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C O M P U T E R  S I M U L A T I O N S

Old West, or they can end in both par-
ties enjoying a beer, with the loser buy-
ing a round after an intense game of
darts. A duel is simply a game with two
players, each having a probability of
winning that game and each having an
intrinsic marksmanship, or ability, as-
sociated with his or her performance.
Of course, the worst player—the one
with the worst marksmanship—might
have an advantage such as extra bullets
or extra points, but in a normal un-
biased situation, common sense tells us
that the higher the marksmanship, the
higher the probability of winning the
duel. The mathematical treatment of
this game confirms our simple expecta-
tions. If more than two players partici-
pate, a series of duels might be needed
to determine the absolute winner. This
is the case in sports tournaments, which
pair teams in all possible ways until the
ultimate winner emerges.

A truel is a generalization of a duel
involving three players and slightly dif-
ferent rules. First, we assume that a
player’s marksmanship doesn’t depend
on his or her opponent—the probabil-
ity that a person kills an opponent in a
romantic duel, for example, won’t de-
pend on his opponent’s identity. Sec-
ond, truelists shoot sequentially, one
after another—if a truelist misses a

shot, then it’s another truelist’s turn.
Third, each truelist has the right to
choose which person to aim at. In a
random truel,

1. One of the remaining truelists is
chosen at random.

2. The chosen truelist selects an op-
ponent and, with a certain proba-
bility (marksmanship), eliminates
that opponent from the game.

3. Whatever the result, steps 1 and 2
repeat until there is only one sur-
vivor, the winner.

Truels produce a paradoxical result:
the player with the highest marksman-
ship doesn’t necessarily win.1,2 It’s an
example of a situation in which “the
fittest does not necessarily survive.”3

We all know of cases where the best
person didn’t get the job or become
manager; truels present a framework in
which this counterintuitive outcome
can be rigorously derived. These
games first appeared in the 1940s,4 but
the term truel wasn’t coined until the
1960s. In this article, we’ll investigate
truels in more detail.

All about Truels
Truels are interesting from a pedagog-
ical viewpoint because they illustrate in

a particularly clear way some of the
concepts of game theory. In particular,
consider the Nash equilibrium—the
best action players can take to optimize
their probability of winning the game.
The action here corresponds to the
strategy of choosing an opponent. In-
tuition tells us that your optimum
strategy given the rules is to shoot at
the best remaining player. This “best
opponent” strategy explains the para-
doxical result because it implies that
the best player is the target of the other
two, thus decreasing that player’s prob-
ability of winning.

Previous researchers have confirmed
this intuitive explanation via game the-
ory.5 We’ve revisited6 such analysis
from the viewpoint of stochastic
processes using discrete-time Markov
chains7 with three absorbing states.
The players still in the game determine
the chain states; the absorbing states
correspond to the state in which only
one player remains. With this tech-
nique, we can calculate the probability
of the system ending in one of three
absorbing states—that is, each player’s
probability of winning. This view-
point, besides reproducing the main
paradoxical result, provides a frame-
work for analyzing games with which
some communities (such as physicists)
feel more comfortable. In fact, physics
has contributed to the field of para-
doxical games with Spanish physicist
Juan Parrondo’s games.8 These games
exemplify the situation in which a
combination of losing games results in
a winning one. They’re inspired by the
ratchet and pawl, a pedagogical device
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that Maryan von Smoluchovsky9 in-
vented and Richard Feynman studied
extensively10,11 to illustrate the second
law of thermodynamics, which poses a
limit on how much energy we can ex-
tract from a given source.

The literature has other models that
also give counterintuitive results, such
as the rock-scissors-paper game (in
which rock beats a pair of scissors, scis-
sors beat a sheet of paper, and paper
beats rock). Researchers have applied it
to population dynamics,12,13 too—
specifically, to systems with three
species that interact with each other
and ultimately create a competitive
loop. The paradoxical effect in this
model is that the least competitive
species might be the one with the
largest population and, even when
there are oscillations in a finite popula-
tion, the least likely to die out. Re-
searchers have also applied this game
to a voter model,14 obtaining again a
paradoxical result—namely, an initial
decline in support for one candidate
later leading to an upsurge in the polls
for that same candidate.

