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�� Monte Carlo Methods

���� Introduction

In many occasions we need to compute the value of a high�dimensional integral
of the form�Z �

��

dx� � � �

Z �

��

dxNf�x�x�� � � � � xN	G�x�� � � � � xN 	 �
Z

dXf�x�X	G�X	 ����	

here N is a large number and we have denoted by X the set �x�� � � � � xN	 of real
variables
 The function f�x�X	 is non�negative and normalized� i
e
�

�i	 f�x�X	 � �

�ii	

Z
f�x�X	 dX �

Z �

��

dx� � � �

Z �

��

dxNf�x�x�� � � � � xN 	 � �
����	

In next chapters we will give specic examples of when one needs to perform
this type of calculation
 If the above integral can not be computed by analyt�
ical methods �which happens more often than desired	� one has to resource to
numerical methods
 One must realize� however� that a simple extension of the
standard methods used in small�N numerical integration �Simpson rules� Gauss
integration� etc
 �Faires et al
 ����		 to compute numerically the value of the
integral will fail for very high�dimensional integrals
 For instance� let us take
N � ��� �and this is a rather small number for typical applications	 and sup�
pose we want to use Simpson methods
 We need to generate a grid in the X space
and sum up all the values of G�X	 on the points of this grid
 If we choose� say�
a grid of �� points per every coordinate� we will have ����� terms to add in the
Simpson rule
 If every addition takes ����� s �and today�s computers take much
longer than that	 the time needed for the calculation exceeds any astronomical
unit of time �including the age of the universe	
 The situation does not improve
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by diminishing the number of points in the integration grid
 Even � points per
integration variable is beyond the capability of any present �or future	 computer


The solution to this problem is given by application of the Monte Carlo
techniques �Kalos et al
 ����� Binder ����� Heermann ����	
 For our particular
example� they consist in interpreting f�x�X	 as a probability density function
of some random variable �x and� consequently� the integral is nothing but the
average value of the function G�X	�

hGi �

Z
dXf�x�X	G�X	 ����	

The key idea behind Monte Carlo integration is to approximate the previous
average by a sample average�

hGi � �M �G� �
�

M

MX
k��

G�X�k�	 ����	

where X�k�� k � �� � � � �M are values of the N�dimensional variable X dis�
tributed according to the probability density function f�x�X	
 This is called the
technique of importance sampling
 The basic principle of sampling is the same
one that allows politicians to have an accurate knowledge of the election results
before election day by making random polls amongst a representative sample of
the electors


A more precise statement on the relation between the average hGi and the
sample average �M �G� is given by the central limit theorem �Feller ����	
 This
theorem states that� if the values of X�k� are statistically independent� then the
sample average �M tends in the limit M � � to a Gaussian distribution of
mean hGi and variance ����M � given by�

����M � �
�

M
���G� �

�

M

�hG�i � hGi�� ����	

It is costumery to express the relation between �M �G� and hGi as�

hGi � �M �G�� ���M � ����	

which is to be interpreted in the usual statistical sense for the Gaussian
distribution� i
e
 that there is a ������ probability that hGi lies in the in�
terval ��M �G� � ����M �� �M �G� � ����M �	� ������ in the interval ��M �G� �
����M �� �M �G� � ����M �	� etc
 In practice� the unknown variance ���G� can be
replaced by the sample variance�

���G� � �

M

MX
k��

G�X�k�	� �
�

�

M

MX
k��

G�X�k�	

��

����	

According to relation ��
�	 the error in a Monte Carlo integration decreases as
the inverse square root of the number of samplingsM 
 In the case that the values
X�k� are not independent� two major modications are needed�
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�a	 The variance of the sample average is given by�

����M � �
���G�

M
���G � �	 ����	

where the autocorrelation time �G is given �in the limit of large M 	 by�

�G �
�X
k��

�G�k	 ����	

here the normalized autocorrelation function �G�k	 is dened as�

�G�k	 �
hG�X�k��	G�X�k�k��	i � hGi�

���G�
�����	

The situation for non zero autocorrelation time can arise� for instance�
when the value X�k� depends on the value X�k���
 In our poll example�
this can occur if the k�th person to be questioned lives in the neighbour�
hood of the �k � �	�th person� such that their social classes are likely to
be similar
 Intuitively� �G measures the number of values of the sample
X�k�� X�k���� � � � � X�k��G� that we have to discard in order to consider that
X�k� and X�k��G� are independent of each other
 A problem of Monte Carlo
methods is that� in many cases of interest� �G becomes very large and grows
with the number of variables N 


�b	 The relation hGi � �M �G�� ���M � has to be interpreted now according to
Chebichev�s theorem �Feller ����	�

P �j�M �G�� hGij � k���M �	 � �� �

k�
�����	

i
e
 the probability that hGi lies in the interval ��M �G�� ����M �� �M �G� �
����M �	 is at least ���� that it lies in ��M �G�� ����M �� �M �G� � ����M �	�
at least ������� etc


The above Monte Carlo importance sampling procedure is one of the most
powerful methods available to compute high�dimensional integrals
 In order to
completely specify the method� though� we need a procedure to generate the
values of the samples X�k� that appear in the above formulae
 These should be
values of the N�dimensional variable �x�� � � � � xN 	 distributed according to the
probability density function f�x�X	
 There are several methods devised to gener�
ate the required values X�k�
 Before we can explain the very powerful methods
available we need to study in detail some simpler cases
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���� Uniform sampling

Let us start with a simple example
 Consider the one�dimensional �N��	 inte�
gral�

I �

Z �

�

dx cos�x	 �����	

this is a particular case of Eq
��
�	 in which the function f�x�x	 is equal to � in the
interval ��� �	 and � otherwise
 The name uniform sampling comes from the
fact that the variable x is equally likely to take any value in the interval ��� �	 �or�
generally speaking� in any nite interval �a� b		
 Although one could� in principle�
devise some physical process that would produce values of a variable x uniformly
distributed in the interval ��� �	� it is preferable� for many reasons� to use simple
algorithms that can be programed on a computer and that produce �random�
type� �or pseudo�random	 numbers uniformly distributed in the interval ��� �	

We will not discuss in these lectures the interesting topic of pseudo�random
number generation
 An excellent exposition can be found in references �Knuth
����	 and �James ����	
 Let us simply assume that there exists a fortran func�
tion� which we will call ran u�	� which returns an independent random number
uniformly distributed in the interval ��� �	
 By using such a function� we can
implement very easily the algorithm of uniform sampling�

m�����

r����

s����

do �� k���m

x�ran�u��

gk�g�x�

r�r	gk

s�s	gk
gk

�� continue

r�r�m

s�s�m�r
r

s�sqrt�s�m�

write��
� r��	����s

end

function g�x�

g�cos�x�

return

end

The reader should nd out the name given to the function ran u�	 is his
own computer and run the above program checking that the error in the output
value scales as the inverse square root of the number of samples M 




Computational Field Theory and Pattern Formation �

���� Importance sampling for N��

In the N�� case� when the variable X � x has only one component� a simple and
important theorem allows to generate x�k� very easily
 Recall that the probability
distribution function F�x�x	 is dened by integration of the probability density
function f�x�x	 as�

F�x�x	 �

Z x

��
f�x�y	 dy �����	

Theorem � If f�x�x	 is a one�variable probability distribution function� then the

variable u � F�x�x	 is uniformly distributed in the interval ��� �	�

As a consequence� we have the

Corollary � If u is uniformly distributed in the interval ��� �	� then x � F��
�x

�u	
is distributed according to f�x�x	�

�The proof of this theorem is left as an exercise for the reader	
 This the�
orem reduces the problem of generating random numbers according to a given
distribution f�x�x	 to the inversion of the corresponding probability distribution
function
 If� for instance� we want to use the method of importance sampling to
compute the integral

I �

Z �

�

dxe�xx� �����	

we can take f�x�x	 � e�x if x � �� and G�x	 � x�
 This choice for f�x�x	 respects
positivity and normalization
 To generate values of x�k� according to f�x�x	 we
need to invert F�x�x	� which in this case can be done analytically�

F�x�x	 �

Z x

�

dye�y � �� e�x � u� x � F��
�x

�u	 � � log��� u	 �����	

Since ��u is also uniformly distributed in the interval ��� �	 we can write simply�

x � � log�u	 �����	

which is equivalent to x � � log�� � u	 from the statistical point of view
 A
program to compute integral ��
��	 can be�

m�����

r����

s����

do �� k���m

x�ran�f��

gk�g�x�

r�r	gk

s�s	gk
gk

�� continue
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r�r�m

s�s�m�r
r

s�sqrt�s�m�

write��
� r��	����s

end

function g�x�

g�x
x

return

end

function ran�f��

ran�f��log�ran�u���

return

end

A technical point is that� in some cases� the function F��
�x

�u	 is not expressible
in terms of elementary functions and some kind of approximative methods �such
as numerical interpolation	 might be needed to compute it
 It is important to
realize that the decomposition of a given integral in f�x�x	 and G�x	 to put it in
the form of Eq
��
�	 might not be unique
 In the previous example� Eq
��
��	�
we could have taken as well f�x�x	 � xe�x and G�x	 � x
 This choice� however�
makes the probability distribution function F�x�x	 di�cult to invert


An important case in which the function F��
�x

�u	 is not easily calculable is
that of Gaussian random numbers �of mean zero and variance �	 for which the
probability density function is�

f�x�x	 �
�p
��

e�x
��� �����	

�random numbers y of mean � and variance �� are easily obtained by the linear
transformation y � �x� �	
 The inverse probability distribution function is

x �
p

� erf����u� �	 �����	

where erf���z	 is the inverse error function �Abramowitz et al
 ����� Valls
et al
 ����	
 The inverse error function does not usually belong to the set of
predened functions in a programming language� although some libraries �for
example� the NAG library	 do include it in their list of functions
 An alternative
to the generation of Gaussian distributed random numbers is the algorithm of
Box�Muller�Wiener �Box et al
 ����� Ahrens et al
 ����� ����	 which is based
on a change of variables to polar coordinates
 Namely�

x� �
p
� cos��	

x� �
p
� sin��	

�����	

If x� and x� are independent Gaussian variables� it is easy to prove that � and �
are independent variables
 � follows an exponential distribution and � a uniform
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distribution� so that their inverse distribution functions can be expressed in
terms of elementary functions
 Namely�

f���	 �
�

�
e���� � F���	 � �� e����� � � �

f���	 �
�

��
� F���	 �

�

��
� � � � � �� �����	

The resulting algorithm is�

x� �
p
�� log�u	 cos���v	

x� �
p
�� log�u	 sin���v	

�����	

Where u and v are independent random variables uniformly distributed in the
interval ��� �	
 The main advantage of this Box�Muller�Wiener algorithm is that
it is exact� yielding two independent Gaussian variables� x�� x� from two in�
dependent uniform variables� u� v
 Its main disadvantage� though� is that it is
extremely slow since it involves the calculation of trigonometric� logarithm and
square root functions
 In most of the applications a linear interpolation ap�
proximation to the inverse error function does produce su�ciently good quality
Gaussian random numbers at a considerable gain in speed �Toral et al
 ����	
 A
possible implementation of the Box�Muller�Wiener algorithm is the following�

function ran�g��

data is ����

is��is

if �is�eq��� then

a�sqrt�����
log�ran�u����

b������������
ran�u��

ran�g�a
cos�b�

x��a
sin�b�

return

endif

ran�g�x�

return

end

�a practical note� it might be necessary to tell the compiler that the two functions
ran u�	 that appear in the previous program produce di�erent values and need
to be computed separately� sometimes compilers are too clever	


Another important case that deserves being considered explicitly� in despite of
its simplicity� concerns the generation of events with a given probability
 Imagine
we want to simulate tossing a biased coin� with a p � ��� probability for heads
�and ��� for tails	
 We need to generate a variable that takes some value ��� for
example	 ��� of the times and another value ��	� ��� of the times
 This can
be done by comparing a random number u uniformly distributed in the interval
��� �	 with the given probability p
 If u � p then we take x � �� otherwise we
take x � �
 This is achieved by the program�
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if �ran�u���lt�p� then

x��

else

x��

endif

For N �dimensional variables �x�� � � � � xN	� the situation is much more com�
plex
 The equivalent of Theorem � states that in order to generate values of the
N�dimensional variable �x�� � � � � xN 	 we need �Rubinstein ����	� �i	 generate N �
independent random numbers �u�� � � � � uN 	 uniformly distributed in the interval
��� �	 �this is the easy part	 and �ii	 solve the following set of equations�

Fx��x�	 �u�

Fx��x�jx�	 �u�

� � � � � �

FxN �xN jx�� � � � � xN��	 �uN

�����	

Where� for example� Fx��x�jx�	 is the conditional probability distribution func�
tion of the variable x� given that x� has taken a particular value� and so on

The calculation of the conditional probability distribution functions is generally
at least as complicated as the calculation of the original integral we wanted to
compute numerically and the above procedure is of little practical use
 In or�
der to develop alternative methods suitable for the generation of N �dimensional
variables we need rst to introduce the so�called rejection methods for � variable


���� Rejection method for N��

In those cases that the inverse probability distribution function is di�cult to
compute� the rejection method o�ers a very convenient alternative
 Also� it is
the basis of the N �dimensional methods which we will develop later
 The method
is based on the fact that the probability density function f�x�x	 is proportional
to the probability that the variable x takes a particular value
 If� for example�
f�x�x�	 � �f�x�x�	� we can a�rm that the value x� is twice as probable as the
value x�
 The rejection method �in its simplest version	 proposes the values x�
and x� with the same probability and then accepts the proposed value x with
a probability h�x	 proportional to f�x�x	� such that� in our example� x� will be
accepted twice as many times as x�
 Consequently� x� will appear twice as many
times as x�� which is equivalent to saying that x� is twice as probable as x�
as desired
 We will illustrate the method by an example
 Let us consider the
probability density function�

f�x�x	 � �x��� x	� x � ��� �	 �����	

Which has the shape indicated in Fig
�

We propose a value of x uniformly in the interval ��� �	
 The proposed value

has to be accepted with a probability h�x	 proportional to f�x�x	� h�x	 � 	f�x�x	
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Fig� �� Probability density function f�x	x
 � �x	� � x
 	solid line
 and acceptance
probability h	x
 � �x	�� x
 	dashed line


