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Experimental study of stochastic resonance in a Chua’s circuit operating in a
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Abstract

We present results of an experimental study of stochastic resonance in an electronic Chua’s circuit whose dynamics switches between two
different stable chaotic attractors when it is driven by a periodic signal and a Gaussian white noise. Due to the internal dynamics of the attractors
the minimum amplitude for the external forcing to induce jumps strongly depends on the external frequency. We determine from the Fourier
transform of the output signal the amplification factor of the input signal and study its dependence on the external frequency and the noise
intensity. We show that the envelope of the distribution of switching times follows a gamma distribution, typical from bistable systems, and that
the mean switching time decays exponentially with the noise intensity. We propose a simple method for obtaining the optimal noise intensity
from the residence and switching times probability distributions and show that it coincides with the value obtained from the maximum of the
amplification factor.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Noise has traditionally been viewed as detrimental to
signal detection and information propagation. However, it has
also been found that in certain nonlinear systems noise can
enhance the detection and transmission of weak signals. The
phenomenon can occur e.g. in bistable systems forced by
sub-threshold signals which are too weak to cause transitions
between the stable states. In these systems the addition of noise
can force the system to switch between the two states with
a switching rate that depends on the noise intensity. While
for low noise intensity switchings between the two states are
very rare, for large enough noise intensity random switchings
between the two states occur. There is instead an optimal
amount of noise that conveys the maximal information about
the forcing signal. This phenomenon is very similar to the
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resonance in deterministic dynamical systems and, since it is
induced by the noise, it is called stochastic resonance. The
study of stochastic resonance in bistable systems has also been
extended to excitable systems having a single rest state and
to threshold detectors (a pulse occurs whenever the sum of
the signal and the noise at the input crosses a threshold).
Since the conditions for the appearance of stochastic resonance
do not depend on very specific model details, it has been
observed in many different fields such as paleoclimatology,
lasers, neurophysiology, electronic detectors, etc. and studies
of this phenomenon cross disciplinary boundaries. Various
reviews [1–4] address the recent and extensive work on this
fascinating subject.

Stochastic resonance has also been studied in chaotic
systems whose dynamical trajectories have different preferred
regions in phase space called chaotic attractors. The chaotic
system can thus be considered as a generalized bistable
system although, contrary to the case of classical bistable
systems, stochastic resonance can also be observed in the
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absence of external noise, because chaos can act as an internal
noise source. This deterministic stochastic resonance has been
observed, e.g., in the Lorenz model [5] and in the Rössler
oscillator [6]. Stochastic resonance in systems generating
their own internal noise is important in situations where
the external noise is either absent or cannot be controlled.
Anishchenko and collaborators [7,8] have reported numerical
observations of stochastic resonance in an electronic Chua’s
circuit driven by a sinusoidal signal when two chaotic attractors
are present (double-scroll attractor). These authors showed
that the phenomenon can be controlled by varying either the
external noise intensity or some system parameters which
corresponds to a variation of the internal noise intensity. More
interesting is the situation in which a chaotic system can jump
between one attractor (single-scroll attractor) and its mirror
image. The experimental observation of stochastic resonance
subject to a high frequency periodic signal was partially
reported in Refs. [9,10]. The stochastic resonance resulting
from the interaction of two chaotic attractors and induced by
external noise or by the variation of control parameters was
also reported for a discrete one-dimensional cubic map and the
Lorenz model [11]. The stochastic resonance generated only
by the variation of the internal noise in the absence of external
noise was demonstrated numerically for the periodically forced
Duffing oscillator and a one-dimensional intermittent map [12].

The aim of this paper is to present a thorough study of the
characteristic signatures of stochastic resonance following from
its experimental observation in an electronic Chua’s circuit
operating in a chaotic regime. The circuit is forced by a periodic
signal and a Gaussian white noise. Since the system moves
between two single-scroll chaotic attractors the minimum
amplitude of the external forcing to induce jumps turns out to
be strongly dependent on the frequency a fact that is absent in
the case of bistable system with fixed point attractors. Once this
new situation is identified a complete analysis of the system is
performed. For the external signal we consider a wide range of
frequencies up to approximately twice the mean characteristic
frequency of the chaotic circuit. In Section 2 we describe the
circuit, its chaotic dynamical behavior, the mechanism of the
observed stochastic resonance and the method of processing
experimental data. In Section 3 we present the dependence of
the amplification factor on the frequency of the input signal and
the noise intensity, for both sub-threshold and supra-threshold
input signals. In Section 4 we describe the characteristic
features of the probability distributions of the residence and
switching times and we propose a simple method, based on
bistable systems, that allows us to obtain the optimal noise
intensity from the residence and switching times probability
distributions and show that it coincides with the value obtained
from the maximum of the amplification factor. Finally, the main
results are listed in the conclusions presented in Section 5.