Researchers have proposed several
modifications of the basic truel rules,
such as biasing the game by allowing
the worst player to shoot first and the
best a priori player to shoot last.15 Al-
though it isn’t surprising that this “se-
quential rule” increases the probability
of the worst player winning the game,
it is surprising that, to increase the sur-
vival probability, the worst player
might need to miss those shots on pur-
pose. Another option (not considered
in this article) is the simultaneous truel,
in which the three players shoot at the
same time.

We could also change some of the
other rules—is the number of rounds
finite or infinite? Will the ammunition
be limited or unlimited? These slight
tweaks change the probabilities of dif-

ferent outcomes.15,16 Another modifi-
cation is cooperative truels,17 which are
characterized by the appearance of al-
liances—different players set a com-
mon target and improve their survival
probability by forming a coalition. A
quantum scheme for duels and truels
appears elsewhere.18

In this article, we limit ourselves to
the random and sequential truels in
which players use their best possible
strategy with no coalitions. We opted
to modify the random truel slightly and
convert it into an opinion model in
which each player has a different opin-
ion on a given topic. In each round, we
randomly pick one player to try and
change another player’s opinion. The
game ends when all players share the
same opinion. If we extend the truel
rules from three to N players, the para-
doxical results show up even more
clearly, because as N increases, it’s more
difficult for the player with the highest
marksmanship to win the game.

The Duels
A standard duel has two players: a good
player (A) and a bad player (B). Let’s
denote their respective marksmanships
with a and b, where a > b. Here, the
strategy is obvious: shoot at the only
other opponent. It makes no sense to
lose an opportunity to eliminate the
opponent by shooting into the air.

In the random duel case, in which we
choose the next player to shoot ran-
domly at each time step, an analytical
study (using, for example, a Markov
chain) shows that a player’s probability
of winning is proportional to that
player’s marksmanship. If PA (or PB) is
the probability of player A (or B) win-
ning the game, we have PA = a/(a + b)
(or PB = b/(a + b)). So in a random duel,
the best player has the largest survival
probability. The same result holds if we
randomly choose the first player to

shoot and then they each shoot se-
quentially one after the other until only
one remains.

We can beat this result by letting the
worst player shoot first and alternate
turns afterward. In this type of sequen-
tial duel, an analysis of the resulting
winning probabilities shows that only
when b > a/(1 + a) is player B’s survival
probability greater than A’s. Therefore,
in a sequential duel, player B can over-
come the unfavorable situation of hav-
ing lower marksmanship by being the
first shooter.

Truel Strategies
If a third player enters the game, the sit-
uation is no longer simple. Each player
in the truel must now consider all the
possible actions that the other oppo-
nents might take and their correspond-
ing outcomes. For concreteness, and
without loss of generality, let’s assume
that the third player C has the lowest
marksmanship c, such that a > b > c.

All players in the truel share the
same goal: to be the sole survivor. We
can explicitly impose this through the
inclusion of a payoff, a concept that cor-
responds to some sort of reward a
player receives for achieving the goal.
To maximize their payoff, players must
choose strategies that maximize their
survival probability. When the three
players are still in the game, each one
has three possible strategies: two cor-
respond to choosing one of the two op-
ponents, and the third strategy is to
shoot in the air (or miss a shot on pur-
pose). In this article, we only consider
“pure” strategies, but it’s also possible
to select with a given probability one of
the options; such mixed strategies
aren’t relevant in the case of truels,
though. If one of the three players is
removed from the game, we’re back to
a duel situation, and, as discussed ear-
lier, the only strategy is to aim at the
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remaining opponent. We also assume
that the players’ strategies are uncoop-
erative, in the sense that alliances or
pacts between them aren’t allowed.
The corresponding expressions for the
survival probabilities appear else-
where,6,15 but they’re too cumbersome
to reproduce here.