The constant 	 is arbitrary but the resulting function h�x	 has to be interpreted
as a probability� which means that we have to keep the bounds � � h�x	 � �
 This
yields 	 � �

maxx f�x�x�

 Obviously� the rejection method is more e�cient when the

acceptance probability is high� which means that one has to take the maximum
possible value for 	
 In our example� the maximum for f�x�x	 is at x � ����
f�x����	 � ���� so that we take 	 � �
� and� consequently� h�x	 � �x��� x	� see
Fig
�
 The acceptance process is done as explained in the previous section by
comparing the probability h�x	 with a random number uniformly distributed in
��� �	
 The whole process is repeated until the proposed value is accepted
 The
nal algorithm can be coded as�

function ran�f��

h�x�����
x
�����x�

� x�ran�u��

if �ran�u���gt�h�x�� goto �

ran�f�x

return

end

We will now consider a more general version of the rejection method in which
a value is proposed according to some probability distribution function g�x�x	 and
then accepted according to some probability h�x	
 The probability distribution
function of the joint process �propose the value x and accept it� is g�x�x	h�x	

According to the Bayes theorem� the probability density function of the variable
x given that it has been accepted is �Grimmett et al
 ����	�

f�x�x	 �
g�x�x	h�x	R�

��
dzg�x�z	h�z	

�����	
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One interesting thing to notice is that the previous expression is properly nor�
malized
 This is very important in those cases where the normalization constant
for f�x�x	 is not known explicitly
 Looking at Eq
��
��	 one can see that there is
some freedom in choosing the functions g�x�x	 and h�x	
 The only requirement
is that its product g�x�x	h�x	 be proportional to the function f�x�x	 we want to
generate
 An important constraint is that the proposal g�x�x	 must be normal�
ized and that the acceptance function h�x	 must be bound in the interval ��� �	

For instance� in the example of Eq
��
��	� we could have considered g�x�x	 � �x

The function h�x	 should then be proportional to ���� x	
 Since � � h�x	 � �
one takes simply h�x	 � � � x
 The generation of g�x�x	 � �x is straightforward
since the inverse probability distribution function is G��

�x
�u	 �

p
u
 The pro�

posed value is accepted with probability � � x� i
e
 rejected with probability x

This can be coded as�

function ran�f��

� x�sqrt�ran�u���

if�ran�u���lt�x� goto �

ran�f�x

return

end

An e�cient method is one that requires� on average� a small average number
of proposals before acceptance
 This average number is given by the inverse of
the overall acceptance probability� pa which is nothing but the denominator of
expression ��
��	�

pa � p�accept	 �

Z �

��

dzg�x�z	h�z	 �����	

It is easy to show that of the two methods developed for the function ��
��	 the
rst algorithm is more e�cient than the second


Let us consider yet another example� to generate numbers distributed ac�
cording to

f�x�x	 � C exp

�
�x

�

�
� x�

�
�����	

the obvious choice is �notice that the precise value of C is not needed	�

g�x�x	 �
�p
��

e�
x�

�

h�x	 �e�x
�

�����	

Here g�x�x	 is nothing but a Gaussian distribution� and h�x	 is the optimal choice�
given the choice for g�x�x	� since maxx h�x	 � �
 The overall acceptance proba�
bility is� according to Eq
��
��	�

pa �

Z �

��

dz
�p
��

e�
z�

� e�z
� � ������� �����	

And the average number of trials needed to accept a value is �
�������� ���
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���� Rejection with repetition

There is a modication of the rejection method consisting in the following� if
the proposed value is not accepted then� instead of proposing a new one� the
previous value is repeated
 This method obviously produces correlated values
�some of them will be equal to the previous ones	 but� however� can be very
e�cient for vector computers in which the usual structure of the rejection method
prevents vectorization
 We still have to prove that the values generated with this
method do follow the required distribution f�x�x	
 According to Bayes theorem�
the probability density function f�xn�x	 generated at the n�proposal step will
have two di�erent contributions corresponding to the acceptance or rejection�
respectively� of the proposed value�

f�xn �x	 � f�xn �xjaccept	p�accept	 � f�xn �xjreject	p�reject	 �����	

The rst term of the right hand side can be written as the probability of accep�
tance given x �which is the function h�x		 times the probability density function
of proposing x �which is g�x�x		�

f�xn �x	 � h�x	g�x�x	 � f�xn�xjreject	�� � pa	 �����	

If x has been rejected� the previous value is repeated which means that the
probability density function at the n�step in the case of rejection is the same
that the one at the �n� �	�step�

f�xn �x	 � h�x	g�x�x	 � f�xn��
�x	

�
��

Z �

��

dzh�z	g�x�z	

�
�����	

where we have substituted pa as given by Eq
��
��	
 The solution of this linear
recurrence relation is�

f�xn �x	 � ��� pa	n

�
f�x��x	� h�x	g�x�x	R�

�� dzh�z	g�x�z	

�
�

h�x	g�x�x	R�
�� dzh�z	g�x�z	

�����	

We can write this result in terms of the desired distribution f�x�x	� Eq
 ��
��	�

f�xn �x	 � ��� pa	n �f�x��x	� f�x�x	� � f�x�x	 �����	

Given that � � pa � �� one concludes that the solution tends to the desired
distribution in the limit n�� independently of the initial distribution f�x� �

limn��f�xn �x	 � f�x�x	 �����	

If the initial proposed numbers x� are distributed according to f�x�x	� i
e
 if
f�x��x	 � f�x�x	� then we would have f�xn �x	 � f�x�x	� 	n and the numbers we
obtain are distributed according to the desired distribution from the beginning

However� if the initial numbers are not distributed according to f�x�x	 �as it is
usually the case	 we can still a�rm that� thanks to the factor ���p	n� the initial
condition will be lost after a number su�ciently large of proposals
 This process
of rejecting the� say� M� initial values produced because they are not distributed
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yet according to the required distribution is called thermalization
 The initial
time needed for thermalization can be computed from the non�linear correlation
function �Binder et al� ����	�

�NLx �k	 �
hx�k�i � hxi
hx���i � hxi �����	

The time M� can be measured as a characteristic time for the decay of the
above function towards the stationary value �
 For the method of rejection with
repetition the non�linear correlation function coincides with the auto�correlation
function �see later	�

�NLx �k	 � ��� pa	k �����	

The thermalization time M� can be dened as the time it takes the above func�
tion to reach a small value �


M� �
ln �

ln��� pa	
�����	

If� for instance� � � ����� pa � ���� we have M� � ��

We can illustrate now the enhancement of the errors due to the correlations


In this method of rejection with repetition� one can compute the correlation
function of the variable x as �see Eq
��
��		�

�x�k	 � lim
k���

hx�k�x�k�k��i � hxi�
hx�i � hxi� � ��� pa	k �����	

From Eq
��
�	 we deduce that the autocorrelation time is�

�x �
�X
k��

�x�k	 �
�� p

p
�����	

Remember that� according to Eq
��
�	 the statistical error gets enhanced by the
factor ���x � �	���


We nally mention that it is possible to interpret this algorithm of rejection
with repetition as a Markov succession �Grimmett et al
 ����	
 Indeed� Eq
��
��	
can be cast in the form�

f�xn �x	 �

Z �

��

f�xjy	f�xn��
�y	 dy �����	

where the transition probability is�

f�xjy	 � h�x	g�x�x	 �

�
��

Z �

��

dzh�z	g�x�z	

�
�x� y	 �����	
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���� The algorithm of Metropolis et al�

Although it is very powerful� the rejection method can fail if the distribution is
very peaked around an �unknown	 value x� �see Fig
�	
 If our proposal does not
take into account that only a very small part of the variable space �that around
x�	 is important� we are bound to have a extremely high rejection probability
yielding the rejection method completely useless
 The solution comes by making
a proposal that does not di�er much of the present value of the random vari�
able we are sampling� i
e
 by having the transition probabilities of the Markov
succession depend explicitly on the present value� say y� of the variable
 This
implies that the functions h�x	 and g�x�x	 depend on y and become two�variable
functions� g�x�xjy	� h�xjy	
 The transition probability Eq
��
��	 then becomes
also a two variable function�

f�xjy	 � h�xjy	g�x�xjy	 �

�
��

Z �

��

h�zjy	g�x�zjy	 dz
�
�x� y	 �����	

Fig� �� Function f�x	x
 for which the rejection method can fail

The equation giving the evolution of the probability density function at the n�
step is still Eq
 ��
��	� but now the recursion equation for f�xn�x	 does not tell
us in a straight way which is the stationary �n � �	 distribution
 We would
like to have f�x�x	 as stationary solution of the recursion equation� i
e�

f�x�x	 �

Z �

��
f�xjy	f�x�y	 dy �����	

By using the normalization condition
R�
��

f�yjx	 dy � � and the denition ��
��	
for the transition probability f�xjy	� one gets easily�Z

dy �g�x�xjy	h�xjy	f�x�y	 � g�x�yjx	h�yjx	f�x�x	� � � �����	



�� Ra�ul Toral

A su�cient condition to fulll this relation is given by the detailed balance

condition�
g�x�xjy	h�xjy	f�x�y	 � g�x�yjx	h�yjx	f�x�x	 �����	

to be satised by the proposal g�x�xjy	 and the acceptance probability h�xjy	
 Let
us remark that if the detailed balance condition is satised and if f�x��x	 � f�x�x	
then f�xn �x	 � f�x�x	� 	n
 Also� if the transition probabilities satisfy the condition
of ergodicity� which� roughly speaking� means that any value for the random
variable can be achieved starting from any other value after a su�cient number
of steps� then we can assure that f�x�x	 is the only stationary solution of the
Markov succession and that limn�� f�xn�x	 � f�x�x	� independently of the value
of f�x��x	 �see Kalos et al� ����	


It is important to stress that any functions g�x�xjy	 and h�xjy	 that satisfy
ergodicity and the detailed balance condition are suitable to use in this rejection
method
 The most widely used solution is the one given by the the Metropolis

algorithm �Metropolis et al
 ����	 in which g�x�xjy	 is a given function usually
of the form�

g�x�xjy	 �
�

��
� if jx� yj � � �����	

i
e
 x is sample uniformly from the interval �y � �� y � �	
 Once the value of
x has been proposed one looks for acceptance probabilities h�xjy	 verifying the
detailed balance condition�

h�xjy	
h�yjx	

�
g�x�yjx	f�x�x	

g�x�xjy	f�x�y	
� q�xjy	 �����	

When searching for solutions of these equations one has to remember that h�xjy	
is a probability and must also satisfy the condition � � h�xjy	 � �
 A possible
solution is the Metropolis solution�

h�xjy	 � min��� q�xjy		 �����	

Another widely used solution is the Glauber solution �Glauber ����	�

h�xjy	 �
q�xjy	

� � q�xjy	 �����	

A family of solutions is obtained by�

h�xjy	 �
p
q�xjy	� �q�xjy		 �����	

where ��z	 is any function satisfying

��z	 � ��z��	 �����	

In particular� the Metropolis solution is recovered taking�

��z	 � min�z� z��	 �����	

and the Glauber solution taking
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��z	 �
�

z��� � z����
�����	

Before we use the Metropolis algorithm to study some models of eld theory�
we want to nish this section by showing the use of the Metropolis algorithm
with a simple example in a one variable case
 We will consider the Gaussian
distribution�

f�x�x	 � Ae�x
��� �����	

the normalization constant A is irrelevant for the Metropolis method
 The pro�
posal will be a value belonging to the interval �y ��� y � �	
 Notice that this
choice �Eq
��
��		 satises the symmetry relation g�x�xjy	 � g�x�yjx	
 This pro�
posal will be accepted with a probability given� for example� by the Metropolis
solution Eq
��
��	�

h�xjy	 � min��� q�xjy		 � min��� e�y
��x����	 �����	

i
e if jxj � jyj accept with probability �� otherwise accept with probability

e�y
��x����
 The Metropolis algorithm can be coded as�

function ran�g�y�delta�

x�y	delta
��
ran�u�����

if�abs�x��gt�abs�y�� then

if �exp����
�y�x�
�y	x���lt�ran�u��� then

ran�g�y

return

endif

endif

y�x

ran�g�y

return

end

Intuitively� the e�ect of this algorithm is to accept with a larger probabil�
ity those proposals which tend towards the origin� where the probability has a
maximum


An important warning concerns the fact that we must keep the old value of
the variable if the new one has been rejected
 We can not keep proposing until
a value is accepted �at variance with what happened in the ordinary rejection
method in which the two procedures were correct	
 If one does not keep the old
value� a reasoning similar to the one used in the rejection method� section �
��
leads to the following transition probabilities� see Eq
��
��	�

f�xjy	 �
h�xjy	g�xjy	R�

�� dzh�zjy	g�zjy	 �����	

and�

f�yjx	 �
h�yjx	g�yjx	R�

��
dzh�zjx	g�zjx	

�����	
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Now it is very di�cult to satisfy the detailed balance conditions� Eq
��
��	�
namely�

h�xjy	g�xjy	R�
��

dzh�zjy	g�zjy	 f�x�y	 �
h�yjx	g�yjx	R�

��
dzh�zjx	g�zjx	

f�x�x	 �����	

since the integrals are generally di�cult to compute �in particular� the Metropo�
lis solution does not satisfy this condition	
 The reader can test the following
modication of the Metropolis algorithm for the Gaussian distribution�

function ran�g�y�delta�

� x�y	delta
��
ran�u�����

if�abs�x��gt�abs�y�� then

if �exp����
�y�x�
�y	x���lt�ran�u��� goto �

endif

y�x

ran�g�y

return

end

and check that it does not produce Gaussian random numbers �it is worse for
large �	