2. Experimental procedure

The Chua’s electronic circuit consists of one resistor, two
capacitors, one inductor and one nonlinear element called
Chua’s diode. This is one of the simplest circuits that exhibits
a large variety of bifurcations and chaotic phenomena and it
Fig. 1. Diagram of the electronic Chua’s circuit with periodic signal voltage
source E(t), Gaussian white noise source ξ(t), the resistor R = 1682 �,
the inductor L = 18 mH and the capacitors C1 = 10 nF and C2 =

100 nF. The nonlinear Chua’s diode NR has a piecewise-linear current–voltage
characteristic I = f (V ) = m1V + 0.5(m0 − m1)(|V + V0| − |V − V0|) with
parameters m0 = −0.758 mA/V, m1 = −0.409 mA/V and V0 = 1.08 V. V1
is the voltage on the capacitor C1.

can be constructed using standard electronic components at
very low cost [13]. The equations describing the Chua’s circuit
(shown in Fig. 1) are:

L
dI

dt
= −V2 + E(t) + ξ(t)

C1
dV1

dt
=

(V2 − V1)

R
− f (V1)

C2
dV2

dt
= I −

(V2 − V1)

R
(1)

f (V1) = m1V1 +
m0 − m1

2
(|V1 + V0| − |V1 − V0|)

where R, C1, C2, L , m0, m1 and V0 are constant of the circuit.
To study stochastic resonance we added, in series with

the inductor, a sinusoidal signal voltage generator, E(t) =

E0 sin(2π f0t) of amplitude E0 and frequency f0, and a
Gaussian white noise generator (Hewlett-Packard 33120) of
zero mean and standard deviation σ . The experimental set-
up is shown in Fig. 1 together with the parameters of the
electronic components. These are such that, in the absence of
sinusoidal and noise signals, the autonomous Chua’s circuit
exhibits a chaotic dynamical behavior characterized by two
“single-scroll” symmetric attractors, having the same structure
as Rössler bands [14]. The dynamics selects one of the
two single scrolls depending on the (uncontrollable) initial
conditions without the possibility to jump to the other attractor.
When noise or a sinusoidal signal of high enough amplitude
are present, there are numerous jumps between the attractors,
as shown in Fig. 2 where we plot the time evolution of
the voltage V1(t) on the capacitor C1. In our experiments,
V1(t) was digitized (using a digital acquisition board NI-
DAQ from National Instruments) and recorded during at least
5 min with a sampling rate of 20 kHz for frequencies f0 ≤

1.8 kHz and with a sampling rate of 40 kHz for higher
frequencies. The Fourier spectrum of the voltage V1(t) for
the unforced system has a peak at a characteristic frequency
fch ≈ 2.745 kHz superimposed with broad spectrum. As
usual in other studies, most of our numerical analysis of the
data replaces the trajectories V1(t) by a two-state dynamics,



W. Korneta et al. / Physica D 219 (2006) 93–100 95
Fig. 2. Temporal evolution of the voltage V1 on the capacitor C1 and its representation by the step function Θ(t). The periodic signal voltage source has an
amplitude of 36 mVpp and the frequency is 270 Hz, whereas the noise intensity is 312.5 mV. The dotted lines correspond to crossing levels ±3 mV.
Θ(t), in which the detailed motion within each chaotic attractor
is neglected: Θ(t) = ±1 depending on the selected chaotic
attractor. Usually, additional crossing levels, which in our case
are V c

1 = ±3 mV, are used in this procedure [2]. They help to
eliminate anomalous switching events, where e.g. V1(t) crosses
the level V1 = 0 but, without reaching V c

1 , switches back and
crosses V1 = 0 again. The step function Θ(t) and the crossing
levels are shown in Fig. 2 where several anomalous switching
events can be seen. We also calculated Θ̂( f ), the Fourier
transform of Θ(t), using the Welch window and overlapping
data segments with 217 data points [15].

3. Amplification of deterministic signals

In the absence of external modulation the Chua system
develops a coherence resonance effect when the amplitude
of the noise is varied [16]. This effect, however, appears for
large noise intensities. Both coherence and stochastic resonance
reveal a nearly periodic character of the system. Since they
can be present simultaneously in the same system [17] the
differences in the dynamics associated with the two effects can
be detected by studying, e.g., inter-spike histograms or two
times correlation functions [5].

