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1 Introduction

Over the past 15 years, the effect of noise on the behaviour of nonlinear systems
has been a major theme of investigation. An important example of a noise-
induced phenomenon is the so-called noise-induced transition [1], referring to
the situation in which the form of a probability density, describing the steady
state properties of a noisy nonlinear system, undergoes a qualitative change.
In its simplest version, one considers a system described by a scalar variable
obeying the following nonlinear stochastic differential equation:

¢ = f(z) + g()¢ , 1

where £ is a Gaussian white noise with intensity o2, interpreted in the Strato-
novich sense. The steady state probability corresponding to (1) reads

o? ,
PH(z) ~ exp /x dyf(y) - ?g(y)g (v) ' )
Z¢’(v)
2

The extrema # of this probability density obey the following equation:

0.2
f(z) - 79(5)9’(9‘6) =0. (3)

Note the appearance of an additional term, resulting from the noise, which can
change the type or -degree of nonlinearity of the steady state equation. For ex-
ample, for

t=—z4+21-2%)+(1-2%)¢ (4)

with |z| < 1, it is found that the probability density is unimodal, with a maxi-
mum at # = 0 (which corresponds to the deterministic steady state) for A = 0
and an intensity of the noise ¢ < 1. However the density becomes bimodal
for 62 > 1 (with new solutions |Z| # 0 appearing, cf. (3)). This phenomenon
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has been called noise-induced bistability. Nevertheless, one has to keep in mind
that this change in the form of the probability density does not correspond to
a genuine bifurcation or phase transition with breaking of ergodicity or of sym-
metry. In the above example, transitions between the £ > 0 and < 0 “phases”
occur constantly, fluctuations in the value of z are very large and one cannot
talk about different macroscopic phases. Furthermore the z «+ —z symmetry of
the model is not destroyed. One can reduce the frequency.of the transitions by
" playing on time scales in more complicated models [2], but this is only a quanti-
tative effect and there is no phase transition in the traditional sense of the word.
Our purpose here is to investigate if a genuine phase transition can occur when
considering spatially distributed systems. The answer turns out to be “yes”, but
the conditions for and characteristics of the transition are somewhat unexpected.
In particular it is found that model (4) does not undergo a phase transition.

2 Mean Field Model

By spatially coupling units ¢ that are described by scalar variables z; with local
dynamics identical to (1), one is led to the following set of stochastic differential
equations:

o= fa) + ool = o 3 (@i = 73) )

jeni)

where &; are uncorrelated Gaussian white noises with strength o2 and n(i) rep-
resents the neigbourhood of unit . We will be considering a cubic lattice so that
there are exactly 2d such neighbours. The multivariate steady state probability
associated to (5) is only known for the case of additive noise ¢ = 1. To make
progress in the multiplicative noise case, we introduce the Weiss mean field ap-
proximation and assume that ) «; = 2d(z) where () is the average value
jen(i)

which uniform throughout the system [3]. In this way, the equations for all the
units decouple, and (5) takes on a form similar to (1), but with f replaced by
f — D(xz — (z)). The solution for the single unit steady state probability thus
reads (cf. (2), we dropped the subscripts ¢ for simplicity of notation):

1) - g () - Dly — (=)
- /dy ¥) — 59 (v y -

P
g" 2
59 ()
The value of (z) follows from the self-consistent requirement that
@) = [do e Pa)= F(a)) (7)

Whenever this nonlinear equation in (z) has multiple solutions, the mean field
theory predicts symmetry breaking associated to the occurrence of a phase tran-
sition. To get an idea of what kind of results to expect, we consider the limit
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D — oo, in which case (7) reduces to the following simple form:

() + ol (=) =0 ®

This equation should be compared with (3). First note the difference in inter-
pretation. The solutions to (8) correspond to the various macroscopic phases of
our system, not to extrema of some probability density. Secondly, we note the
surprising difference in the sign between (3) and (8). One of the consequences is
that models that exhibit noise induced bistability do not present, in their spa-
tially extended version, a phase transition to an ordered phase. We now turn to
a model which does exhibit such a phase transition [4].

3 Noise-induced Phase Transition
Consider the following model:
f@)=—z(1+2%" g(z)=1+2>. 9)

f and g have been chosen such that the system displays a perfect z «— —=z
symmetry. Yet, for an intensity of the noise larger then some critical value o? >
o2, where the value of o2 depends on D, the mean field theory predicts the
appearance of ordered phases with (z) # 0. This is already apparent from (8).
By Taylor expansion around (z) = 0, one finds

£((2)) + Zg((@)g' (=) = —(2) + o*{z) = 2(e)° + o*(2) + ..

so that two new symmetry breaking solutions {z) ~ ++/o2 — 1 appear for ¢ > 1.
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Fig.1. Phase diagram for the noise-induced phase transition as predicted by the mean
field theory.
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Fig. 2. Susceptibility in function of the intensity ¢ for the value of D = 20 and for
system sizes 10 X 10 (dashed line), 20 x 20 (dotted—dashed), 30 x 30 (dotted) and 40 x 40
(solid}.

A numerical analysis of (7) confirms this result, and allows one to determine
the region in parameter space (D, 02) where the ordered phase appears (see Fig.
1). One concludes from the mean field analysis that the ordered phase appears
for a sufficiently strong spatial coupling, and in a window of intermediate noise
strengths. In other words, the transition is reentrant. These qualitative features
are confirmed by extensive simulations of a 2-dimensional system. Furthermore,
these simulations give convincing evidence of the fact that the appearance or
disappearance of the ordered state takes place through a genuine second order
phase transition with all the properties normally associated to equilibrium phase
transitions such as scaling, divergence of the susceptibility and of the temporal
and spatial correlations, finite size effects, etc. As an illustration, we have plotted
in Fig. 2 the susceptibility in function of the intensity o2 for the value of D =
20 and for system sizes up to 40 x 40. One clearly sees the development of
divergencies at the first and reentrant location of the phase transition. Note that
the mean field prediction overestimates the location of the reentrant transition
(for more details see [4]). Further and more accurate simulations will be needed
to determine the value of the critical exponents or to determine the universality
class of this new type of nonequilibrium transition.

4 Discussion

The present work ends the speculation about whether multiplicative noise can be
an essential ingredient for the formation of structure. The answer is affirmative,
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but our theoretical results also indicate that this phenomenon cannot be prop-
erly discussed within the context of a theory for zero-dimensional systems. For
example, the model defined in (9) does not undergo a noise-induced bistability.
We therefore believe that the physical ingredients leading to the formation of
ordered structures under influence of multiplicative noise are essentially different
from those needed or discussed in the context of noise-induced transitions.
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