For e�ciency of the Metropolis algorithm � must be chosen such that the
autocorrelation time of the algorithm� � � takes its minimum value
 It is easy to
understand why there must be a minimum of � as a function of �
 If � is very
small� the new proposal will be very close to the old one �hence highly correlated	�
� will be large and h�xjy	 will be very close to � such that the acceptance will be
also close to �
 On the other hand� if � is large� the acceptance probability will
be small and the proposed value will be often rejected� such that the new value
will be equal to the old one �again highly correlated	
 A rule of thumb tells us
that � must be chosen such that the acceptance probability is neither too high�
neither too small� i
e
 of the order of ���


��	� Rejection method in the N
dimensional case

We really do not need to develop any new concepts
 The nice thing about the
Metropolis algorithm is that is easily generalizable to the N �dimensional case

Simply replace x and y in the above expressions by the N �dimensional variable
vectors �x�� � � � � xN 	 and �y�� � � � � yN 	� respectively� and all of the above formulae
and concepts will still apply
 In order to keep the acceptance probability within
reasonable limits� the proposal can not be too di�erent from the old value
 This
is achieved by changing only one of the N variables at one time
 The variable
to be updated can be chosen randomly amongst the set of the N variables or
sequentially
 If chosen randomly the function g�x�xjy	 is explicitly given by�

g�x�xjy	 �
�

N

NX
i��

�

��

Y
j ��i

�xj � yj	 �����	
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Since it veries the symmetry condition g�x�xjy	 � g�x�yjx	� the function
q�xjy	 is simply q�xjy	 � f�x�x	
f�x�y	
 The acceptance probability can be chosen
as the Metropolis solution h�xjy	 � min��� q�xjy		 or other solution


���� Heat Bath

In the Metropolis algorithm the acceptance probability h�xjy	 was determined
�with some freedom	 once the proposal g�x�xjy	 had been specied
 In the so
called heat bath algorithm� which is useful for N �dimensional variables� the
proposed value for the variable is always accepted� i
e
 one chooses

h�xjy	 � � �����	

The detailed balance condition becomes

g�x�xjy	f�x�y	 � g�x�yjx	f�x�x	 �����	

In the ��variable case� a trivial solution �remember that g�x�xjy	 must be a prob�
ability density function	 is� g�x�xjy	 � f�x�x	 which is independent of the old
value y
 In the N �variable case� a solution is found by changing only one of the
N variables at a time�

g�x�xjy	 �
�

N

NX
i��

g�x�xijy	
Y
j ��i

�xj � yj	 �����	

where each of the functions g�x�xijy	 satises detailed balance�

g�x�xijy	f�x�x�� � � � � xi��� yi� xi��� � � � � xN 	 �

g�x�yijx	f�x�x�� � � � � xi��� xi� xi��� � � � � xN	
�����	

A solution of this functional equation is obtained by taking g�x�xijy	 � g�x�xi	�
independent of y� as the following conditional probability�

g�x�xi	 � f�x�xijx�� � � � � xi��� xi��� � � � � xN 	 �����	

It is trivial to verify detailed balance� Eq
��
��	� if one remembers the denition
of the conditional probability�

f�x�xijx�� � � � � xi��� xi��� � � � � xN	 �
f�x�x�� � � � � xi��� xi� xi��� � � � � xN 	

f�x�x�� � � � � xi��� xi��� � � � � xN 	
�����	

Intuitively� what the heat bath method does when updating variable xi� is
to select the value of xi according to the conditional probability given that
the rest of the variables is xed
 These xed variables act a a heat bath

for variable xi
 In many cases� it turns out that the conditional probability
g�x�xi	 � f�x�xijx�� � � � � xi��� xi��� � � � � xN	 takes a simple form and can be sam�
pled by any of the ��variable methods explained in this chapter
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�� �� Model

���� Introduction and basic de�nitions

We will illustrate the use of Monte Carlo techniques in eld theory with the
scalar �� model
 This model has been used in many di�erent contexts� in such
di�erent topics as quantum eld theory �Zinn Justin ����	 or in the study of
structural phase transitions �Cowley ����� Bruce ����� Bruce et al
 ����	


Let us consider a d�dimensional �hyper�cubic	 regular lattice �� consisting
of N � Ld points
 Every point i � �� � � � � N of this lattice has d coordinates�
i � �j�� � � � � jd	
 Periodic boundary conditions are assumed on this lattice
 On
every site of the lattice there is a scalar variable �i
 The set of all variables is
��� � ���� � � � � �N 	
 We also introduce a Hamiltonian function H given by�

�H����	 �
NX
i��

ad�

�
�b
�
��
i �

u

�
��
i �

K

�

dX
���

�
�i� � �i

a�

	�
�

����	

The sum over � runs over d�nearest neighbours of site i� i
e
 if the coordinates
of i are �j�� � � � � jd	 then the coordinates of i� are �j�� � � � � j� � �� � � � � jd	
 The
continuum limit of the system can be obtained by letting the lattice spacing a�
tend to � and the system size L to �
 In this limit� the sums are replaced by
integrals and the sum over � tends to a gradient
 The continuum Hamiltonian
is then�

�H����	 �

Z
dr

��b
�
��r	� �

u

�
��r	� �

K

�
jr��r	j�

�
����	

This expression for the Hamiltonian is the preferred one for analytical treatment�
such as series expansions or renormalization�group treatments in momentum
space �Amit ����	
 The lattice version is the preferred one for numerical studies�
besides the fact that it yields a regularization of the Hamiltonian �Parisi ����	

We will consider from now on only the lattice version of the �� model
 We can
set the lattice spacing a� � �� since it can be rescaled in the parameters b� u and
K


The rst two terms of the sum appearing in the Hamiltonian ��
�	 are local
terms �depending only on the eld at location i	 and can be thought of as local
potential terms V ��i	�

V ��i	 �
�b
�
��
i �

u

�
��
i ����	

For stability of this local potential� the parameter u must be greater than �

The local potential changes qualitative when the parameter b changes sign �see
Fig
�	
 If b � � the local potential has only one minimum at �i � �
 On the other
hand� when b � � there are two minima of equal depth located at �i � �pb
u


The third term in ��
�	� the one multiplied by K� is called the interaction
term
 When K � �� the contribution of this term is always non negative and
the ground state of the Hamiltonian H is reached when the contribution of this
term is zero� i
e
 when all the elds take the same values �i � ��� 	i
 This is
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the situation considered by the simple mean �eld theory �Landau et al
 ����	

Since all the elds take the same value� the mean eld Hamiltonian reduces to�

N���HMF ���	 �
�b
�
��
� �

u

�
��
� ����	

Fig� �� Local Potential V 	�
� Eq�	���
� in the cases 	i
 b �  and 	ii
 b � 

The value of the mean eld value �� depends on the constants b� u and is
given by�

�� �


��
�

� if b � �r
b

u
if b � �

����	

�see Fig
�	
 To go beyond mean eld theory one needs to consider �uctuations�
the elds �i do not take a constant value� but �uctuate from one lattice site
to another
 In this case� we need a statistical description which� according to
the principles of Statistical Mechanics �Pathria ����	� is given by the canonical
distribution
 The probability density function f����	 governing the statistical
properties of the elds ��� at inverse temperature � is�

f����	 �
e��H	�


Z�b� u�K	
����	

The denominator of this expression is called the partition function and it is
the multiple integral of the numerator for all the eld values�

Z�b� u�K	 �

Z �

��

d�� � � �

Z �

��

d�Ne
��H�	�
� �

Z
d�e��H�	�
� ����	

The magnitudes of interest are computed as averages of eld functions� G����	�
with the probability density function f����	�
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hG����	i � Z��
Z

d�G����	e��H�	�
� ����	

Example of quantities of interest are the magnetization� m dened as�

m � h �

N

NX
i��

�ii ����	

the energy� e�

e �

�H���

N

�
�����	

the magnetic susceptibility� �T �

�T � N

�
�h
�

�

N

NX
i��

�i

��

i � hmi�
�
� �����	

the specic heat� CV �

CV � N

�
h
�H���

N

	�

i � hei�
�

�����	

and many others

In general� these quantities di�er considerably from the mean eld values
 In

Figure � we can see the di�erence between the magnetization computed from
a numerical calculation in two dimensions and the mean eld result �which is
independent of dimension	


It is known that the �� model belongs to the universality class of the Ising
model �Amit ����	
 This means that both models share the same critical ex�
ponents and scaling functions
 Here� however� we want to point out a di�erent
relation between the two models� namely� that the Ising model can be obtained
as a suitable limit of the �� model
 The limit is obtained as follows� expanding
the square in the �gradient� term and using the periodic boundary conditions�
one can rewrite the Hamiltonian in the form�

�H����	 �
NX
i��

��
dK � b

�

	
��
i �

u

�
��
i

�
�K

X
hi�ji

�i�j �����	

where the sum over hi� ji means sum over all the possible pairs of i�j nearest
neighbours in the lattice
 Introducing a rescaled eld variable

Si �
�iq
b��dK

u

�����	

one can write�

�H��S�	 � 	

NX
i��

�
��

�
S�
i �

�

�
S�
i

�
� �J

X
�i�j	

SiSj �����	
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Fig� �� Mean �eld magnetization� Eq�	���
 	solid line
 and the result of a numerical
calculation using Monte Carlo techniques in the two�dimensional system 	dashed line
�
In this plot we use the value � � � 	see Eq�	����
 for a de�nition of the parameters
�

with

	 �
��b� �dK	�

u
� �J �

K�b� �dK	

u
�����	

The Gibbs factor is

e��H�	S
� �
NY
i��


�
exp

�
�	���

�
S�
i �

�

�
S�
i 	

�
exp

�
��J X

�i�j	

SiSj

�
�
��
� �����	

The local factor of this distribution is always double peaked centered around
the values �� �see Fig
�	
 Now we can think of the parameter 	 as controlling
the width of the local eld distribution around these two maxima
 A large value
for 	 implies that the eld is bound to take essentially the values ��� and Si
becomes what is called a spin variable
 In the limit 	�� with J kept constant
we recover the Ising model
 This limit is obtained in the original �� model by
taking

b��
u��
b

u
� constant �J � K

b

u

�����	

In this limit� one obtains for the Gibbs factor�

e��H�	S
� �
NY
i��

�
�S�

i � �	
�
exp

�
��J X

�i�j	

SiSj

�
� �����	

This is equivalent to writing�
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H��S�	 � �J
X
�i�j	

SiSj Si � �� �����	

Which is nothing but the Hamiltonian of the Ising model
 For smaller values of
	� the eld can �uctuate around the two maxima� hence the name of soft spins
model that sometimes is given to the �� model in this situation �Cowley �����
Bruce ����� Bruce et al
 ����	


Fig� �� Function f	x
 � exp
�
��	� �

�S
�
i �

�
�S

�
i 

�
appearing in Eq�	����
� in the cases

� � � 	solid line
� � � � 	dashed line
� � � � 	dotted�dashed line
� When ����
the function f�x	x
 tends to the sum of two delta functions located at x � ���

���� Monte Carlo methods

Before we proceed further and show how one can obtain numerically the quan�
tities of interest in the �� model� we notice that one of the three parameters
of the model� u� b�K� is redundant since it can be absorbed in the eld scale

Many ways of redening parameters have been used in the literature �see �Toral
et al
 ����	 for a review	
 We will use here a simple reparametrization in which
the eld is rescaled by a factor K��� hence yielding a parameter independent
interaction term �this rescaling is obviously valid only in the ferromagnetic case
K � �	
 Specically� we introduce a new eld �� and two new parameters � and
� by the denitions�

� � K����

� �
b

K

� �
u

K�

�����	

The Hamiltonian� in terms of these new variables� can be written as�
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�H����	 �
NX
i��

�
��
�
��i �

�

�
��i �

�

�

dX
���

�
�i� � �i

���

�
NX
i��

�
��

�
��i �

�

�
��i �

�dX
���

�i�i�

� �����	

�the sum over � runs over the �d nearest neighbours of site i	
 Here we have
introduced

�� � �d� � �����	

This Hamiltonian can be explicitly separated into the local part and the inter�
action part� �H � �H� � �HI with

�H� �
NX
i��

�
��

�
��i �

�

�
��i

�
�����	

�HI � �
X
�i�j	

�i�j �����	

Now it is about time we start applying what we learnt in the previous chapter
about Monte Carlo techniques To implement the Metropolis algorithm we need
to take the following steps�
�i	 Select �randomly or sequentially	 one of the N eld variables� �i

�ii	 Propose a change to another close value� ��i� chosen randomly in the interval

�i � ���i � �� with � a suitable value selected such that the acceptance
probability is around ���


�iii	 Compute the change in energy� �H that this proposed change produces

�iv	 Accept the proposed value ��i with probability min��� e��
H	


In computing the change of energy one does not have to use the full expression
��
��	� but rather notice that most of the terms disappear when subtracting the
old and the new energy� such that the change in energy is simply�

��H �
��

�
���

�
i � ��i 	 �

�

�
���

�
i � ��i 	 � ���i � �i	

�dX
���

�i� �����	

This simple Metropolis algorithm has some convergence problems due to the
fact that most of the trials belong to a small probability region
 This is par�
ticularly true in the vicinities of the Ising limit in which the values around �
have a very small probability �see again Fig
�	
 Several methods have been pro�
posed as an alternative to the Metropolis algorithm and all of these methods
t into the proposal!acceptance scheme developed in the previous chapter� use
a proposal probability density function g�x�xjy	 �where x � ����� � � � � �

�
N	 and

y � ���� � � � � �N 	 stand for the complete eld conguration after and before the
proposal� respectively	 and an acceptance probability h�xjy	� satisfying detailed
balance�

g�x�xjy	h�xjy	e
��H�y�

Z � g�x�yjx	h�yjx	
e��H�x�

Z �����	
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As usual� only one variable will be updated at a time� what makes the proposal
g�x�xjy	 become a function g�x���ijy	
 In the approach of reference �Milchev et al

