixing
probability g) from

pAþB
win ¼

XN

i¼0

½gpA þ ð1� gÞpB
i �P

st
i . (7)

The average gain can then easily be evaluated through the expression JAþB ¼ 2pAþB
win � 1. The properties of the

separate games A and B can be obtained by replacing in the previous expressions g by 1 or 0, respectively.

2.1.1. The Parrondo effect

The Parrondo effect appears when from the combination of two fair games, we obtain a winning game.
Clearly, game A is fair for pA ¼ 1

2
. For game B the set of values fp1

B; p
2
B; p

3
Bg giving a fair game is more difficult

to determine because it depends on the total number of players N. The conditions on p2
B for a fair game B have

been found analytically by a symbolic manipulation program up to No13. In Table 1 we find listed the
conditions of fairness for p2

B up to N ¼ 5. When playing only game B ðg ¼ 0Þ, the following symmetry in the
stationary distribution can be deduced from Eq. (6):

P
st;fp1

B
;p2

B
;p3

B
g

i ¼ P
st;f1�p3

B
;1�p2

B
;1�p1

B
g

N�i . (8)

This property implies that pAþB
win is unaltered by the parameter transformation: fp1

B; p
2
B; p

3
Bg ! f1� p3

B;
1� p2

B; 1� p1
Bg. It also means that for the parameter set fp1

B; p
2
B ¼

1
2
; 1� p1

Bg, the stationary probability
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Table 1

Condition on p2B in order that game B is fair for N ¼ 2; . . . ; 5

N p2
B

2 p1B � 1

p1
B � p3B � 1

3
ðp1B � 1Þðp3B þ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1B � 2Þðp1B � 1Þp3Bðp

3
B þ 1Þ

q
ðp1B þ p3B � 1Þ

4 ðp1B � 1Þ2ðp3B þ 1Þ

1þ p3B þ ðp
1
B � 2Þðp1

B þ p1Bp3B � ðp
3
BÞ

2
Þ

5

1�
p3B

p1B � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 2p1Bðp

1
B � 3Þ

1þ 2p3Bð1þ p3BÞ
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Fig. 2. (a) Plot of the current vs. the mixing probability g between games A and B for N ¼ 4 with probabilities pA ¼ 1
2, p1B ¼ 0:79,

p2B ¼ 0:65 and p3B ¼ 0:15. (b) Plot of the current vs. the mixing probability g between games A and B for N ¼ 3 with probabilities pA ¼ 1
2
,

p1B ¼ 0:686, p2B ¼ 0:423 and p3B ¼ 0:8.
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distribution is symmetric over the states, i.e., Pst
i ¼ Pst

N�i. Therefore, when combining this with game A,
i.e., alternating two games with symmetric probability distributions, always yields a fair game, inde-
pendent of the values of g, N and p1

B. To see the Parrondo effect, we need another, non-trivial, parameter
set which yields a fair game B. For example, for N ¼ 4 we obtain a fair game B when p1

B ¼ 0:79, p2
B ¼ 0:65

and p3
B ¼ 0:15. The stochastic combination with game A reproduces the desired Parrondo effect, see

Fig. 2a.

2.2. Results

2.2.1. Two players

For N ¼ 2 players, there are three different states. Fig. 3a shows the regions in parameter space fg; p1
B; p

3
Bg

where the mixing ð0ogo1Þ between games A and B results in a fair, winning or losing game. Note that
p2

B is fixed by the condition to have a fair game B, see Table 1. Besides the case p1
B ¼ 1� p3

B, valid for
any number of players, also p1

B ¼ p3
B results in a fair game for N ¼ 2, independent of the alternation

probability g. From Eq. (6), one can deduce that p1
B ¼ p3

B and p1
B ¼ 1� p3

B imply a symmetric distribution Pst
i

over the states, i.e., Pst
0 ¼ Pst

2 . As mentioned before, this property prohibits any net current in the system. For
all other values of p1