In the absence of external noise, a sinusoidal voltage source
E(t) can induce jumps between the two coexisting single-
scroll attractors only if it is supra-threshold, i.e. if its amplitude
E0 is above a certain threshold value Emax

0 . While the usual
studies of stochastic resonance consider the influence of noise
in sub-threshold signals, there are also experiments in which
the system is stimulated by both sub-threshold and supra-
threshold periodic signals [18,19]. In these experiments it was
demonstrated that the noise increases detectability of sub-
threshold signals and decreases that of supra-threshold. In
order to check whether this conclusion also holds for the
Chua’s circuit, we first determine the threshold value Emax

0
as a function of input signal frequency f0. This situation, in
which the system moves between two single-scroll chaotic
attractors, has important consequences for systems with internal
Fig. 3. Dependence of the threshold amplitude Emax
0 of the input periodic

signal on its frequency f0. fch = 2.745 kHz is the characteristic frequency
of the autonomous Chua’s circuit.

dynamics, as is shown below. The results in Fig. 3 indicate
that for low frequencies the threshold is relatively low and
quite independent of f0 but it increases almost linearly, with
some peaks superimposed, for frequencies above twice the
natural frequency fch. Standard bistable systems also develop
an increase of the forcing amplitude with increasing frequency.
Actually, our system has some similarities with bistable
systems since it moves between two states although these states
are chaotic attractors and not fixed points. We attribute the
peaks in Fig. 3 to the dynamics of the Chua’s system around
each attractor.

We now set the frequency of the voltage source at f0 =

1.8 kHz, i.e. f0/ fch = 0.66 which, according to Fig. 3,
corresponds to the region around the lowest value of Emax

0 . We
study the amplification of the input periodic signal as a function
of the noise intensity σ for several amplitudes E0, above and
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Fig. 4. Dependence of the normalized amplitude η versus the normalized
noise intensity σ for different amplitudes E0 of the input periodic signal and
frequency f0 = 1.8 kHz. The normalized values of the amplitude of the input
periodic signal E0/Emax

0 are given in the figure.

below its threshold value, namely the values E0/Emax
0 =

1.333, 1.133, 1.000, 0.583. We chose as a quantifier of this
amplification the ratio

η =
|Θ̂( f0)|

|Θ̂( f0)|max
(2)

where |Θ̂( f0)|max is the maximum value that |Θ̂( f0)| takes in
the case E0/Emax

0 = 1 at a noise intensity σ = σmax (the
value of σmax depends on the external frequency f0). We also
normalize the noise intensity as σ/σmax. The results in Fig. 4
show that for E0 ∼ Emax

0 the value of |Θ̂( f0)| presents a
clear maximum as a function of the noise intensity σ . This
is the usual stochastic resonance effect for sub-threshold and
slightly over-threshold forcing, indicating that the maximum
amplification appears at a non-null value of the noise intensity.
In the same figure one can notice that for input signals whose
amplitudes are close to the threshold amplitude Emax

0 the
stochastic resonance effect is the most pronounced i.e. the
noise significantly enhances these input signals as compared
to input signals with other amplitudes. In contrast, signals
with amplitudes well above the threshold value, e.g. the case
E0/Emax

0 = 1.333, are instead degraded by the presence

of noise. For those signals, |Θ̂( f0)| monotonically decreases
with increasing noise intensity. We thus obtained that in the
chaotic Chua’s circuit the noise is a “negative masker” (i.e.
enhancing the detectability) for weak sub-threshold or slightly
over-threshold signals, and a “positive masker” (i.e. degrading
the detectability) for strong supra-threshold signals. The same
conclusion followed from the observation of noise-mediated
enhancements and decrements in human tactile sensation [19].

We have extended this study to two additional frequencies
f0 = 0.27 kHz and f0 = 4 kHz, much lower and
higher, respectively, than the characteristic frequency fch of
the autonomous Chua’s circuit, and the results are qualitatively
similar to those shown in Fig. 4 for f0 = 1.8 kHz.
Furthermore, the corresponding stochastic resonance curves at
E0 = Emax

0 , rescaled as previously explained, follow a master
Fig. 5. Dependence of η versus the normalized noise intensity σ for different
frequencies f0 of the input periodic signal. The values of f0 are given on the
figure. The solid curve results from a fit of the function (3) given in the text.

curve independent of the frequency f0 of the input periodic
signal as shown in Fig. 5. This master curve can be fitted by
the function

η = x4e2(1−x2), x =
2

σ
σmax

+ 1
(3)

which follows from the adiabatic theory [20]. Remarkably,
this function that has been shown to fit the data in studies
of stochastic resonance describing jumps between two stable
attractors [11,12,21,22] also fits very well the data when the
systems develops its dynamics between chaotic attractors.