����	 the proposal g�x���ijy	 is chosen independent of y and proportional to the
Gibbs factor of the local term of the Hamiltonian�

g�x���i	 � C exp��
��

�
��

�
i �

�

�
��

�
i 	 �����	

this is a one�variable probability density function that can be sampled by any
of the methods explained in chapter �
 The authors in reference �Milchev et al

����	 chose a numerical inversion method
 Once this proposal has been taken�
in the detailed balance condition only the interaction part of the Hamiltonian
appears explicitly�

h�xjy	e��HI 	y
 � h�yjx	e��HI 	x
 �����	

For this equation we can use the Metropolis solution�

h�xjy	 � min��� e��
HI 	 �����	

where the novel feature is that only the change of the interaction energy appears
in the exponential
 This adopts a very simple form�

��HI � ���i � �i	
�dX
���

�i� �����	

In general� this procedure can be used when the Hamiltonian can be splitted in a
sum of local terms plus an interaction term
 One can chose the new value of the
variable� independently of the old value� according to the distribution dictated
by the local term
 This proposal is then accepted with the Metropolis probability
using only the interaction term


The heat�bath algorithm has also been used for this model �Toral et al
 ����	

Let us remember than in the heat�bath algorithm� the acceptance probability is
equal to � �i
e
 the proposal is always accepted	� one variable ��i is changed at
a time� and the proposal probability density function g�x���i	 is obtained from
a distribution in which all the other variables remain constant� i
e
 we need to
identify exactly where does the variable ��i appears� all the other terms will be
considered constants
 From Eq
��
��	 it is very easy to nd out the expression
for g�x���i	�

g�x���i	 � A exp

�
�

��

�
��

�
i �

�

�
��

�
i � ��i

�dX
���

�i�

�
�����	

A is some normalization factor depending on the values of the other elds �which
are considered to be constant in the heat�bath method	
 To sample this one�
variable probability density function it will not be useful to use a numerical
inversion method� because this function depends of the sum of the �d neighbours
of site i� which vary from trial to trial
 To sample this distribution we can use
instead a rejection technique
 If we introduce c �

P�d
��� �i� � we can write the

above function as�
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g�x���i	 � B
h
exp

�
��

�
��

�
i

�i� �
������

p
��

exp

�
� ���i � c
��	�

�����

��
�����	

B is another normalization constant
 This is the product of the function
exp���

��
��
i 	 and a Gaussian distribution of mean c
�� and variance ���� �for this

we require �� � �	
 This Gaussian distribution can be generated by the relation
��i � c
���������ran g�	 where ran g�	 is a Gaussian distributed random variable
of mean � and variance �
 Finally� the value ��i is accepted with a probability

exp���
��

��
i 	


Another elegant way of implementinga Monte Carlo method for the �� model
is that of Bruce �Bruce ����	 in his study of the border model �this is nothing but
the �� model in the case �� � �	
 In his approach� the proposal g�x�xjy	 � g�x���i	
is also independent of the old conguration y �in the same vein than heat�bath	�
but g�x���i	 is chosen to be the sum of two Gaussians which best approximate
the actual local distribution of the eld ��i�

g�x���i	 �
�

�

�
�

��
p

��
exp

�
� ���i � ��	�

����

	
�

�

��
p

��
exp

�
� ���i � ��	�

����

	�
�����	

To sample this distribution one generates a Gaussian number� ran g�	 of mean
� and variance � and a uniform number� �� in ��� �	
 If � � ��� then one chooses
the eld from the rst Gaussian distribution� i
e
 ��i � �� � ��ran g�	� else� if
� � ���� one chooses from the second� ��i � �� � ��ran g�	
 An initial guess of
the parameters ��� ��� �� and �� is later rened with the information coming
from the computed local distribution
 The acceptance probability must satisfy
detailed balance�

g�x���i	h�xjy	e
��H�y�

Z � g�x��i	h�yjx	
e��H�x�

Z �����	

introducing the e�ective interaction Hamiltonian� �H����	�

� �H����	 � �H����	 �
NX
i��

ln g�x��i	 �����	

the detailed balance condition becomes�

h�xjy	e�� �H�y� � h�yjx	e��
�H�x� �����	

from which it is clear that a possible solution for the acceptance probability is
the Metropolis solution in terms of the function �H�

h�xjy	 � min
�
�� e��


�H
�

�����	
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���� Histogram extrapolation

We have now developed some tools to study numerically the �� model
 We shall
next apply them to the computation of some magnitudes of interest
 Let us focus
rst on the magnetization m �see Fig
�	
 This is a function of the parameters �
and �
 If we are interested� say� in the variation of m with � for a xed value of
�� we have to run our numerical algorithm for several values of �
 For each run�
we have to make sure that the system has reached equilibrium �thermalization	
and then produce a su�cient number of independent congurations such that
the errors are kept under reasonable limits
 Repeating this procedure for a large
number of � values in order to have smooth curves for the magnetization is a
painful and slow procedure
 There is a way of improving somehow this process
by using information from simulations at a given value of the parameter � to
obtain results for another value ��
 The idea� which is extremely simple �and
clever 	� has been obtained and reobtained many times� but were Ferrenberg and
Swendsen �see Ferrenberg et al
 ���� and references therein	 who dramatically
demonstrated its utility in the case of the Ising model
 We now describe this
histogram extrapolation technique for the �� model


The congurations obtained in a numerical simulation using the Monte Carlo
method follow the Gibbs probability distribution which depend on the parame�
ters � and �� that we now write out explicitly�

f����� �� �	 �
e��H�	�
�����

Z��� �	
�����	

The type of averages one is interested on usually involve only the following
functions�

m� �
NX
i��

�i

m� �
NX
i��

��i

m� �
NX
i��

��i

m �
NX
i��

dX
���

��i� � �i	
�

�����	

other functions mi can be incorporated into what follows� but we restrict to
these for simplicity
 Since the Hamiltonian depends only on linear combinations
of m�� m� and m� the probability distribution function in terms of m�� m�� m�

and m is�

f�m��m��m��m� �� �	 �
N �m��m��m��m	 exp

�
�
�m� � �

�m� � �
�m

�
Z��� �	

�����	
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Here N �m��m��m��m	dm�dm�dm�dm is the number of congurations with
values of mi in the interval �mi�mi � dmi	� i � �� �� �� �
 These values of
N �m��m��m��m	 � N ��mi�	 are recorded during the simulation forming a
histogram �hence the name of histogram extrapolation	
 The partition function
can be expressed in terms of N ��mi�	 as�

Z��� �	 �

Z Y
i

dmiN ��mi�	 exp

�
�

�
m� � �

�
m� � �

�
m

	
�����	

The average value of any function G��mi�	 can be computed as�

hG��mi�	i �

Z Y
i

dmif��mi�� �� �	G��mi�	 �����	

The extrapolation scheme allows one to compute the probability density function
f��mi�� �

�� ��	� for values ��� �� of the model parameters� if f��mi�� �� �	 is known

For our particular model� the method is based on the exact relation�

f��mi�� �
�� ��	 �

f��mi�� �� �	 exp
�
����
� m� � ����

� m�

�
R Q

i dmif��mi�� �� �	 exp
�
����
� m� � ����

� m�

� �����	

Let us� in order to discuss the implication of this relation� consider the simpler
case �� � � for which the above formula reduces to�

f��mi�� �
�� �	 �

f��mi�� �� �	 exp
�
����
� m�

�
R Q

i dmif��mi�� �� �	 exp
�
����
�
m�

� �����	

This identity is telling us that if we know the probability distribution function
of the m�

is at a given value of the parameter � then we know it for any other
value ��
 This is wonderful Only one simulation at a selected value of � is
required Once we have computed the probability density function f��mi�� �� �	
we can obtain� by means of the previous formula� the probability density function
f��mi�� ��� �	 and from the knowledge of f��mi�� �� �	 we can compute any average
we need using Eq
��
��	


In practice� alas � things are not so easy
 Relation ��
��	 is indeed exact�
but what it is telling us is that the information contained in the tail of the
distribution of f��mi�� �� �	 is used to compute the distribution f��mi�� ��� �	� see
Fig
 �
 The only problem is that the errors in the tail of the distribution usually
are very large� so making infeasible to extrapolate to a value of �� very far from
�


Of course� the width of the distribution f��mi�� �� �	 will be very important to
determine the extrapolation range ��
 If the distribution is very wide� one can
extrapolate to farther away values than for a very narrow distribution
 This is
the reason why this histogram extrapolation technique is useful near the critical
point where the distributions are wider
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Fig� �� Probability distribution functions f	�mi�� �� �
 at two di�erent values of � using
Eq�	����
� According to Eq�	����
 the region around the maximum of the function given
by the dashed line is obtained from the tail of the function given by the solid line� where
statistical errors are larger�

���� Finite size scaling

In Figures � to �� we have plotted� for di�erent system sizes and using the
histogram extrapolation scheme� results for several quantities of interest� mag�
netization� energy� specic heat and susceptibility
 Each of these gures has been
produced by just two simulations whose location is marked with points in the
gures
 The rest of the curves have been obtained using the extrapolation scheme
detailed above


These gures show what is called �nite size e�ects �Barber ����	
 Let us
compare Fig
 � for the magnetization with Fig
� which depicts the mean eld
behavior and the expected true behavior
 The theory predicts that there should
be a value of � � �c below which the spontaneous magnetization is strictly zero

In fact� the magnetization behaviour near �c can be characterized by a critical
exponent� � such that�

m��	 �

�
� if � � �c

a�� if � � �c
�����	

Here � � �� �
�c


 This is a non�analytical behaviour which� strictly speaking� can
only appear in a system of innite size
 For a nite system� the number of inte�
grations appearing in the denition of the partition function and the calculation
of averages is always nite� thus leading necessarily to an analytical result
 We
can understand intuitively why nite size e�ects will be more important near
a second order phase transition
 In this situation the correlation length which
measures the linear range over which elds at di�erent sites of the lattice are
correlated� diverges �in an innite system	 with a power�law singularity�
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Fig� �� Magnetization m for the two�dimensional �� model for � � � and di�erent
values of the system side L � �� ��� ��� ��� � 	from bottom to top lines
� For each
value of L a continuous line has been drawn by running two simulations at the points
marked with a dot and extrapolating to other values of � using Eq�	����
�

Fig� �� Same than �gure � for the energy e and � � ���

���	 
 j�j�� �����	

For a nite system� the elds can not be correlated longer that the system side
and we must have � 
 L
 The theory of nite size tells us exactly how �and
why 	 the averages of interest behave �Cardy ����	
 The basic idea is that now
the magnetization� say� becomes a homogeneous function of � and the system
side L� m��� L	 � �x �m��
L	
 The unknown exponent x is obtained by demanding
that in the innite system� and close enough to the critical point� one recovers
the known behaviour given by Eq
��
��	
 This implies that the function �m�z	
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takes a nite limit when z � � and then�

m��	 � lim
L��

m��� L	 � �x �m��	 
 �����x 
 ��x� �����	

compared to ��
��	 one concludes � � �x� and then the prediction for the
magnetization near the critical point for a nite system is�

m��� L	 � ����� �m��
L	 � L���� ��m���� �
�c	L
����� �����	

The typical way of checking this scaling behavior is to plot m��� L	L��� vs the
rescaled variable �� � �
�c	L����
 If� as it is usually the case� the critical value
�c and the critical exponents �� � are not known� this procedure implies a three�
parameter t which is very di�cult to do in practice
 One can use the equivalent
scaling relations for the specic heat and the susceptibility�

C��� L	 � L�� ��C���� �
�c	L
�����

���� L	 � L���������� �
�c	L
����� �����	

Fig� 	� Speci�c heat for the two�dimensional �� model for � � �� Same symbols and
meanings than in �gure ��

From Figures � and �� we see that both C��� L	 and ���� L	 develop maxima at
locations ��c �L	 and ��c �L	� respectively
 By using the above expressions for the
specic heat and the susceptibility one can see that these values behave as�

��c �L	 � �c � a�L
����

��c �L	 � �c � a�L
����

�����	

From where we deduce that a plot of ��c �L	 and ��c �L	 vs L���� must yield a
straight line whose interception at the origin is precisely �c
 This can be seen
in Fig
�� for which the critical value �c � ������ ����� for � � � is deduced
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Fig� �
� Magnetic susceptibility for the two�dimensional �� model for � � ��� Same
symbols and meanings than in �gure ��

In this gure we have used the known value � � � for the � � d �� model

When the value of � is not known one could use directly the three parameter t
�ic�L	 � �c � aiL

���� to obtain �c although the quality of the t usually is not
good enough to allow also for a very accurate measurement of �
 Once the value
of �c is known one can use the remaining nite size scaling relations to obtain
the critical exponents


�� Field Dynamics

���� Introduction

Up to now we have focused only on the equilibrium properties of the scalar
�� model
 If one wants to write dynamical equations for the elds one nds
the di�culty that the �� Hamiltonian� so successful for equilibrium properties�
does not contain enough information �e
g
 kinetic energy terms	 to determine
the dynamics of the model
 Instead of adding more terms to the Hamiltonian�
the usual approach to study dynamical properties is to consider that the eld
variables follow some phenomenological equations of motion
 These equations
of motion will be stochastic in nature to re�ect our ignorance of the detailed
e�ect of the microscopic variables in the eld variables �Gunton et al
 ����b	

In addition� they must respect the basic symmetries of the system and lead� in
the limit of innite time� to the equilibrium canonical distribution given by the
Gibbs factor
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Fig� ��� Pseudo critical parameters ��c 	L
 	open dots
 and �
�
c	L
 	black dots
 de�ned as

the location of the maxima of the speci�c heat and susceptibility� respectively� plotted
vs� L��� The extrapolation to the origin� according to Eq�	����
 yields the critical value
�c � ����� � ���

���� The Langevin equation

As discussed before� one writes down semi�phenomenological stochastic equa�
tions �Langevin equations	 to model the time evolution of the eld
 For the
simplest case of the �� model without any further symmetry �remember than
the main symmetry of the model is the ����	� one is guided by the fact that
at su�ciently low temperatures the nal conguration must be a minimum of
the Hamiltonian
 Then� the time evolution is dened by a purely relaxational
model such that the speed of approaching the ground state is proportional to the
gradient of the Hamiltonian
 One adds a stochastic contribution �usually called
the noise term	 that ensures the correct thermal �uctuations in the stationary
�equilibrium	 state
 The resulting Langevin equation is�

���r� t	

�t
� �� H

��r� t	
� ��r� t	 ����	

Here � is a positive coe�cient usually assumed to be constant� although in some
cases one also studies the e�ect of the dependance of � on the eld � �Langer
et al
 ����� Lacasta et al
 ����� ����	
 As in the equilibrium case� one assumes
a lattice discretization in which� instead of a real variable in every point of the
space� only points on a d�dimensional lattice � are considered
 In the lattice
case� the functional derivative H
��r� t	 becomes a partial derivative�

d�i�t	

dt
� ��a�d�

�H
��i�t	

� �i�t	 ����	

In the absence of the noise term� it is easy to show that the system evolves
towards a minimum of the Hamiltonian
 We have�
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dH
dt

�
NX
i��

�H
��i

d�i
dt

� ��a�d�

NX
i��

�
�H
��i

	�

� � ����	

The statistical properties of the noise terms� �i�t	� have to be determined in
order to obtain the correct equilibrium distribution
 They are supposed to be
Gaussian distributed of mean zero and correlations given by�

h�i�t	�j�t�	i � Da�d� i�j�t � t�	 ����	

characteristic of the so called white noise �Gardiner ����	
 D is a parameter� to
be determined� representing the intensity of the noise and� consequently� D must
increase with temperature
 In the limit of the lattice spacing a� going to �� the
Kronecker�delta becomes a Dirac�delta function�

h��r� t	��r�� t�	i � D�r � r�	�t� t�	 ����	

From now on� we will take the lattice spacing as unit of length a� � �
 Since
�i is Gaussian� these correlation functions completely determine its statistical
properties
 We now relate the noise intensity D to temperature T 
 For later
reference� we will be more general and consider the set of stochastic di�erential
equations�

d�i�t	

dt
� Fi�t	 �

NX
j��

Gij�i�t	 ����	

With the same statistical properties for the noise term than before� Eq
��
�	

Gij is a constant matrix
 The complete statistical description of the elds ���
is given by the joint probability density function P ����� t	� which satises the
Fokker�Planck equation �Gardiner ����	
 The description given by the Langevin
equations is equivalent to the one given by the Fokker�Planck equation�

�P ����� t	

�t
�

NX
i��

�

��i

�
��FiP �

D

�

NX
j��

Hij
�P

��j

�
� ����	

The matrix H is H � GG�
 In the case we are concerned with� Eq
��
�	� H � I�
unity matrix� and Fi is related to the partial derivative of the Hamiltonian�

�P ����� t	

�t
�

NX
i��

�

��i

�
�
�H
��i

P �
D

�

�P

��i

�
����	

It is easy to verify that the stationary solution of this equation is�

Pst����	 � exp

�
���

D
H����	

�
����	

Since we want the statistical stationary properties of ��� to be determined by
the Gibbs distribution� exp ���H����	� we are led to identify�
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��

D
� � �� D � �kBT� �����	

D is then proportional to temperature� as we had anticipated
 By using the
expression for the lattice Hamiltonian equation ��
�	 we arrive at the following
equation�

d�i�t	

dt
� �kBT

�
b�i � u�

i �Kr�
L�i

�
� �i�t	 �����	

r�
L is the lattice laplacian operator dened by�

r�
L�i �

�dX
���

��i� � �i	 �����	

here the sum over � runs over the �d nearest neighbours of site i
 By redening
time t � t�KkBT and by introducing the same eld rescaling and parameters
than in the equilibrium case� Eq
 ��
��	� we arrive at the somewhat simpler
equation�

d�i�t	

dt
� ��i � ��i �r�

L�i � �i�t	 �����	

where the new noise variables �i satisfy�

h�i�t	�j�t�	i � �i�j�t � t�	 �����	

The Langevin equation we have considered so far is the simplest dynami�
cal model than can be written for a scalar eld and in the famous taxonomy
of Hohenberg and Halperin �Hohenberg et al
 ����	 is simply called model A

Langevin�type equations can describe more complex systems� such as model B

which is obtained formally by replacing the constant coe�cient � in Eq
��
�	
dening model A by ��r�
 The resulting equation of motion is�

���r� t	

�t
� r�

�
�
H����	

��r� t	

	
� ��r� t	 �����	

where ��r� t	 are Gaussian distributed random variables of mean zero and cor�
relations�

h��r� t	��r�� t�	i � �D�t � t�	r��t� t�	 �����	

We let the physical interpretation of this model to the next chapter
 Here we
will mention that model B is suitable to describe the relaxational evolution
of a conserved eld� i
e
 one for which the spatial integral of the eld is time
independent�

m �
Z

dr��r� t	 �� dm

dt
� � �����	

The lattice discretization of model B equation leads to�

d�i�t	

dt
� r�

L

�
�
�H����	

���r� t	

	
� �i�t	 �����	
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Again� in order to ensure that the correct equilibrium distribution is obtained�
one needs to tune the correct value for D
 The Fokker�Planck equation is now�

�P ����� t	

�t
�

NX
i��

�

��i

�
���r�

L

�
�H
��i

	
P �

D

�

NX
j��

�

��j

��r�
Li�jP

���

� �
NX
i��

�

��i
r�
L

�
�
�H
��i

P �
D

�

�P

��i

� �����	

The equilibrium distribution is given by exp
����

D H����	
�

and we are led to
identify D � ��kBT as in model A


���� Numerical Solution of Stochastic Dierential Equations

The Langevin equations for models A and B that we considered in the previous
section can not be solved exactly
 A great deal of what we know about the
behavior of the solution of these equations comes from numerical simulations

In this section we want to study how to handle numerically Langevin equations
of the general form�

dxi�t	

dt
� Fi�t	 �

NX
j��

Gij�i�t	 i � �� � � � � N �����	

Fi are functions that depend on the set of variables x�� � � � � xN 
 If Gi�j also de�
pend on x�� � � � � xN � one talks of multiplicative noise and the resulting stochastic
di�erential equations will be considered in the Stratonovich sense �van Kampen�
����	
 If� on the other hand� Gi�j are constant functions� one talks of additive
noise
 The noise variables �i�t	 are Gaussian distributed� independent random
variables of mean zero and correlations given by�

h�i�t	�j�t�	i � Di�j�t� t�	 �����	

Of course� the appearance of the Dirac�delta functions tells us that we might
have some problems of mathematical rigor in we insist in considering the noise
variables �i as simple functions
 They should be considered as distributions� but
most of the results we can get with more mathematical rigor are also obtained
with the usual function formalism � � �and some care
 In particular� since the noise
variables are not di�erentiable� we can not use the standard Taylor expansions
that help so much in developing algorithms for numerically solving ordinary
�not stochastic	 di�erential equations �Press et al
 ����	
 Instead� we must use
integration expansions �Kloeden et al
 ����	
 We can express these ideas more
clearly with a simple example


Let us consider a one variable stochastic di�erential equation�

dx�t	

dt
� F �t	 � ��t	 �����	
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where F �t	 is a su�ciently smooth �di�erentiable	 function and ��t	 is a Gaussian
distributed variable of mean zero and correlations�

h��t	��t�	i � D�t � t�	 �����	

In fact� this equation is so simple that we can solve it exactly
 However� let us
develop a numerical algorithm to solve it
 The algorithm generates a recursion
relation that will allow us to compute x�t � h	 given x�t	� h is the integration
step
 This is the same structure than in ordinary di�erential equations in which
numerical methods do not give the solution for every value of time t but only at
regular intervals tn � t� � nh� n � �� �� � � � separated by a integration step h
 In
order to nd the recursion relation we integrate ��
��	 between tn and tn � h to
obtain�Z tn�h

tn

dt
dx�t	

dt
� x�tn � h	 � x�tn	 �

Z tn�h

tn

dsF �s	 �

Z tn�h

tn

ds��s	 �����	

the rst term of the right hand side of this equation can be approximated byZ tn�h

tn

dsF �s	 � hF �tn	 � o�h�	 �����	

The second term is a Gaussian variable since it is the integral of a Gaussian
variable
 Hence� its statistical properties are completely determined by the mean
value and the correlations
 Let us dene the random variable�

�h�t	 �

Z t�h

t

ds��s	 �����	

whose mean value is�

h�h�t	i �

Z t�h

t

dsh��s	i � � �����	

and whose correlations are given by�

h�h�t	�h�t�	i �

Z t�h

t

ds

Z t��h

t�
duh��s	��u	i �

Z t�h

t

ds

Z t��h

t�
duD�s � u	

�����	
This integral is an easy exercise on delta�function integration
 The result is�

h�h�t	�h�t�	i �

�
D �h� jt� t�j	 jt� t�j � h

� jt� t�j � h
�����	

The important thing to notice is that for the times tn that appear in the re�
cursion relation ��
��	� one has h�h�tn	�h�t�n	i � Dhn�n� � so that the variables
�h�tn	 are independent� Gaussian� random variables of zero mean and variance
h�h�tn	�i � Dh
 Hence they can be written as

�h�tn	 �
p
Dhu�n� �����	
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where u�n� are independent Gaussian variables of mean zero and variance unity
which can be generated� for instance� by the Box�Muller�Wiener method
 The
nal recursion relation reads�

x��� � x�

x�n��� � x�n� � hF �n� �
p
Dhu�n�

�����	

with the obvious notation x�n� � x�t� � nh	� F �n� � F �x�t� � nh		� etc
 This
simple example has taught us that the stochastic contribution is of order h���

whereas the deterministic contribution is of order h
 This singular expansion is
the main reason for the failure of algorithms based on a na"�ve Taylor series on
integer powers of h
 Let us now consider another example�

dx�t	

dt
� F �x	 �G�x	��t	 �����	

Integration of this equation leads to �we have taken t� � � to simplify notation	�

x�h	 � x��	 �

Z h

�

dsF �x�s		 �

Z h

�

dsG�x�s		��s	 �����	

To proceed� we Taylor expand the functions F �x	 and G�x	�

F �x�s		 � F �x��		 �
dF

dx

����
x�x���

�x�s	 � x��		 � o�x�s	 � x��		�

G�x�s		 � G�x��		 �
dG

dx

����
x�x���

�x�s	 � x��		 � o�x�s	 � x��		� �����	

By substituting these expansions in ��
��	 we notice is that at lowest order� h����
we have

x�s	 � x��	 � G�x��		

Z s

�

du��u	 �����	

and hence� to have an algorithm correct to o�h	 it su�ces to consider the fol�
lowing terms in the expansion�

x�h	 �x��	 � F �x��		h�G�x��		�h��	�

G�x��		
dG

dx

����
x�x���

Z h

�

ds

Z s

�

du��s	��u	 � o�h��	
�����	

The double integral gives �h��	�
�
 Replacing �h by
p
Dhu� see Eq
��
��	� we

arrive at the following recursion relation� known as the Milshtein algorithm �Mil�
shtein ����	�

x��� � x�

x�n��� � x�n� � hF �n� �
p
Dhu�n� �

�

�
G�n� dG

dx

����
�n�

Dh�u�n���
�����	
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The Milshtein method is an algorithm correct to order h and can then be con�
sidered as the stochastic equivalent of the Euler method to solve numerically
ordinary di�erential equations
 Sometimes in the literature �Greiner et al
 ����	
the name Euler method for stochastic di�erential equations �in the Stratonovich
sense	 is given to the above expression in which the term �u�n��� is replaced by
its mean value h�u�n���i � ��

x�n��� � x�n� � h

�
F �n� �

D

�
G�n� dG

dx

����
�n�
�

�
p
Dhu�n� �����	

This is an algorithm with a worst convergence that the Milshtein algorithm

However� if one is interested only on computing the moments hx�t	ki of the
variable x�t	 one can prove that this Euler algorithm has the same accuracy
than the Milshtein algorithm
 Given that both algorithms have approximately
the same computational complexity� it does not seem justied to use the poorer
Euler algorithm instead of the Milshtein algorithm


It is possible but very tedious to develop higher order algorithms
 The good
news is that very rarely one really needs them
 This is so because� in general�
one has to solve numerically the Langevin equations and average the results for
di�erent realizations of the noise �and maybe initial conditions	
 This generates
a source of statistical errors coming from the averages which are� in many occa�
sions� greater than the systematic errors due to the order of convergence of the
numerical method
 So it is usually better to spend the computer time in reducing
the statistical errors by increasing the number of samples in the average rather
than using a more complicated� higher order� algorithm
 However� we would like
to mention brie�y the stochastic Runge�Kutta type methods because� although
they do not yield better results than the Milshtein method for the convergence
of the stochastic terms� they do treat better the deterministic terms� increasing
in many cases the numerical stability
 The simplest stochastic Runge�Kutta type
method is the Heun method which� for Eq
��
��	 reads�

k � hF �x��		

l �
p
Dhu���G�x��		

y � x��	 � k � l

x�h	 � x��	 �
h

�
�F �x��		 � F �y	� �

p
Dhu���

�
�G�x��		 � G�y	�

�����	

One can prove by Taylor expanding the functions F �x	 and G�x	 that the Heun
method reproduces� to order h� the stochastic part of the Milshtein method �Gard
����	
 For the purely deterministic case� D � �� the Heun algorithm reduces to
the standard �nd order Runge�Kutta method


So far� we have only considered one�variable equations
 It is very complicated
to develop algorithms for the general N �variable case of Eq
��
��	
 The interested
reader can nd in �Kloeden et al
 ����	 an extensive account of these general
methods
 One can always use the following extension of the Euler method�
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x
�n���
i � x

�n�
i � h

�
�F �n�

i �
D

�

NX
j��

NX
k��

G
�n�
j�k

�Gi�k

�xj

����
�n�
�
��

p
Dh

NX
j��

G
�n�
i�j u

�n�
j

�����	

where the u
�n�
i are independent Gaussian variables of mean � and variance ��

hu�n�i u
�n��
i� i � n�n�i�i� �����	

In the case of diagonal noise� �Kloeden et al
 ����	� i
e
 one in which the noise
terms do not couple variable at di�erent lattice locations�

Gi�j�x�� � � � � xN 	 � Gi�xi	i�j �����	

one can generalize the Milshtein algorithm to�

x
�n���
i � x

�n�
i � hF

�n�
i �

p
Dhu

�n�
i �

�

�
G
�n�
i

dGi

dxi

����
�n�

Dh�u
�n�
i �� �����	

In next chapters we will show some applications of the numerical integration of
Langevin eld equations
 In Chapter � the Langevin equation will be combined
with Monte Carlo techniques to yield a very useful tool to study equilibrium
properties� the hybrid Monte Carlo algorithm
 In Chapter � we will be concerned
with the dynamics of growth in two very di�erent situations� phase separation
and growth of random surfaces


�� Hybrid Monte Carlo

���� Introduction

The numerical integration of Langevin equations described in the previous chap�
ter has been used extensively as an alternative to Monte Carlo methods to sample
the canonical distribution
 The idea is to run the Langevin equation up to the
stationary state �a process similar to thermalization for Monte Carlo	 and then
average the di�erent eld congurations produced over time
 An advantage of
this procedure as compared to Monte Carlo is that it is not necessary to compute
the change in energy every time a single variable is updated
 This is important
when the computation of the Hamiltonian is extremely time consuming
 Such
situation arises in lattice gauge theories that include dynamical fermions �Zinn
Justin ����	
 The e�ective Hamiltonian is so complicated for those systems that
it is prohibitive having to compute H N times per Monte Carlo step


An advantage of Monte Carlo methods over the Langevin integration is that
the only errors in Monte Carlo are of statistical origin due to the limited num�
ber of congurations in the sample �and also to the correlations amongst them	
and are known to behave as the inverse square root of the number of congura�
tions
 On top of the statistical errors� the numerical integration of the Langevin
equation produces systematic errors due to the niteness of the time step used
in the integration
 These systematic errors are much more cumbersome� since
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their numerical importance is not known a priori
 A recent idea aims to combine
the best of both worlds
 In the so called Hybrid Monte Carlo algorithm �Duane
et al
 ����	 the numerical integration of the stochastic di�erential equation is
used as the proposal to which an acceptance!rejection step is applied
 Before
we develop this beautiful idea� we need to develop some concepts related to the
microcanonical ensemble


���� Molecular Dynamics

Molecular dynamics �Allen et al
 ����	 o�ers a direct numerical approach to the
behavior of a system with many degrees of freedom
 Let �X� � �x�� x�� � � � � xN 	
be microscopic variables and �P � � �p�� p�� � � � � pN 	 their conjugate momenta

The Hamiltonian function is�

H�X�P 	 � V�X	 � T �P 	 � V�X	 �
P �

�
� V�X	 �

NX
i��

p�i
�

����	

The representative point of the system �x� p� evolves in phase space according to
Hamilton equations

dxi
dt

� pi

dpi
dt

� Fi � ��H
�xi

����	

and the movement is conned to the hypersurface of constant energy� H�X�P 	 �
E
 This property can be used to perform averages on the microcanonical en�
semble according to the ergodic principle that allows substitution of ensemble
averages hGi by time averages #G�

#G � lim
T��

�

T � t�

Z T

t�

dtG �x�t	� p�t		 ����	

To perform this time average we can integrate numerically Hamilton equations

In this way we can obtain equilibrium properties as well as dynamical �transi�
tory	 properties
 However� similarly to what happened when using the numerical
integration of Langevin equations to sample the canonical distribution� two kinds
of errors are present� �i	 statistical errors due to the nite number of samplings
and �ii	 systematic errors due to the time discretization used in the numerical
solution


The simplest integration scheme is the Euler method in which the derivative
of a function b�t	 is approximated by�

db�t	

dt
�

b�t� t	 � b�t	

t
�O�t	 ����	

Using this approximation� Hamilton equations become�
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xi�t� t	� xi�t	

t
�O�t	 �pi�t	

pi�t� t	 � pi�t	

t
�O�t	 �Fi�t	

���
�� ����	

From where one gets the following recursive relations�

xi�t� t	 �xi�t	 � tpi�t	 �O�t	�

pi�t� t	 �pi�t	 � tFi�t	 �O�t	�

�
����	

The local integration error is of order o�t	�
 After n integration steps� nt � t
the integration error is � � O�n�t	�	 � O�tt	 � O�t	
 This error is usually
too large and demands choosing a very small time step for accuracy and numer�
ical stability
 Of course� there are many other higher�order integration methods

Amongst all of them the leap frog algorithm will be particularly suited to our
needs
 The algorithm is�

xi�t� t	 � xi�t	 � t

�
pi�t	 �

t

�
Fi�t	

	

pi�t� t	 � pi�t	 �
t

�
�Fi�t	 � Fi�t� t		 � i � �� � � � � N

����	

and has a local error of order o�t	
 Although this is an improvement over the
Euler method� still discretization errors show up� for instance� in the fact that the
energy is not exactly conserved
 These energy �uctuations �of numerical origin	
imply that the microcanonical ensemble is not sampled exactly


Other properties of the Hamiltonian dynamics are� however� preserved by
this algorithm
 In particular leap frog satises�
�i	 Time reversal
 If� �

X�t	

P �t	

	
t

�
�
X�t � t	

P �t� t	

	
����	

then reversal of the momenta will take us back to the original value for �X� and
the reversed value for the momenta �P ���

X�t � t	

�P �t� t	

	
t

�
�
X�t � �t	

P �t� �t	

	
�

�
X�t	

�P �t	

	
����	

�ii	 Area preserving
 The Jacobian of the change of variables induced during the
time evolution is equal to one�

J

�
X�t � t	� P �t� t	

X�t	� P �t	

	
� � �����	

But� let us repeat it once again� it does not conserve energy�

H � H�t � t	 �H�t	 � O��t	m� � � �����	

Summarizing� the numerical integration by the leap�frog method induces a map�
ping given by Eq
��
�	 that evolves the whole system from one point of phase
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space to another point with some error in the conservation of energy or� in
other words� leap�frog denes a global change of variables that almost conserves
energy
 The idea naturally appears to combine this mapping with the accep�
tance!rejection technique typical of the Monte Carlo method
 This is the main
idea behind the hybrid Monte Carlo method introduced by Duane et al
 �����	
that we now develop in more detail


���� Hybrid Monte Carlo

Let us consider a scalar eld � � ���� � � � � �N 	 on the regular hypercubic lat�
tice �
 The statistical properties of the system are given by the Gibbs factor
exp ��H����	� �we take � � � to simplify notation	� with a Hamiltonian H����	

In order to dene a Hamiltonian dynamics we introduce some �ctitious mo�
menta elds �Q� � �Q�� � � � � QN	 and a new Hamiltonian function

$H����Q�	 � H����	 �
Q�

�
� H��	 �

NX
i��

Q�
i

�
�����	

Since

exp
h
� $H����Q�	

i
� exp ��H����	� exp

�
�Q

�

�

�
�����	

from the statistical point of view� the momenta variables �Q�� � � � � QN	 are simply
Gaussian distributed independent variables
 By independent we imply not just
independent of each other but also of the elds ���


According to our plan� we want to make a proposal g�x���j�	 by using the
numerical solution of Hamilton equations
 We specify some initial values for

the momenta �Q� according to the Gaussian distribution exp
h
�Q�

�

i
and then

integrate numerically� obtaining new values for the eld��
�

Q

	
t

�
�
��

Q�

	
�����	

This mapping can be done� for instance� by using the leap�frog algorithm�
Eqs
��
�	�

��i ��i �
t�

�
Fi � tQi

Q�i �Qi �
t

�
�Fi � F �i 	

�����	

We use this mapping to construct the proposal probability g�x���j�	
 More speci�
cally� since the probability distribution function of the Q variables is exp��Q�
�	
we can write out the probability density function g�x���j�	 as�

g�x���j�	d�� � dQe�
Q�

� �����	

being Q the value of the momenta necessary to go from � to ��
 The key point
now is to choose an acceptance probability such that detailed balance is satised
with the hamiltonian H����	�
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e�H�	�
�g�x���j�	h���j�	 � e�H�	�� 
�g�x��j��	h��j��	 �����	

The proposal g�x��j��	 is given again by integration of Hamilton equations with
a suitable value for the momenta� �Q�����

��

Q��

	
t

�
�

�

Q���

	
�����	

from where one gets for g�x��j��	�

g�x��j��	d� � dQ��e��
Q��

�

� �����	

being Q�� the value of the momenta necessary to go from �� to �
 The detailed
balance condition becomes�

e�
Q�

� e�H���h���j�	d�dQ � e�
Q��

�

� e�H��� �h��j��	d��dQ�� �����	

Now the following properties apply�
�i	 If the numerical integration satises time reversal� Q�� � �Q� hence the

Jacobian dQ��
dQ� is equal to �


e�
Q�

� e�H���h���j�	d�dQ � e�
Q�

�

� e�H����h��j��	d��dQ� �����	

�ii	 If it satises the area conserving property dQd� � dQ�d��

e�
Q�

� e�H���h���j�	 � e�
Q��

� e�H����h��j��	 �����	

Which� using Eq
��
��	� can be written as�

e�
�H���Q�h���j�	 � e�

�H����Q��h��j��	 �����	

We already know a possible solution to this equation� the Metropolis solu�
tion�

h���j�	 � min��� e��
�H	 �����	

where  $H � $H�t � t	 � $H�t		 is the change of total energy produced in
the evolution by time step t
 Notice that� although we have made a global
change by updating all the variables �i at once�  $H is controllable and the
acceptance probability can be made to stay within reasonable limits �close
to ���	
 It is not necessary to make the acceptance!rejection decision every
time step t
 Instead� usually one integrates during n time steps before
acceptance!rejection


We give now an explicit implementation of the Hybrid Monte Carlo method�
�i	 Generate independent Gaussian momenta �Q�

�ii	 Update the system ���Q� using leap�frog �or any other time reversible� area

preserving method	 during a time �t � nt�
��t	

Q�t	

	
t

�
�
��t � t	

Q�t� t	

	
t

� � � �
t

�
�
��t��t	

Q�t� �t	
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�iii	 Compute � $H � $H�t��t	� $H�t	

�iv	 Accept conguration �� � ��t� �t	 with probability min��� e�

�H	

Hybrid Monte Carlo constitutes an important tool for the simulation of eld
theories and it has been applied successfully to SU �n	 eld theory �Sexton et
al
 ����	� Lennard�Jones systems �Mehlig et al
 ����a	� �� scalar eld �Mehlig
et al
 ����b	� X �Y model �Gupta ����	� polymer systems �Forrest et al
 �����
Irbeck ����	� etc
 and it is today a routine tool of great applicability


There is another important aspect of the Hybrid Monte Carlo algorithm�
namely its relation with Langevin dynamics
 Remember the Langevin equation
dening model A
 Eq
��
�	�

��i
��

� � H
�i

� �i�� 	 � Fi�� 	 � �i�� 	 �����	

where the noise terms satises�

� �i�� 	�j��
�	 �� �ij�� � � �	 �����	

The numerical solution using the Euler algorithm proceeds via the following
recursion relation�

�i�� � � 	 � �i�� 	 � �Fi�� 	 �
p

��ui�� 	 �����	

where ui�� 	 are Gaussian variables of mean � and correlations hui�� 	uj�� 	i � ij

This is exactly the same evolution scheme of the leap�frog algorithm� Eq
��
��	�
if we make the following relation between the time steps of the two methods�
� � t�
�
 We conclude that Hybrid Monte Carlo uses the same updating
scheme than Langevin �with a di�erent unit of time	� but the presence of the
acceptance!rejection step makes the method independent of the time step used
in the Langevin integration� so avoiding the systematic errors so di�cult to deal
with in the Langevin method


���� Generalized Hybrid Monte Carlo

It is clear that Hybrid Monte Carlo relies upon a numerical integration of the
di�erential equations for a dynamical system in which the energy is conserved

We will now introduce a general class of dynamical equations that also conserve
energy
 This will give rise to a generalization of the hybrid Monte Carlo method
�Ferreira et al
 ����� Toral et al
 ����	


The generalization goes as follow� to each eld �i we assign a vector momenta
variable Qi � �q�i � � � � � q

D
i 	 of arbitrary dimension D
 We introduce the following

equations of motion�

d�i
dt

�
DX
s��

NX
j��

�As	ijQ
s
j

dqsi
dt

�
NX
j��

�As	jiFj s � �� � � � � D

�����	
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or� written in more compact vector notation�

d�

dt
�

DX
s��

AsQs

dQs

dt
��As	�F s � �� � � � � D

�����	

where the As are some linear operators which can be represented as a matrix�
and Fj represents the force as computed from the Hamiltonian� �

��j
H
 We also

introduce a total Hamiltonian $H� including the kinetic energy terms�

$H����Q�	 � H��	 �
NX
i��

DX
s��

�qsi 	
�

�
�����	

The reader can easily verify that the proposed dynamics in Eqs
��
��	 exactly
conserves energy� i
e
� d $H
dt � �
 The standard hybrid Monte Carlo can be
obtained from the above dynamics setting D � � and A equal to the identity
operator


For the approximate integration of the previous equations of motion the
leap�frog scheme can be used� introducing a discrete mapping ���t	� Q�t	� �
���t� t	� Q�t� t	� � G�t����t	� Q�t	�	� dependent on the time step t chosen

The leap�frog approximation reads�

�� ��� t

DX
s��

AsQs �
�t	�

�

DX
s��

As�As	�F ����	

Q�s �Qs �
t

�
�As	� �F ����	 � F �����		

�����	

It can be shown that this leap�frog approximation for arbritrary matrices As

satises the properties of time reversibility and area preserving
 However� again
as a result of the time discretization used in the leap�frog scheme� the total
energy is no longer conserved although its variation can be controlled by vary�
ing t
 We dene yet another mapping obtained iterating n times the previ�
ous mapping� i
e
 G � �G�t	n
 To satisfy detailed balance the conguration ob�
tained when one applies G is accepted with probability min��� exp��� $H	�� where
� $H � $H�G����Q�		 � $H����Q�	
 As in the standard hybrid Monte Carlo� the
momenta variables are refreshed after every acceptance!rejection step according
to a Gaussian distribution of independent variables