Let’s first examine a random truel, in
which we randomly choose a player to
shoot first. If players don’t use a strat-
egy and simply shoot randomly, the
winning probabilities are clearly pro-
portional to marksmanship. But fol-
lowing a basic game theory premise,19

let’s assume that the players are rational
agents, in the sense that they adopt a
strategy that’s the best response to the
other players’ strategies. As we men-

tioned earlier, this mirrors the Nash
equilibrium, which we can clarify with
an example. Table 1 shows the differ-
ent survival—or winning—probabili-
ties PA, PB, and PC of players A, B, and
C, respectively, for the different strate-
gies they adopt in a random truel. We
calculated these values assuming that
player A has a marksmanship a = 1 (or
100 percent effectiveness), player B has
b = 0.8 (80 percent effectiveness), and
player C has c = 0.5 (50 percent effec-
tiveness). For simplicity, we don’t in-
clude in this example the strategy of
shooting in the air, an option that isn’t
relevant for the random truel.

Let’s start by looking at the set of
strategies CCB in Table 1. The nota-
tion means that the first player A aims
at C, the second player B aims at C, and
the third player C aims at B. In this
case, the player with the highest sur-
vival probability is A, with a 58 percent
chance of winning, followed by player
B with a 34.8 percent chance, and fi-
nally player C, with a very low chance
of 7.2 percent. 

When analyzing this situation,
player C concludes that it’s better to
change strategies, so instead of aiming
at B, sets player A as a new target. This
becomes row CCA in the table, where
C ’s survival probability has increased to
8.5 percent. Player B looks at this re-
vised situation and sets A as a new tar-
get, which takes us to the CAA row,
where PB increases from 48.1 percent
to 54.1 percent. Finally, player A de-
cides to change strategies and sets B as

a new target, thus taking us to BAA,
where PA increases from 24.2 percent
to 29.0 percent. Amazingly, if we re-
peat these moves starting from any
strategy and using any order of player
reasoning, we ultimately reach the
same strategy set: BAA.

The BAA strategy is known in the
literature1 as the strongest-opponent
strategy because all players aim at the
opponent with the highest marksman-
ship: player A aims at B, and players B
and C aim at A. This is the random
truel’s unique Nash equilibrium point,
where no player can improve his or her
survival probability by changing strat-
egy as long as the rest of the players
keep theirs. This set corresponds to a
local maximum of every player’s sur-
vival probabilities, and it’s the one that
rational players will necessarily use.
Remarkably, survival probability in this
strategy goes in inverse order with
marksmanship: player C has the high-
est survival probability, and player A
has the lowest. This result is counter-
intuitive, in the sense that we’d naively
expect player A to have the highest sur-
vival probability because player A has
the highest marksmanship.

In the sequential truel, the worst
player has the advantage of being the
first to shoot. The sequence of shots is
C-B-A, and it repeats as necessary un-
til only one player remains. A detailed
analysis1,6 reveals the existence of two
different equilibrium points here, de-
pending on the actual values of the
marksmanships a, b, and c. One of the
equilibrium points corresponds to the
strongest-opponent strategy (as in the
case of the random truel), whereas the
other corresponds to the set BA�,
meaning that player A sets player B as
a target, player B sets A as a target, and
C decides to shoot into the air. This
latter set of strategies implies that it
might be better for player C to fail the

C O M P U T E R  S I M U L A T I O N S

Strategy PA PB PC

CCB 0.580 0.348 0.072
CCA 0.434 0.481 0.085
CAB 0.386 0.407 0.207
CAA 0.242 0.541 0.218
BCB 0.628 0.155 0.217
BCA 0.483 0.288 0.229
BAB 0.435 0.214 0.351
BAA 0.290 0.348 0.362

*Marksmanships a = 1, b = 0.8, and c = 0.5.

Table 1. Survival probabilities PA, PB , and PC of players A, B, and C for the
different strategies they adopt in a random truel.*
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Figure 1. Random truel. The different
colors (blue for player A, orange for
player B, and purple for player C)
indicate regions in the parameter
space (b, c), setting a = 1, in which
each player has the highest
probability of survival.



SEPTEMBER/OCTOBER 2006 91

shot and let players B and A kill each
other. Player C would use the next turn
to try to eliminate the remaining player
and win the truel.