B and p3
B the Parrondo effect appears, that is, game Aþ B is either a winning or a losing

game, cf. Fig. 3a.
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(a) (b)

Fig. 3. (a) N ¼ 2. The regions in parameter space for which pAþB
win ¼ 0:5, 0:499 and 0:501, indicating the regions where Aþ B is fair (blue),

losing (red) and winning (green), respectively. The blue diagonal planes show the situations p1B ¼ 1� p3B and p1B ¼ p3B, for which Aþ B is

fair, independent of g. (b) N ¼ 3. The regions in parameter space for which the mixing ð0ogo1Þ between game A and B results in a fair

game. Besides the trivial diagonal plane, there is a curved plane—not uniform in g—for which JAþB ¼ 0.
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2.2.2. Three players

Fig. 3b shows for N ¼ 3 the surfaces in parameter space fg; p1
B; p

3
Bg where Aþ B is a fair game. Besides the

plane p1
B ¼ 1� p3

B, there is a second, curved surface with values of g different from 0 and 1 which results in
JAþB ¼ 0. This curved surface is not uniform in g and is therefore the collection of points of flux reversal
between a winning and losing game Aþ B. This implies that, depending on the value of g we can either have a
winning game or a losing game by alternating between two fair games. For example, in Fig. 2b we have plotted
the current JAþB vs. g for the set of probabilities pA ¼ 1

2
, p1

B ¼ 0:686, p2
B ¼ 0:423 and p3

B ¼ 0:8. For low values
of g the resulting game is a losing game, whereas for high values of g the game turns to be a winning game, cf.
Fig. 2b. In both regions there exists an optimal value for g giving a maximum current. We can provide a
qualitative picture that may help understanding the mechanism by which the current inversion phenomenon
takes place.

When playing exclusively game B ðg ¼ 0Þ, the stationary distribution Pst
i is not homogeneous. This is

reflected by the fact that the central states fs1;s2g have a higher occupancy probability ðPst
i Þ than the boundary

states fs0;s3g. On the other hand, if we look to the winning probability, it is higher in the latter set of states
rather than in the former one ðp1

B; p
3
B4p2

BÞ.
Indeed, the central states can be labelled as losing states, as when combining game B with game A for any

0pgo1, the average losing probability pl
i ¼ gð1� pAÞ þ ð1� gÞð1� pB

i Þo
1
2
, i.e., it is more likely on average for

a player to lose money rather than to win when being in one of these states. On the other hand, for the
boundary states the contrary is true: it is more likely to win money rather than to lose for any 0pgo1, so we
can refer to them as winning sites, i.e., pw

i ¼ gpA þ ð1� gÞpB
i 4

1
2
.

When combining game B with A, the resulting game will be fair, losing or winning depending on the net
balance between the occupancy probabilities and the average winning probability on each set of central and
boundary states. For low g values (playing game B more often), the high occupancy probability of fs1;s2g is
the dominant part, and due to the low winning probability on these sites the resulting game is a losing game.
On the contrary, for higher g values (playing game A more often), the winning probability on the boundary
sites fs0; s3g is high enough to compensate their low occupancy, resulting in a winning game.
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2.2.3. N players

For a general number of players, we have not been able to find the analytical expressions for a fair game B.
Nevertheless, we will show numerically that the results for N ¼ 3 are representative for any N. This is
illustrated by Fig. 4, where the parameter space fp2

B; p
3
Bg giving a fair game B is shown, corresponding to a fixed

p1
B ¼ 0:4 and different values of N. As shown, the different curves seem to converge to a limiting curve as N

increases. Note that all curves intersect at the trivial point fp1
B ¼ 0:4; p2

B ¼ 0:5; p3
B ¼ 0:6g.