We have dened a general class of hybrid Monte Carlo�type methods char�
acterized by a particular choice of matrices As
 One can choose the matrices
As that better suit a particular problem
 This generalized hybrid Monte Carlo
method turns out to be related to the method introduced in reference �Batrouni
et al
 ����	 using the numerical integration of a Langevin equation with a ma�
trix time�step
 This method is based upon the observation that the stationary
solution of the Langevin equation ��
��	 can be obtained approximately by the
recursion relation�
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�i�� � � 	 � �i�� 	 �
NX
j��

�
���ij H

�j
�
p

��
p
�ijuj

�
�����	

Where �ij is an arbitrary matrix and uj is a Gaussian variable of mean zero and
correlations huiuji � ij 
 Comparing with ��
��	 we can see that it corresponds
exactly to the one step leap�frog approximation of the generalized hybrid Monte
Carlo method introduced above taking D � � and if we identify� �t	�
� � �
and AA� � �
 The main di�erence between the two methods is the presence
of an acceptance!rejection step in the generalized hybrid Monte Carlo
 In this
sense� we can say that the generalized hybrid Monte Carlo method introduced in
this section makes exact �in the sense that averages are not biased by the choice
of the time step	 the numerical integration of the Langevin equation using a
matrix time step introduced in reference �Batrouni et al
 ����	


���� Fourier Acceleration

Near a second order phase transition simulations become very time consuming
due to the large correlations which appear in the neighbourhood of the critical
point
 This enhancement of the time correlations� known as critical slowing
down� greatly increases the statistical errors in a Monte Carlo simulationmaking
it necessary to average over a large number of congurations in order to obtain
values with an acceptable error
 The physical origin of critical slowing down is
related to the fact that� near the critical point� �uctuations of all wavelengths
are present� each with a characteristic time scale
 In a Langevin integration�
for example� the integration step has to be small enough to treat correctly the
short�wavelength components but� on the other hand� the integration has to pro�
ceed for a su�cient number of steps to have the long�wavelengths mode evolve
signicantly
 In the Fourier acceleration method �Parisi ����� Batrouni et
al
 ����	� an integration technique is developed such that each mode evolves
with its own e�ective time step� large for long wavelengths and small for small
wavelengths
 Whether Fourier acceleration is successful in completely overcom�
ing critical slowing down for a particular system depends on to which extent the
evolution of the di�erent Fourier modes can be considered indeed independent
of each other


Fourier acceleration has been traditionally framed in the language of Langevin
equations
 But we know already that numerical solutions of Langevin equations
introduce systematic errors due to the niteness of the time step used in the nu�
merical integration
 It is possible to develop exact Fourier acceleration methods
in the context of the generalized hybrid Monte Carlo algorithm developed in the
previous section
 The basic ingredient is the following�

� Use matrices As whose elements are diagonal in Fourier space


The optimal choice for these matrices depends on the system we are con�
sidering
 Let us now discuss the example of the Gaussian model� for which the
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technique is most successful in reducing critical slowing down
 Of course� the
example is purely academic� since the Gaussian model can be solved analytically
without having to resource to numerical methods


The Gaussian model is dened by the following Hamiltonian for the scalar
elds ��i� �Parisi� ����	�

H �
NX
i��

�
�

�
��
i �

�

�
j rL�i j�

�
�����	

index i runs over the N � Ld sites of a d�dimensional regular lattice �� with
periodic boundary conditions� rL is the usual lattice discretized version of the
gradient operator� � is a parameter called the �eld mass
 Although this model
does not show a real phase transition� the critical slowing down occurs for the
critical value� � � �


To implement the generalized hybrid Monte Carlo method we choose the
number of momenta variables associated to a given eld equal to � �i
e
 D � �
in Eq
��
��		
 The total Hamiltonian $H� Eq
��
��	� including the kinetic energy
terms can be written in terms of the Fourier transform of elds and momenta�

$H �
NX
k��

�
��
k

�
j$�kj� �

�

�
j $Qkj�

�
�����	

the sum runs over the N points in the reciprocal lattice� k � �k�� � � � � kd	
 Here

��
k � � � �

Pd
j�� sin��kj
�	 and $�k and $Qk stand for the elds and momenta

variables in Fourier space
 Notice that the total Hamiltonian is a sum of terms
each one depending on a single mode k� such that the modes evolve independently
of each other


According to the discussion above� we implement Fourier acceleration by
choosing the matrix A� generating the dynamics� diagonal in Fourier space
 Let
us denote by $Ak the diagonal elements of the matrix A in Fourier space
 After
n leap�frog steps� the evolution equations ��
��	 imply��

�k $�k�nt	

$Qk�nt	

�
� Mn

k

�
�k $�k��	

$Qk��	

�
k � �� � � � � N �����	

The dynamical properties of the algorithm are determined by matrices Mn
k � given

by�

Mn
k �

�
cos�n�k	 sin�n�k	
 cos��k
�	

� cos��k
�	 sin�n�k	 cos�n�k	

	
�����	

where we have introduced �k � cos���� � c�k
�	 and ck � $Ak�kt
 We see
explicitly how in this model di�erent modes evolve independently of each other

The fact that the evolution equations are linear greatly simplies the analysis of
this problem �this is similar to the standard hybrid Monte Carlo where A � ��
Kennedy et al
 ����	
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We can now answer the question of which is the optimal choice for matrix
A
 If we choose the following values for the diagonal elements of A in Fourier
space�

$Ak � �
�k �

�
��� �

dX
j��

sin��kj
�	

�
�
����

�����	

the evolution matrices Mn
k become independent of � and k such all the modes

evolve with the same e�ective time step Ak�kt � t
 This choice for $Ak reduces
completely critical slowing down because correlation times �which are related to
the eigenvalues of Mn

k 	 become independent of the mass � even when � tends
to zero and the model becomes critical


�� Applications in Domain Growth

���� Dynamics of �rst order phase transitions

������ The Cahn�Hilliard�Cook Equation

Many binary �A�B	 mixtures which are homogeneous at high temperature T��
phase separate when quenched below a certain critical value �Tc	 of the tem�
perature
 In the nal equilibrium conguration two phases coexist� the A and
B phases� each one rich in the A and B material respectively �see Fig
��	
 We
assume that the equilibrium properties of such mixture are given by the Gibbs
distribution at the nal temperature Tf and we are concerned here with the way
the mixture reaches this thermal equilibrium� i
e
 with the dynamical process
of phase separation �Gunton et al
 ����� Binder ����	
 In many occasions the
relevant equations of motion are those of model B dened in a previous chapter�
equations that we now justify from a more physical point of view


The relevant eld � in this case is a scalar eld representing the local con�
centration di�erence of the two components of the mixture ��r� t	 � �A�r� t	�
�B�r� t	
 This eld obviously follows a conservation law�

m � �

V

Z
V

dr��r� t	 �� dm

dt
� � ����	

�V is the system volume	
 This global conservation law can be expressed in local
terms by means of a continuity equation�

���r� t	

�t
�r�J�r� t	 � � ����	

The conservation current J �r� t	 provides the driving force for eld di�usion

Equilibrium is reached when the chemical potentials of the two substances are
equal and uniform
 Thus� we write the current J�r� t	 as the sum of the gradient
of the di�erence of chemical potentials of each component � � �A � �B �this is
the well known Fick�s law	 plus a random� noise type term to take properly into
account thermal �uctuations�
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Fig� ��� Schematic phase diagram of a binary mixture A�B� The system is homoge�
neous at temperature T�� After quenching at temperature Tf below Tc the system phase
separates� At su�ciently late times� phase A and B coexist� The evolution proceeds
di�erently if the quench is in region I or II� separated by the spinodal line 	dashed
line
�

J �r� t	 � ��r� � ��r� t	 ����	

� is a positive coe�cient called mobility
 The noise variables � � ���� � � � � �d	
are Gaussian distributed� of mean zero and correlations�

h�k�r� t	�k��r
�� t�	i � �kBTk�k��r � r�	�t� t�	 ����	

The chemical potential is obtained as the derivative of H with respect to the
eld�

��r� t	 �
H����	

��r� t	
����	

Combining Eqs
��
�	 to ��
�	� we reobtain model B equation� which in the context
of phase separation is called the Cahn�Hilliard�Cook �CHC	 equation �Cahn et
al
 ����� Cook ����	�

���r� t	

�t
� r�

�
�
H����	

��r� t	

	
� ��r� t	 ����	

where ��r� t	 � r � ��r� t	
 If we adopt expression ��
�	 for the Hamiltonian we
arrive at the following lattice form for the CHC equation�

d�i�t	

dt
� �kBTr�

L

��b�i � u�
i �Kr�

L�i
�

� �i�t	 ����	

If we perform the same eld and time rescaling than in the section �
� for model
A� we obtain the simpler equation�
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d�i�t	

dt
� r�

L

���b�i � ��i �r�
L�i

�
� �i�t	 ����	

with correlations�

h�i�t	�j�t�	i � ���t� t�	r�
Li�j ����	

The Cahn�Hilliard�Cook equation is a very complicated stochastic� nonlinear�
partial di�erential equation that has so far deed an exact analytical treat�
ment
 Very successful systematic approximations valid for early times have been
developed �Grant et al
 ����	
 For the late stages of the dynamics the most suc�
cessful theory is that of Langer� Bar�on and Miller �Langer et al
 ����	� based
on some approximative mode decoupling
 This theory� however� is very di�cult
to improve upon due to its non�perturbative nature
 It seems at this stage that
it is necessary to resource to numerical studies to analyze the long�time be�
haviour of the equation
 One can integrate the CHC equation using any of the
stochastic numerical methods developed in section �
�
 In Figure �� we have
plotted congurations resulting of a numerical integration using the simple Eu�
ler method
 In this gure we observe that the evolution depends on the location
of the quench point in phase diagram
 For critical �m � �	 or near critical con�
centrations� �region I of the phase diagram in Fig
��	� the system is unstable
against long wavelength� small amplitude �uctuations
 This generates initially
a highly interconnected pattern that coarsens with time
 The system is said to
evolve by spinodal decomposition
 If� on the other hand� the system is in region
II� between the so�called spinodal line and the coexistence curve� the system
is unstable against the formation of nuclei of the minority phase
 These nuclei
evolve in time in such a way that large droplets grow at the expense of small
droplets
 This is the evolution for nucleation and growth
 Although this simple
picture is thought to be of general validity� it is not possible to sharply separate
the domains in the phase diagram where the two processes dominate �Binder
����� Chakrabarti ����	


����� The Kawasaki model

A more microscopic approach to the dynamics of phase separation is the one
given by the Kawasaki dynamical version of the Ising model �Kawasaki ����	

In each site of a regular lattice � we dene two occupation variables� CA

i and
CB
i � such that CA

i takes the value � ��	 if in site i there is �there is not	 an
A�atom
 CB

i is dened in a similar way
 If we consider the situation in which
every site of the lattice is occupied by either A�atoms or B�atoms� i
e
 that there
are no vacancies� CA

i and CB
i verify CA

i �CB
i � �
 We dene a new variable Si

as�

Si � CA
i �CB

i �����	

from where it is easy to deduce�

CA
i �

� � Si
�

CB
i �

�� Si
�

�����	
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Fig� ��� Time evolution of the Kawasaki model and the Cahn�Hilliard�Cook 	CHC

model� Positive 	negative
 values for the �elds or the spins are indicated by white
	black
 regions� Notice the similarity between the Kawasaki model 	left column
 and
the CHC 	center column
 both at critical concentration 	m � 
� In these two cases� the
system evolves by spinodal decomposition� In the right column� we plot a solution of
the CHC model for an o��critical quench 	in this case m � ��
� Notice that evolution
proceeds via the formation of nuclei of the minority phase that coarsen and grow�

Si is an Ising type variable taking the value �� ���	 if in site i there is a A�
atom �B�atom	
 Let us denote by Ji�j�AA	� Ji�j�BB	� Ji�j�AB	 the strength of
the interaction between AA� BB and AB atoms� respectively� at locations i and
j in the lattice
 The Hamiltonian is�
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H �
X
i�j

�
Ji�j�AA	CA

i C
A
j � Ji�j�BB	CB

i C
B
j � Ji�j�AB	CA

i C
B
j

�
�����	

Writing the occupation variable CA
i and CB

i in terms of the spin variables Si
one gets� apart from a constant factor�

H � �
X
i�j

Ji�jSiSj �����	

Where Ji�j is some linear combination of the interaction strengths Ji�j�AA	�
Ji�j�BB	 and Ji�j�AB	
 We take now the approximation that the forces between
atoms are of short range nature� such that the only relevant interactions are the
ones between nearest neighbour sites on the lattice and we further assume that
they are all equal to a constant value J 
 In this case� the Hamiltonian reduces
to�

H � �J
X
�i�j	

SiSj �����	

where the sum runs over the nearest neighbour pairs on the lattice
 This is noth�
ing but the Hamiltonian of the celebrated Ising model
 In our binary mixture
model� though� there is the restriction that N��

P
i Si � m must be a xed con�

stant
 One can prove �Pathria ����	 that the grand canonical partition function
of the binary mixture model is equal to the canonical partition function of the
standard Ising model
 Many equilibrium properties of the binary mixture� such
as the phase diagram� can thus be obtained from the corresponding ones of the
Ising model


Our model for a binary mixture is indeed too simplied and it is absent of
many realistic features present in real materials� such as defects in the lattice�
no perfect symmetry between A and B compounds leading to asymmetric phase
diagrams� vacancies� etc
 One can not pretend� then� to reproduce all of the
features present in these substances
 In fact our hamiltonian is so simple that it is
absent of any %natural� dynamics such as the one given by Hamilton equations