The player with the highest survival
probability depends on the marksman-
ship values. In Figure 1, we indicate the
regions in the parameter space (b, c) af-
ter setting a = 1, in which each player
has the highest survival probability.
Blue corresponds to player A, orange
to B, and purple to C. The figure shows
that it’s possible for every player to be
the favorite in the game, although the
largest region corresponds to the best
player, A.

For the sequential truel, the situation
is somewhat different. Due to the im-
posed firing order (C-B-A), player A is
the last to shoot, so the advantageous
situation from high marksmanship is
partially lost. Figure 2 reflects this be-
cause the region in which player A is
the favorite has decreased considerably
compared to that of Figure 1. In fact,
the a priori worst player, C, is the fa-
vorite in many occasions. We explained
previously that the sequential truel has
two equilibrium points, BAA and BA�;
the last one is the relevant one in the
small purple region in Figure 2 (inside
the black region).

Truels as a Model
of Opinion Spreading
We can give an interesting twist to a
truel (as well as eliminate some of its
aggressiveness) by interpreting it as a
model of opinion spreading. In this
case, A, B, and C are three opinions
that people can hold on a topic. In this
version of the game, players aim to
convince—rather than eliminate—each
other. Marksmanships a, b, and c are
now the probability of convincing an-
other person of an opinion, and the
game ends when all players share the
same opinion.

In the random version, theoretical
analysis shows that the only equi-
librium point is in the strongest-
opponent strategy. The same
paradoxical result still applies because
the opinion with the higher marks-
manship doesn’t necessarily need to be
the one that survives. However, as Fig-
ure 3 shows, opinion A is the favorite
to become the majority opinion for a
larger region of values of b and c, again
setting a = 1; it’s only for a relatively
small region that opinion C is the fa-
vorite. The overwhelming superiority
of A is understandable if we recall that
in this model, the total number of
players remains constant throughout
the game—only the opinions change.
Once opinion A convinces either a
player with opinion B or a player with
opinion C, it’s very likely that it’ll
eventually become the majority opin-
ion due to its high convincing proba-
bility. Starting from the initial
configuration in which the three play-
ers hold different opinions A, B, and C
and the same values of a, b, and c as be-
fore (a = 1, b = 0.8, and c = 0.5), there’s
a 38.6 percent probability that opinion
A will become the majority opinion,
and a 37.8 percent and a 23.4 percent
probability that opinions B and C will
become the majority, respectively.

Distribution of Winners
Imagine now that we set a truel com-
petition among a population of players.
The population’s marksmanships are
uniformly distributed in the interval (0,
1). We set a tournament scheme, form
all possible triplets of players, and have
them play a random truel (we decided
on a non-lethal version in which losers
can still play another game). The win-
ner will be the player with the highest
number of truels won. 

On whom would you bet—for the
good players with high marksmanship

or the bad players with low marksman-
ship? In this case, you have to consider
the average probability of a player win-
ning when playing against all sorts of
players. Figure 4 summarizes the
mathematical analysis. For the random
truel and the opinion model, the his-
togram of winners has a maximum at a
marksmanship of 100 percent. In some
sense, justice is restored in this truel
competition because the best players
are the ones who win the tournament
the most times. However, with the se-
quential truel rules (which favor the
worst player), the distribution peaks
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Figure 2. Sequential truel. As in Figure
1, different colors (blue for player A,
orange for player B, and purple for
player C) indicate regions in the
parameter space (b, c), setting a = 1,
in which each player has the highest
probability of survival.
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Figure 3. Random truel. The different
colors (blue for player A, orange for
player B, and purple for player C)
indicate regions in the parameter
space (b, c), setting a = 1, in which
each player has the dominant
opinion.
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around an intermediate marksmanship
of roughly 55 percent. It’s the triumph
of mediocrity!

