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Abstract: On the basis of a perturbative solution we study the numerical impor-
tance of finite-size effects in the Kardar-Parisi-Zhang equation for surface growth.
The crossover behaviour between linear and non-linear regimes is studied numerically
using convenient finite size scaling expresssions.

In the exciting field of non-equilibrium phenomena, much attention has been
drawn recently to the problem of growth of random surfaces[1]. It has become
clear that many different growth models share similar features such as scaling
exponents and scaling functions and can thus be considered as belonging to the
same universality class. The Kardar-Parisi-Zhang (hereafter referred to as KPZ)
equation[2] is a prototype model for those systems in which the interface growth
is driven by an external flux of particles. In the KPZ model, the surface height
h(r,t) on top of location 7 of a d—dimensional substrate satisfies a stochastic
random equation:

a_h%,_g =vV2h(r,t)+ %(Vh)2 +7(r,1) 1)

Every term in this equation models a physical phenomenon contributing to the
surface evolution: v, A and D are parameters describing, respectively, surface
relaxation, lateral growth and the effect of noise. This noise term aims to describe
the random fluctuations in the incident flux of particles and is assumed to be a -
Gaussian random process of mean zero and correlations:

{n(r,O)n(r', 1)) = 2D8(r — +')8(t — t') (2)

A convenient measure of the surface roughness is given by averaging the spatial
fluctuations over different realizations of the noise:

w(t) =/ (B2 - &) (3)
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Where the bar and the brackets denote the spatial and noise averages, respec-
tively. Several time regimes can be found in the time evolution of the surface
roughness. They can be summarized as follows:

(i) Tor very early times, the noise term dominates since its contribution to the
equation grows as the square root of time. It is easy to find that the surface
roughness grows in this time regime as w(t) ~ t1/2.

(ii) For intermediate times, the linear term is the main contribution. The linear
case (A = 0) is the Edwards-Wilkinson model[3] for which one can find easily
that the surface roughness behaves as w(t) = tP°. The value for fy depends on
the dimension of the substrate: §y = 1/4 for one-dimensional surfaces, Gy = 0
(logarithmic growth) for the two-dimensional case.

(iii) For late times, the contribution of the relevant non-linear term becomes the
dominant one and the surface roughness growth is characterized by a behaviour
w(t) = 7.

(iv) For very late times and finite substrate length L, the roughness saturates
to a value w(t — oo, L) ~ LS.

Of course, in an experiment or in a numerical simulation, the transition between
the different regimes is not sharp and different crossover behaviours can be ob-
served. Tor the transition between non-linear (iii) and saturation (iv) regimes,
a scaling law has been derived[4]:

w(t, L) = L' F(tL™%) (4)

¢ and z are the roughness and dynamic exponents, respectively. In order to
recover the known limiting behaviours, the scaling function F(z) behaves as
F(z) ~ 2%/¢ (hence B = z/¢) for £ <« 1 and approaches a constant for
large z. Galilean invariance implies the exact relation z 4+ ¢ = 2 independently
of dimension{5]. In one—dimensional substrates, a fluctuation—dissipation theo-
rem[6] yields the exact values for the exponents 2 = 3/2, ( = 1/2, 8 = 1/3.
It i1s interesting to notice that in the absence of non-linear terms a simi-
lar scaling relation holds but with different values for the exponents, namely
w(t, L) = L Fy(tL=%°), (o = 1/2, 29 = 2. So, in order to measure the correct
crossover exponents and functions for non-linear to saturation behaviour, it is
important to make sure that non-linear effects have fully developed before the
saturation regime has started.

The precise knowledge of the dynamical exponents is very important since
it allows a detailed characterization of the universality classes. Many numerical
studies have been devoted to checking the scaling relations and to computing
as accurately as possible the values for the scaling exponents[7]. Since a nu-
merical simulation will deal necessarily with a system of finite-size, it is very
important to analyze carefully the effect of finite-size effects in the different time
regimes specified above and also on the crossover behaviour from one regime
to another{8]. In this paper, we present a detailed study of the relevance that
finite-size elfects have in a numerical simulation of the KPZ equation and we
show how it is possible, using convenient finite-size scaling forms, to compute
the dynamical exponents that characterize the crossover form linear (ii) to non
linear behaviour (iil).
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It is possible to reparametrize the surface field h — (v/2D)Y/%h and time
t — vt to obtain a somewhat simpler version of the KPZ equation:

Oh(r,t)

S = V2h(r,t) + %(Vh)2 + n{r,1) (5)

where A = (2D/v®)/2) and the noise term satisfies (n(r,t)n(r',1)) = 6(r —
7/)8(t —1'). This reparametrization of the equation is achieved by simply setting
2D = v = 1 in the original KPZ equation. In the numerical studies, typically
one introduces a lattice discretization of the space variable r; = 7o + jao (we
restrict ourselves to one-dimensional systems from now on), so introducing a set
of discrete variables k(1) = h(r;j,t) in terms of which we write:

Oh;(t A [ higr = ki1
(;t( ) =(hj+1+hj-1—2hj)+'2' <_Jtl2T]1_> +7;(2), (6)

Periodic boundary conditions are usually assumed in order to avoid edge effects
and the linear spacing ag is set to the unit length, ag = 1. It is possible to obtain
the solution of the corresponding linear model (A = 0) as formulated on the
lattice to find that the surface roughness wyg) in this case is given by:

L-1
1 1 — exp(—204t)
2., L) =~ E —_——
‘LU(O)( ) ) L — 20’}; » (7)

where aj, = 4sin?(rk/L). For infinite size, this linear solution behaves asymp-

totically as:
, ¢\ 1/2 |
Wigy(t, L — o0) = <§;> <1 - ﬁ) (8)

(this expression has an error of less that 0.1% for ¢ > 1) and, consequently, the
dynamical exponent is o = 1/4 as anticipated. This linear solution has a strong
L-dependence as it is'shown in figure (1) where we plot, in a double logarithmic
scale, the time evolution of the surface roughness versus time for different system
sizes. According to the above asymptotic solution this plot should yield a straight
line of slope 1/2. However, finite values of L have the effect of bending the curves
so producing effective exponents which are smaller than the true exponents.
Similar conclusions can be drawn in the non-linear case. Here we do not know

the exact solution but we can make use of a perturbative expansion in A to find
the leading correction (which is second order in A) to the surface roughness as|8]:



347

Figure 1
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Fig. 1. Square of the surface roughness, w?o) for the linear solution (equation 9), as
a function of system size L. For long times, the roughness saturates to a value that
depends on L. For intermediate times, the slopes of the curves yicld effective dynam-
ical exponents less than the true asymptotic value fp = 1/4. The dashed line is the
corresponding solution in the limit L — oo.

w(t, L)® :w(zo)(t, L)

2 L-1t L-1
+ -1-225 Ze_zakt Z cos? (w(k = k1)/L) x {c032 (rky/L)
k=1 k=0
X [f(a) a:t) - f(a’ b, t) - f(a1 C,t) + f((l, d,t)] (9)

+ cot (wk/L)sin 2wk, /L)
X [f(a) —a:t) - f(a’ _bat) + f(a: ¢ t) - f(a) d:t)]}
+ o(X%)

with a = —og, —op_g, +ar, b= —ap, + g, +or ,c = 0f, —0p_g, + i,
d = a, +ag_k, +ax and f(z,y,t) = “(:ﬂ:y’(f:'y"))e“ﬂ (and appropriate limits
assumed for the case zy(z + y) = 0). Comparing with numerical simulations we
see that the perturbative solution offers an accurate approximation for A = 0.5
up to ¢ = 6000 and for A = 1 for ¢ < 1000 (see figure (2)).

We can use the perturbative solution at A = 0.5 to examine the effect of
finite L on the solution in a similar fashion to the linear case studied above. In
figure (3) we have plotted in a double logarithmic scale the time evolution of the
roughness w(t, L){® as given by the second-order perturbation, equation (9),
as a function of system size L. It is obvious from this figure that when dealing
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Figure 2

80.0[

53.3

wi(t)

26.7

0.0

0 2000 4000 6000
1

Fig. 2. Comparison of a numerical integration of the KPZ equation (symbols) for a
system size L = 10* with the perturbative solution given in equation (9) (dashed lines)
for the cases A = 2,1,0.5 {from top to bottom, respectively. The solid line is the exact
linear solution

with finite system sizes the exponents obtained from these log-log plots should
be considered only as effective exponents. Only for L 10 the relative error in
the roughness is less than 1% up to times ¢ ~ 6000