Kawasaki introduced an stochastic dynamics for the binary mixture model in
the same spirit that Glauber dynamics for the Ising model �Glauber� ����	
 The
thermal �uctuations� mediated by the lattice phonons� induce random transitions
in which atoms exchange positions in the lattice� see Fig
�� �in the ordinary
Glauber dynamics� spins �ip randomly their value� this is forbidden here due
to the conservation law	
 This exchange process aims to mimic� in a very crude
way� the di�usion process occurring in real materials


In order to ensure that the system will asymptotically reach the correct
equilibrium state given by the Gibbs distribution� Kawasaki assigns a probability
to the microscopic exchange process
 The equation governing the evolution of
the system is a master equation for the probability density of congurations
P ��S�� � � � � SN �� t	�

d

dt
P ��S�� t	 � �P ��S�� t	

X
	S�


P ��S� � �S��	 �
X
	S� 


P ��S��� t	P ��S�� � �S�	 �����	
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Fig� ��� Kawasaki exchange model basic process

The transition rate for the process � � � �see Fig
 ��	 is taken in Kawasaki
formulation as�

P ��� �	 �
�

��

�
�� tanh

�
�H

�kBT

	�
�����	

Where �H is the change in energy required to go from state � to state �
 �
simply xes the unit of time
 The previous expression is chosen by mathematical

simplicity� but any function of the formP �� � �	 � exp
�
� 
H
kBT

�
�
�

H
kBT

�
where

��z	 � ��z��	 will satisfy detailed balance for the master equation and hence
will ensure the correct equilibrium state �see discussion in section �
�	


The Kawasaki exchange model and the Cahn�Hilliard�Cook model exhibit
many common features
 In fact� it is possible to obtain� using some approxi�
mations� the Cahn�Hilliard�Cook model by means of a coarse�graining of the
Kawasaki exchange model �Langer ����� Gunton et al
 ����b	
 In Fig
�� we
show the evolution of the CHC and Kawasaki models for the case of a quench
of critical concentration
 Observe the great similarity between the evolution of
the two models


����� Dynamical Scaling

An important property of the late stages of the dynamics of phase separation
process is that of dynamical scaling �Binder et al
 ����� Lebowitz et al
 ����	

This scaling description is suggested by the fact that systems at di�erent times
look similar provided a space rescaling is performed
 More precisely� if we take
a snapshot of a conguration of the system at a given time t� and make it larger
by a factor � it turns out that the resulting gure is statistically indistinguish�

able of a snapshot of the same system at a later time t� � ���at� � a being a
dynamical scaling exponent �see Fig
��	
 This dynamical scaling description is
based on the physical assumption that� at the late stages of the evolution� only
one length� related to the typical domain size� is relevant
 Mathematically� the
scaling description implies that the pair correlation function G�r� t	�
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G�r� t	 � h��r� t	��r � r�� t	i� �����	

or� rather� its circular average�

G�r� t	 �

R
d�G�r� t	R

d�
�����	

�� denotes the angular variables	� which� in principle� is a two variable function�
depends only on a combination of them� namely�

G�r� t	 � g�r
R�t		 �����	

where the scaling function g�x	 is a one variable function of the scaling variable
x � r
R�t	
 R�t	 is a measure of the typical domain size and can be dened� for
instance� as the rst zero of the pair correlation function
 The time behaviour
of R�t	 is described by a power�law�

R�t	 
 ta �����	

This expresses again the idea that the system at two di�erent times t�� t� will
look similar if a space rescaling of magnitude � for the system at time t� is
performed such that �R�t�	 � R�t�	 or� according to the previous expression�
� � �t�
t�	a
 Another important feature of the dynamical scaling description is
that of the universality of the scaling function g�x	 and the scaling exponent a

The value a � �
� seems to hold for the CHC and Kawasaki models indepen�
dently of dimension and the quench location
 The function g�x	 does depend on
dimension and quench location �Chakrabarti et al
 ����� ����	� although it seems
that its variation is very small for quenches close to the critical concentration
�Toral et al
 ����� Fratzl et al
 ����	


Dynamical scaling is usually checked in terms of the experimentally accessible
structure function S�k� t	� dened as the Fourier transform of the pair correlation
function G�r� t	
 The scaling relation for S�k� t	 is obtained from the one holding
for G�r� t	 as�

S�k� t	 � R�t	dF�kR�t		 �����	

F�x	 is the scaling function� d is the system dimensionality
 In Figure �� we
plot the time evolution of the angularly averaged structure factor S�k� t	 from a
numerical solution of the CHC equation in � dimensions in the case of a critical
quench
 We can see that the structure factor starts from a rather �at shape and�
as time goes on� develops a maximum whose location km moves towards smaller
values of k and whose intensity increases
 The presence of this maximum signals
the phase separation process and the location of the peak is related to the inverse
typical linear length of the domains
 In Figure �� we also plot S�k� t	R�t	�d

versus kR�t	 to check the scaling relation ��
��	
 One concludes that scaling is
well satised at the times studied
 Similar results hold for other dimensions and
models� as well as for experiments �Binder ����	
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���� Growth of rough surfaces

Many surfaces in nature grow roughly
 Examples include such diverse systems
as biological tumors� mountain ranges� sand piles� a �uid �owing through a
porous medium and many others �Lagally ����� Thomas ����	
 To study this
widespread phenomenon� scientists have developed microscopic models and eld
models �Family et al
 ����	


The simplest of the microscopic models is one due to Eden �Eden ����	
 The
Eden model can be used to study the spread of epidemics
 In this model one
considers a regular lattice in which a site is initially marked as %infected�
 At a
given time a randomly selected infected site infects one of its nearest neighbours�
again chosen at random
 After some time� the infected area is rather compact
with a rough surface� see Fig
��
 From a careful analysis of this gure one can
deduce that the surface has fractal properties and that the dependence of the
roughness with time and with the linear dimensions of the Eden cluster can be
described by a power�law with some characteristic exponents


Fig� ��� A cluster grown by the Eden model rules 	see text
� The right �gure is a detail
of the cluster boundary to show that it is a rough surface�

Another kind of models aim to mimic the evolution of a surface that grows
by external �ux of particles �Meakin et al
 ����	
 In the simplest solid on solid

model particles are added to a regular lattice
 The incident particles add to
the height hi in lattice site i
 The presence of a surface tension is simulated by
rejecting the addition of particles that produce a di�erence in the height between
two nearest neighbours in the lattice larger that some xed amount �Kim et al

����	


One of the most successful eld theory models to study surface growth is
that of Kardar� Parisi and Zhang �KPZ	 �Kardar et al
 ����	
 In the KPZ model
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Fig� ��� Self similarity after rescaling of con�gurations for the two�dimensional CHC
model in the case of a critical quench m � � A snapshot of the con�guration at
time t� � ��  	upper row� left
 is magni�ed by a factor ���	��� approx����� The
resulting �gure is very similar 	from the statistical point of view
 to a snapshot of
the same system at time t� � t� � ����� approx�� � showing that the dynamical
exponent in Eq�	���
 is close to �	��

Fig� ��� Raw data 	left �gure
 for the structure factor for the time evolution of the
three�dimensional CHC in the case of a critical quench 	m � 
� In the right �gure
we have rescaled the date according to Eq�	����
 to show that dynamical scaling holds
reasonably well for this system at the times studied�
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one denes a eld h�r� t	 giving the surface height at location r on a �d � �	�
dimensional substrate at time t
 Several physical processes contribute to the time
evolution of this eld

�i	 Tendency to grow normal to the surface
 A simple geometrical argument

shows that in this case the evolution is given by�

�h�r� t	

�t
� �

p
� � �rh	� � �

�
�rh	�

to the lowest order in the gradient of the surface eld
 Here � is the surface
mean growth velocity


�ii	 Particle di�usion on the surface


�r�h

� is a constant related to the surface tension

�iii	 Random variations of the incident �ux
 These are modelled by a stochastic�

noise type term�
��r� t	

Adding the contribution of the three terms we get the celebrated KPZ equa�
tion�

�h�r� t	

�t
� �r�h�r� t	 �

�

�
�rh	� � ��r� t	 �����	

The ��r� t	 noise is assumed to be Gaussian distributed of mean zero and corre�
lations�

h��r� t	��r�� t�	i � �D�r � r�	�t � t�	 �����	

Some of the parameters of this equation� �� �� D are redundant
 One can
reparametrize the eld h� ��
�D	���h and the time t� �t to obtain a simpler
equation�

�h�r� t	

�t
� r�h�r� t	 �

�

�
�rh	� � ��r� t	 �����	

where
h��r� t	��r�� t�	i � �r � r�	�t � t�	 �����	

Although many exact results are known of this stochastic non�linear partial
di�erential equation� an explicit solution is still missing
 Numerical studies have
played an important role in characterizing the solutions of the KPZ equation
�Moser et al
 ����	
 In the numerical studies in a one�dimensional substrate one
typically uses the following discretization of the KPZ equation�

dhj�t	

dt
�

hj�� � hj�� � �hj
a��

�
�

�

�
hj�� � hj��

�a�

	�

� �j�t	� �����	

�periodic boundary conditions are coinsidered	
 The lattice spacing is usually
taken equal to �� a� � �
 The numerical integration of the previous set of stochas�
tic di�erential equations can proceed by any of the methods explained in Chapter
�� although the Heun method is particularly well suited in this case since it al�
lows to use much larger values for the integration step �t than the one allowed
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Fig� ��� Plot of the height �eld h	x� t
 from a numerical simulation of the KPZ equation
in one�dimensional substrate for increasing times� We can see in this �gure that the
surface grows rough and that the roughness increases with time� The right �gure shows
a detail of the surface for the latest time�

in the Euler method �Forrest et al
 ����	
 If we write the previous equations in
the general vector form�

�h�t	

�t
� F �h�t		 � ��t	� �����	

The Heun method uses the following recurrence relation �see Eqs
��
��		�

g� � F �h�t		

g� � F �h�t	 � �tg� �
p
�tu	

h�t� �t	 � h�t	 �
�t

�
�g� � g�	 �

p
�tu

�����	

Where u � �u�� � � � � uN 	 are independent Gaussian variables of mean zero and
variance unity


In Figure �� we can see the evolution of the eld for a ��d substrate of length
L
 It is clear from this gure that the surface grows rough� similarly to the case
of the microscopic Eden model
 A quantitative measure of the surface roughness
is given by the quantity w�t� L	

w�t� L	 �

q
hh� � h

�i �����	

Where the bar denotes a spatial average h � L��
PL

i�� hi and the angular
brackets denote an average over initial conditions and realizations of the noise
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It is important to characterize the time evolution of w�t� L	
 The self�similar
character of the surface implies that the late�time behaviour for a system of
innite size must be given by a power�law relation of the form�

w�t��	 
 t� �����	

This relation has been well veried in computer simulations and the exact value
for � can be obtained theoretically for ��d systems �� � �
�� see Familly et al

����	
 The reader could think that the verication of this simple law should be
an easy task
 Not at all In the rest of these notes� we just want to point out
which are the main di�culties in trying to verify directly the� innocent looking�
power�law given by Eq
��
��	


The rst and most obvious di�culty comes from the fact that solving nu�
merically a set of stochastic di�erential equations is always di�cult
 One has
to average over a large number of realizations to have small statistical errors
and also make sure that results do not depend on the time step chosen for the
numerical integration


The second problem is that expression ��
��	 is an asymptotic result� i
e

strictly valid only in the limit t��
 However� earlier time regimes can also be
described by a relation of the same functional form with an e�ective exponent
�eff � �
 For example� at very early times� the noise term dominates �remember

that it gives a contribution of order
p
�t	 and the roughness grows as the square

root of time�w�t� L	 
 t���
 For intermediate times� the linear term dominates
 It
is not di�cult to solve this linear case �� � �� the so�called Edwards�Wilkinson
model �Edwards et al
 ����		 and show that the roughness grows as w�t	 
 t���

It is only at the very late stages that the e�ect of the non�linearity fully develops
and one obtains the true asymptotic regime w�t	 
 t��
 But it is very di�cult
to be sure that one is in the asymptotic regime and that the exponent obtained
from a� say� log�log plot of w�t	 versus t is giving indeed the true asymptotic
exponent instead of an asymptotic exponent corresponding to smaller times


Another problem concerns nite size e�ects
 The result ��
��	 is valid only in
the limit of an innite system
 If the system size L is nite �as it is bound to be
in a numerical simulation	� the surface roughness can saturate to an asymptotic
value w�t � �� L	 
 L� �� � �
� in ��d	 and one might never enter the time
regime in which relation ��
��	 holds
 The dramatic e�ect of the nite size e�ects
can be shown in detail for the linear case� � � �
 In this case� the solution can
be found as�

w�
����t� L	 �

�

L

L��X
k��

�� exp��� sin���k
L	t	

� sin���k
L	
� �����	

The strong L dependence of this linear solution can be seen in Fig
 ����
 Looking
at the gure� we can say that only for L	

�
��� there is a relative error w��� � ��

for t � ����
 The moral of the story is that if one wants to avoid nite size
e�ects one has to take systems at least at large as the ones needed in the linear
case� as it is sustained by a perturbative solution of the KPZ equation �Forrest
at al
 ����	
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Fig� �	� Dependence with L of the square of the surface roughness� w�
���	t� L
 for the

linear solution of the KPZ equation� Eq�	����
�

In fact� the nite size e�ects show up in a very determined way
 It is now well
established �Family et al
 ����� Jullien et al
 ����	 that the roughness w�L� t	�
for a nite substrate length L� follows an asymptotic scaling description in terms
of both time t and L�

w�t� L	 � t�F �tL����	 �����	

�� is the so�called roughness exponent	
 In principle� this relation can also be
used to compute the exponent �
 Again� the di�culty is that this relation is also
valid for the linear case� � � � with di�erent values for the exponents� namely
w�t� L	 � t���F �tL��	 and one has to be careful enough to ensure that the
non�linearity has fully developed
 It is not strange� then� that the most powerful
available computers have been used in this problem of computing precisely the
exponents of the KPZ equation
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