Generalization to N Players
If we extend the truel rules to more
than three players, the situation be-
comes very difficult to study analyti-
cally, but it’s rather easy to implement
those rules in a computer program and
visualize the results. Let’s consider N >
3 players in a random N-uel, but we’ll
still use the random truel’s rules. When
players use the strongest-opponent
strategy, N – 1 guns will point at the
best player, so the best player’s survival
probability is low and, moreover, de-
creases with increasing N. In our sim-
ulations, we considered sets of N
players whose marksmanship we drew
from a uniform random distribution in
the interval (0, 1).

Figure 5 shows a histogram that cor-
responds to the classification we get
when N = 4 players are in the game.
The fourth ranked corresponds to the
distribution of players eliminated from
the game first, the third ranked corre-
sponds to the ones eliminated second,
and so on. The distribution of the
fourth ranked shows that the first in-
dividuals eliminated in the game are
those with higher marksmanships. In-
deed, the maximum is located at a
marksmanship x = 1, indicating that
the better a player is, the higher his or
her probability of being eliminated
first. Another aspect we can extract
from this figure deals with the distrib-
ution of the first and second ranked:
these curves correspond to the case in
which only two players remain in the
game (that is, to a duel). Therefore, it’s
more likely in this situation that play-
ers with lower marksmanships are
eliminated first rather than those with
higher marksmanships (this is why the
curve for the second ranked presents a

C O M P U T E R  S I M U L A T I O N S
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Figure 4. Distribution of winners in a truel competition. The blue line
corresponds to the random truel, the orange to the sequential truel, and the
purple to the convincing opinion version of the model. Note that in the
sequential truel, the maximum occurs around marksmanship x = 0.55, whereas
for the other two versions, the maximum is at x = 1.
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Figure 5. N-uel. The histograms of the winner, second, third, and fourth ranked
correspond to a random N-uel tournament for N = 4 players, as a function of
the players’ marksmanship, x.
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Figure 6. N-uel. Histograms of a random N-uel tournament’s winners are a
function of different values of N, where N = 3, 4, 10, 25, and 50, as a function of
the players’ marksmanship, x.
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maximum in the origin). It’s also worth
mentioning that for four players, the
histogram associated with the first
ranked—that is, the winner of the 4-
uel—presents a maximum at a value of
x < 1. This result implies that the best
performing player doesn’t correspond
to the player with the highest marks-
manship anymore, as it did when N =
3. Indeed, the optimum value is lo-
cated at roughly 0.45.

Figure 6 shows the histogram of N-
uel winners as a function of the num-
ber of players N. As in our earlier
discussion, it’s clear that the distribu-
tion is indeed progressively enhanced
and shifted toward zero when N in-
creases. In this limiting case, we can
talk about the “survival of the weak.”

Truels with
Spatial Dependence
A natural step in any discussion of tru-
els is the set of players’ spatial struc-
ture. This structure reflects the fact
that players don’t interact with just any
other player but only with those who
are close in some sense. Although we
could devise some sort of social net-
work of interactions,20,21 we consider
here a simple two-dimensional lattice
with N sites, each with four nearest-
neighbor links. We initialize the lattice
by putting randomly on each site one
player of groups A, B, or C in the re-
spective proportions xA, xB, and xC, (xA
+ xB + xC = 1) and respective marks-
manships a, b, and c. An important part
of this generalization is that players

never shoot at a person of the same
group. The rules of the random collec-
tive truel are as follows:

1. One of the remaining players is
chosen at random.

2. The chosen player selects two
players randomly from the occu-
pied neighbors’ sites, and the
three of them play a random truel.
The losers are eliminated from
the system. If the chosen player
has only one neighbor, the two
will play a duel, with the loser re-
moved from the system. If no
neighbors are left, the player
walks to a randomly chosen
neighbor site.

3. Steps 1 and 2 repeat until all sur-
vivors belong to the same group.

In step 2, some of the chosen players
could belong to the same group, and if
so, they observe strictly the rule of no
shooting between members of the
same group. Accordingly, more than
one player could survive that game. In
any event, players use the strongest-
opponent strategy—if, for example, the
three players in a truel belong to
groups A, A, and B, the two A players
will aim at B, whereas B will aim at one
of the two As (again, chosen at ran-
dom). This particular situation’s out-
come could be either player B
eliminating both A players or vice
versa. Because the analytical treatment
seems rather difficult, let’s look at the
results from a direct numerical simula-

tion of the aforementioned rules.
Throughout this section, we’ll use the
values a = 1, b = 0.8, and c = 0.5 for the
marksmanships.