One can obviously question the validity of the perturbation expansion to
obtain dynamical exponents, but it is important to point out that that the finite-
size effects worsen with increasing A. This is obvious from figure (4) where we
have plotted as a function of ¢ the relative weight of the second-order term in the
expansion at finite L compared to its asymptotic value (L — c0) as measured by
the ratio R = w?(t, L) /w?(t, 00)® for A = 0 and 0.5 at L = 1000 and 10000.
Upon switching from A = 0 to A = 0.5 the ratio R is clearly seen to fall even
further away from unity (R = 1 implies no finite-size effects). One can conclude
that, at least for d = 1 and within the range of validity of the perturbative
solution, the minimum value of L required in the linear case to avoid finite-size
effects only provides a lower bound for A # 0.

We turn now to the effect of finite-size effects in the crossover from linear to
non-linear behaviour (regimes (ii) to (iii) above). For this crossover, two different
scaling forms have been advocated. In a one-loop renormalization-group (RG)
calculation Natterman and Tang (NT) found[9]:

wi(t, L) = %o (L Ly, (10)

where the crossover time satisfies t. ~ £2°. In the limit of small A, one has the
dependence: &, ~ A™% and t. ~ A~%. On the other hand, Grossmann, Guo, Grant
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figure 3
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Fig.3. Same as figure 1, but using the perturbative solution given in equation (9).
Notice that again finite size effects show up as effective exponents in this log-log plot.

Figure 4
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Fig.4. Ratio R = w?(¢, L)®/w? (t,00)® from the second-order pertubation expres-
sion (equation (9)) as a function of time ¢ for A = 0 (solid lines) and A = 0.5 (dashed
lines) for two different values of L = 1000 (two lower lines), and L = 10000 (upper

lines). If there were no finite size effects, R would take the constant value R =1 (dotted
line).

(GGG) proposed the form({10]:
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1 [

w(t, L) = twof(f;’ 6?)' (11)
and they made the ansatz that the crossover length scales as &, ~ A% and
on the basis of their numerical findings predicted the value ¢ = 3, al variance
with the value of NT. The data analysis of GGG that led to ¢ = 3 used the
asymptotic L — oo form for the scaling relations, although in their numerical
simulation these authors had used system sizes L = 10% and times ¢t = 104
for which there are clear finite-size effects (see figure 3). It seems necessary,
then, to reanalyze the problem using finite-size expressions. One can reduce the
two proposed expressions to a similar form if one considers the nonlincar-to-
saturation regime, when the crossover to nonlinear growth has already taken
place. This limit requires a system size L larger than the crossover length £, and
also times larger than the crossover time ¢.. One can show that, in this case, the
expressions of NT and GGG reduce to the similar form:

w(t, L) = LF(tAS L=3/2) (12)

where ¢ = 3 according to GGG and ¢ = 4 according to NT. In order to check this
expression, we have plotted in figure (5) w?(t, L)/L vs. tA*/*L=3/2 It appears
that choice of ¢ = 3 gives a significantly superior data—collapse to that of ¢ = 4.

Figure 5
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Fig.5. Check of the finite-size scaling form, equation (11}, with two different values
for the exponent ¢. Several simulations have been performed {or sysiem sizes L = 100,
500, 1000 and 10000 and values of A ranging from A = 2 to XA = 10. For the purpose of
clarity, the data set with ¢ = 4 has been shifted parallel to the horizontal axis.

To explain the failure of the RG calculation of Natterman and Tang to de-
scribe the simulation data one can argue that the specific RG expressions are oly
valid asymptotically in the limit A — 0, L — oo and that our simulations have
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not entered yet this asymptotic regime. Also, we note that the discretization in
equation (5) can only be expected to reproduce the continuum behaviour used in
the RG calculations if the mesh size ag is much less than the basic length scale
v3/X2.) inherent in (1). In our parametrization, this corresponds to A < V2.
However, our results for the finite-size analysis (which favoured ¢ = 3) were
obtained with 2 < A < 10. Simulations at smaller values of A (and therefore
extended to much longer times in order to allow the development of non-linear
effects) would be useful to resolve this issue. o
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