4. The residence and switching times probability distribu-
tions

Besides the above discussed amplification factors, alterna-
tive characterizations of stochastic resonance use the residence
and switching times probability distributions. In this section we
analyze in detail both distributions. As we will see from the
definitions, both times can be easily obtained from the time
sequence Θ(t) [23]. In all experiments described in this sec-
tion the amplitude of the input periodic signal is taken just sub-
threshold, Emax

0
>
∼

E0.
The residence time Tr is defined as the time the system

spends in one state, a single scroll in our case, and it has
been often determined for the stochastic resonance observed
in chaotic dynamical systems [7,8,11,12]. In Fig. 6 we plot
the probability distribution of the residence times P(Tr/T0)

(normalized as Tr/T0; T0 = 1/ f0) obtained from our
experiments in the Chua’s circuit. We considered an input
periodic signal of frequency f0 = 270 Hz and noise intensity
σ equals to the optimum noise level, σmax = 312.5 mV for this
frequency. As seen clearly from this and similar figures, the
residence times probability distribution consists of peaks and
a modulating envelope. The peaks, formed by several spikes,
are located at odd-integer multiples of T0/2. The spikes result
from the presence of a characteristic time Tch = 1/ fch equal to
the mean duration of one rotation of the dynamical trajectory
around the single-scroll chaotic attractor. The modulating
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Fig. 6. Probability distribution of the residence times P(Tr /T0) for the
frequency of input periodic signal f0 = 270 Hz and the noise intensity
σ = 312.5 mV. T0 = 1/ f0 is the period of the input signal. The bin length
is 0.025.

envelope has a maximum at Tr/T0 = 1/2 and decays
exponentially for larger times. This structure of the residence
times probability distribution was also obtained analytically for
a standard bistable system [24] and in the numerical studies of
the stochastic resonance in Chua’s circuit [7].

The switching time Ts is the time between two consecutive
arrivals to one of the states or, alternatively, the sum
of two consecutive residence times in the two different
attractors. The probability distribution of switching times is
usually determined for the stochastic resonance phenomenon
in biological systems. It corresponds e.g. to an inter-spike
interval histogram recorded from real periodically forced
sensory neurons [25–27]. In Fig. 7 we show the switching
times probability distribution P(Ts/T0) (normalized as Ts/T0)
obtained from our experiments in Chua’s circuit for input
periodic signal frequency f0 = 270 Hz and for three values
of the noise intensity σ . For very low noise intensities (Fig. 7
(upper panel)), the structure of P(Ts/T0) consists of very
narrow peaks located at integer multiples of the period T0 of
the input periodic signal. This indicates that jumps of dynamical
trajectory between single scrolls are well synchronized with the
input signal. The envelope of the distribution has a maximum
at Ts = T0 and decays for large times. The peaks are widely
spread, so switchings are very irregular. For near-optimal noise,
σ ≈ σmax (Fig. 7 (middle panel)), the probability distribution
has a multi-peaked structure, with peaks formed by spikes, and
the envelope of the distribution has a maximum at Ts = 3T0.
Finally, the case of intense noise (Fig. 7 (lower panel)) consists
of a few broad overlapping peaks reflecting that the noise can
induce jumps of dynamical trajectory between single scrolls
independently of the magnitude of the input signal. For even
larger noise intensities the input signal is swamped and peaks
in the switching times probability distribution disappear.

We now present the dependence on the forcing frequency. In
Fig. 8 we plot the switching times probability distribution for
the frequency of the input signal close (Fig. 8 (upper panel)) to
the characteristic frequency fch and much higher (Fig. 8 (lower
Fig. 7. Probability distributions of the switching times P(Ts/T0) for the
frequency of input periodic signal f0 = 270 Hz and the noise intensities
σ = 62.5 mV (upper panel), σ = 312.5 mV (middle panel) and σ = 750.0 mV
(lower panel). T0 = 1/ f0 is the period of the input signal. The bin length is
0.025.

panel)) than fch. One can notice that both the multi-peaked
structure of the probability distribution and the maximum in
the envelope of the distribution are preserved.
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Fig. 8. Probability distributions of the switching times P(Ts/T0) for the noise
intensity σ = 312.5 mV and the frequency of input periodic signal f0 =

2.728 kHz (upper panel) and f0 = 4.0 kHz (lower panel). T0 = 1/ f0 is the
period of the input signal. The bin length is 0.1.