Figure 7 shows snapshots at different
stages of a simulation performed for
the random truel. The initial popula-
tion proportion was xA = 0.3, xB = 0.3,
and xC = 0.4. Note that in the early
stages of the simulation, the popula-
tions of groups B and C diminish,
whereas group A resists and eventually
wins the collective truel.

In this collective truel, the group
that survives at the end depends on the
initial proportions of players. Figure 8
summarizes this dependence—we plot

Figure 7. Simulation. Snapshots corresponding to different stages of a simulation performed for the random truel have
initial proportions of xA = 0.3 (black), xB = 0.3 (red), and xC = 0.4 (green) for a set of N = 2,500 players arranged in a two-
dimensional grid. The marksmanships are a = 1, b = 0.8, and c = 0.5.
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Figure 8. Random collective truel. In
this diagram, the favored group—the
one with the highest probability of
winning (blue corresponds to group
A, orange to B, and purple to C) is
represented in terms of the initial
proportions xA, xB , and xC for a set of
N = 400 players arranged in a two-
dimensional grid. We obtained these
after several simulations.
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in a color code the group with the
highest winning probability as a func-
tion of the initial proportions.

It’s easy to modify step 2 by consid-
ering the sequential truel (players
shooting in inverse order to their
marksmanship). Figure 9 shows a typ-
ical realization. In this figure, the win-
ning group is the weakest one (group
C); this survival of the weakest effect is
also present in Figure 10, where
groups B and C have increased the re-
gion in parameter space in which they
win the truel.

Almost all truel competitions occur
during the first steps, in which a large
fraction of the population is removed.

At the end of this first regime, the
largest remaining population is the
one that possesses the higher survival
probability when playing a single
truel and the system has several
empty sites. Later, in a second
regime, players start to diffuse to
neighboring sites, thus increasing the
appearance of duel encounters. Con-
sequently, the evolution will result
from a balance between the popula-
tion favored by the existence of duels
(the one with the highest marks-
manship) and the one favored by pos-
sessing a high proportion of the
remaining population.

Figure 11 shows a simulation per-
formed for the opinion model. For the
set of marksmanships a = 1, b = 0.8, and
c = 0.5, we find the favorite opinion is
always the one with highest marks-
manship, A. This occurs even for very
small initial proportion xA, and it re-
flects the large region in the parameter
space in which A becomes the favorite
opinion, as in Figure 3.

W e’ve seen that under certain
circumstances, it isn’t always

recommendable to be the best player.
Indeed, when playing the sequential
truel, intermediate marksmanship val-
ues perform better on average. A next
step in the model would involve a
deeper study of truel dynamics in terms
of the spatial grid used. Small-world or
even scale-free networks introduced
into the model could help us analyze

the effect of different topologies on the
final population. Another interesting
extension for truel games would be to
include dynamics based on selection
and evolution.22 Strategies could
evolve, in the sense that players would
modify their own strategies if they con-
template the possibility of improving
their own payoff. 
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Figure 11. Opinion truel. Snapshots corresponding to different stages of a simulation performed for the opinion truel
have initial proportions of xA = 0.3 (black), xB = 0.3 (red), and xC = 0.4 (green) for a set of N = 2,500 players arranged in a
two-dimensional grid. The marksmanships are a = 1, b = 0.8, and c = 0.5.

IEEE Distributed Systems Online brings you
peer-reviewed articles, detailed tutorials, expert-managed topic

areas, and diverse departments covering the latest news and
developments in this fast-growing field.

Log on for free access
to such topic areas as

Grid Computing • Middleware
Cluster Computing • Security

Peer-to-Peer • Operating Systems
Web Systems • Parallel Processing

Mobile & Pervasive
and More!

To receive monthly  updates, email dsonline@computer.org

http://dsonline.computer.org

THE IEEE’S 1ST ONLINE-ONLY MAGAZINE