We can also obtain the parameter space where the current inversion takes place, for different values of N.
For clarity reasons we show in Fig. 5 only a vertical slice corresponding to a fixed g ¼ 0:4, and different values
of N. Again, the regions for which a flux inversion exists, does not seem to depend much on N. The only
exception is N ¼ 4, for which the curve bends in the other direction. This is a consequence of the fact that for
0.4 0.5 0.6 0.7 0.8 0.9 1

p2
B

p3 B

0

0.2

0.4

0.6

0.8

1

N=3
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N=30
N=50
N=100
N=200
N=300

Fig. 4. Plot of the parameter space fp2B; p
3
Bg for a fixed p1B ¼ 0:4 that gives a fair game B for different values of N ¼ 3, 10, 30, 50, 100, 200

and 300. As it can be seen, the curves seem to converge to a limiting curve as N increases.

0 0.2 0.4 0.6 0.8 1
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0
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0.4

0.6

0.8
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Fig. 5. Plot of the points in parameter space fp1
B; p

3
Bg where (for g ¼ 0:4 fixed) Aþ B is a fair game. Results for different values of the total

number of players N ¼ 3; 4; 10; 20; 30; 40 and 50 are shown. The diagonal line shows the common plane p1B ¼ 1� p3B, that corresponds to a

fair game B for any number of players N.
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N ¼ 4 there exists only one state (namely s2) where the probability p2
B is used. This is confirmed by our

findings when we modify the definition of game B such that there is for any N only one state where p2
B is used.

The fact that all curves of inversion points are symmetric upon reflection about the plane p1
B ¼ 1� p3

B is a
consequence of the property of Eq. (8).
3. Parrondo’s games and the current inversion

As stated previously and shown in Ref. [10], the effect of a current inversion when varying the mixing
probability g is not possible when combining the original game B with a state independent type game A. One
way of understanding the reason is by means of the relation that has been established recently [6,7,11] between
the Brownian ratchet and Parrondo’s games. A fair or unfair paradoxical game corresponds to a periodic or
tilted potential respectively in the model of a Brownian ratchet.

As an illustration, we have depicted the potential corresponding to the original game B in Fig. 6a. If we now
combine game B with A—which would have an associated flat potential—with a certain probability g, the
potential obtained is no longer periodic, i.e., it is tilted to the right in agreement with the direction of the flux,
see Fig. 6b. Therefore, the question now reduces to explain why there is no current inversion in the flashing
ratchet model when varying the rate of alternation between the potentials.

In the flashing ratchet model, the appearance of a flux when alternating between a flat and an asymmetric
potential is due to a rectification process: if we consider a bunch of Brownian particles subjected to a ratchet
potential, they will tend to remain in the potential well for a sufficiently small temperature—see Fig. 7a. When
the potential is switched off the particles start diffusing, and if we wait for long enough, it is more likely that a
small fraction of particles will reach the vicinity of the potential well located to the right, rather than the one
on the left, due to the geometry of the potential. Switching on and off the potential many times, generates a net
flux to the right. Hence, whatever the rate of alternation between these two potentials, it will always be more
likely for a particle to move rightwards rather leftwards. Therefore, it will be impossible to obtain a current
reversal by means of varying only the flip rate of the potentials.
4. Conclusions

We have presented a new type of collective Parrondo games. These games present, besides the Parrondo
effect, a current inversion when varying the alternation probability g between the two games A and B. The
novelty introduced in this work relies on the fact that the current inversion appears from the combination of a
collective game—i.e., game B—and a totally unbiased, state independent, game A. Analytical expressions for
1
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Fig. 6. (a) Plot of the potential related to the original Parrondo game B obtained with the relation described in Ref. [6]. (b) Effective

potential that we obtain when alternating between the original Parrondo games A and B with probability g ¼ 1
2.
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Fig. 7. Different stages of the mechanism of rectification when switching a ratchet potential on and off.
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the games have been obtained for a finite number of players using discrete-time Markov chain techniques. We
have also explained qualitatively the reason of this current inversion.

It remains as an open question the possible implications of these findings in the field of the Brownian
ratchet, as well as the possibility of finding a physical model equivalent to this collective game.
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