In experimental [28] and numerical [7,11] studies of
stochastic resonance attention is also paid to the dependence
of the mean switching frequency between different states of a
system or chaotic attractors on the noise intensity. It was found
that the mean switching frequency for a weak periodic forcing
increases exponentially with the noise intensity [28]. As shown
in Fig. 9, the dependence of the mean switching time, 〈Ts〉,
on the noise intensity in our experiments can be fitted to an
exponential law:

〈Ts〉

Tch
= C + A exp

(
−B

σ

σmax

)
(4)

where σmax is the optimal noise intensity and the fitting
parameters A = 107.3, B = 1.5 and C = 28.4 are independent
of the frequency f0 of input periodic signal.

Finally we consider the overall shape, the envelope
excluding the resonance peaks, of the switching times
probability distribution functions. Numerically, we obtained
this envelope by binning the data for Ts in bins [(i−1/2)T0, (i+
1/2)T0], i = 1, 2, . . .. The corresponding histograms are
plotted in Fig. 10 in terms of the normalized variable ts ≡
Fig. 9. Dependence of the normalized mean switching time 〈Ts 〉/Tch on the
normalized noise intensity σ/σmax for two frequencies of the input periodic
signal f0 = 270 Hz and f0 = 4000 Hz. Tch = 1/ fch = 1/(2.745 kHz) and
σmax is the optimal noise intensity. The solid curve results from a fit by the
formula (4) given in the text.

Ts/〈Ts〉 for small f0 = 270 Hz (Fig. 10 (upper panel)) and
large f0 = 4000 Hz (Fig. 10 (lower panel)) frequencies of
the input periodic signal and for several values of the noise
intensity, below and above the optimal value σmax. It turns out
that these figures can be fitted by a gamma distribution, namely:

P(ts) =
β−α

Γ (α)
(ts + m)α−1 exp

[
−

ts + m

β

]
(5)

where m and α > 0 are the location and shape parameters,
respectively, Γ (α) is the gamma function and β > 0 is the
scale parameter. Since by definition 〈ts〉 = 1, it turns out
that β = (1 + m)/α leaving α and m as the only parameters
for fitting the data. A convenient way to do the fitting is to
compute the standard deviation of the switching times σs and
use α = (1 + m)2/(σs/〈Ts〉)

2, leaving m as a free parameter.
For the frequency f0 = 270 Hz and for the following values of
σ/σmax: 0.36, 0.71, 1.07, 1.43, 2.14, the corresponding values
of α are: 1.54, 2.18, 2.80, 3.52, 5.13, whereas m = 0. For
the frequency f0 = 4000 Hz and for the following values of
σ/σmax: 0.54, 0.89, 1.43, 2.14, the corresponding values of α

are: 1.75, 1.88, 2.32, 2.97, whereas values of m are: −0.103,
−0.146, −0.202 and −0.242. As shown in Fig. 10 (upper
panel) and (lower panel) the fitting is quite good for all the
values of the noise intensity and frequency considered and the
gamma distribution given by the formula (5) describes well the
experimental switching times probability distributions.

In applications of stochastic resonance, it is important to
chose a noise intensity σ close to its optimal value σmax,
such that the amplification factor η takes the maximum value.
However, it is true that η is not easy to measure in many
situations. Hence, one has to rely on the calculation of σmax by
other methods. Several alternative methods have been proposed
for obtaining the optimal noise intensity from the residence and
switching times probability distributions [2,25,29,30]. However
the optimal noise intensities determined by these methods
do not coincide with σmax as determined from η. The form
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Fig. 10. Probability distributions of the normalized switching times P(Ts/〈Ts 〉) for the frequency of input periodic signal f0 = 270 Hz (upper panel) and
f0 = 4000 Hz (lower panel). The normalized noise intensity σ/σmax for each distribution is given on the figure. σmax is the optimal noise intensity and 〈Ts 〉 is the
mean switching time. The solid curves result from a fit by the gamma probability distribution (5) given in the text.
of the residence and switching times probability distributions
which we obtained for the stochastic resonance in chaotic
Chua’s circuit for different noise intensities (shown e.g. in
Fig. 7) suggests a method of determination of the optimal noise
intensity from these distributions. The method is similar to the
one proposed in Ref. [25], it can be applied to both the residence
and switching times and gives the optimal noise intensity which
coincides with σmax as determined from η. The method goes as
follows:

We count Nmax as the number of residence times in all
the intervals [Ti − T0/4, Ti + T0/4], with Ti = (i − 1/2)T0,
i = 1, 2, . . ., the location of the maxima of the probability
distribution. In the case of switching times we take Ti =

iT0. The total number of residence or switching times is N .
The dependence of the proportion Nmax/N on the normalized
noise standard deviation σ/σmax is shown in Fig. 11 for two
frequencies of the input periodic signal. At low noise intensities
Nmax/N ≈ 1, so residence and switching times are very well
concentrated around values Ti . For large noise intensity the
proportion Nmax/N ≈ 0.5, so residence and switching times
are almost uniformly distributed. At the optimal noise level
σ = σmax corresponding to the maximum of the amplification
factor η the quantity Nmax/N shows an inflection point both for
the residence and switching times. Hence, we propose to define
the optimal noise intensity as the value of σ at this inflection
point.

It would be interesting to apply the method proposed here
to determine the optimal noise intensity from the residence
and switching times probability distributions obtained in other
experiments of stochastic resonance and to compare this
intensity with the optimal noise intensity determined from the
amplification factor η.

5. Conclusions

We have presented a thorough experimental study of
stochastic resonance in an electronic Chua’s circuit, operating
in a chaotic regime, forced by a periodic signal and a Gaussian
white noise. The phenomenon results from the noise-induced
switching process of the dynamical trajectory of the circuit
between two single-scroll chaotic attractors. This situation
in which the system moves between two chaotic states has
important consequences for its dynamics.

We have found that, due to the residual dynamics on the
attractors, the response of the system to a periodic perturbation
strongly depends on the external frequency. The minimum
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Fig. 11. Dependence of the proportion Nmax/N for the residence (RT) and
switching (ST) times on the normalized noise intensity σ/σmax for two
frequencies of the input periodic signal f0 = 270 Hz and f0 = 4000 Hz. Nmax
is the number of residence or switching times around peaks in their probability
distributions and N is the total number of these times. σmax is the optimal noise
intensity corresponding to the maximum of the amplification factor determined
by the Fourier transform of the step output signal.

threshold values for the amplitude of the external forcing
required to induce jumps between these attractors in the
absence of noise have been determined as a function of the
frequency. While this threshold is very small for frequencies
below approximately 2 fch, where fch = 2.745 kHz is the
characteristic frequency of the autonomous Chua’s circuit, it
rapidly increases for higher frequencies and develops peaks
at certain frequency values. As in the case of stochastic
resonance between two stable states, we have also found that
noise enhances the detectability for weak sub-threshold or
slightly over-threshold signals, but degrades the detectability
for strong supra-threshold signals. We have also observed that
the stochastic resonance effect is maximum for input signals
with amplitudes close to the threshold value. Furthermore, the
dependence of the amplification factor of the input periodic
signal on the noise intensity complies with the standard form
of stochastic resonance in bistable systems. This dependence,
after normalization, is the same for all frequencies of the input
periodic signal and it is well described by the results of the
adiabatic theory obtained for transitions between two stable
states.

We have shown that the residence time probability
distribution consists of a series of decreasing peaks at odd
multiples of the half-period of the input periodic signal.
Similarly, the switching time probability distribution consists of
a sequence of peaks centered at all integer multiples of the input
signal period and its envelope is well described by the gamma
distribution with a shape parameter that increases with the
noise intensity. The spikes of the residence and switching times
probability distributions are associated with the characteristic
time 1/ fch. The mean switching time decays exponentially
with the noise intensity for sub-threshold amplitudes for all the
frequencies of the input periodic signal.
Finally, we have shown that the optimal noise intensity
corresponds to the inflection point in the dependence of the
noise intensity on the proportion of the number of residence or
switching times around peaks in their probability distributions
to the total number of these times. This optimal noise intensity
is the same as the one defined by the maximum of the
amplification factor determined by the Fourier transform of the
step output signal.

It is worth mentioning that some open questions remain
although the phenomenon of stochastic resonance and the
Chua system have been extensively studied. For example, how
colored noise with a correlation time of the order of the inverse
mean Chua frequency or the inverse of the mean frequency
of jumps between the attractors affects the system dynamics
is unknown. The response of the system to the effect of
aperiodic input signals or a combination of periodic signals
(ghost resonance) is yet to be considered.
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