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Abstract

We propose a simple modification of the Hybrid Monte-Carlo method to sample equilibrium distribu-
tions of continuous field models. Applications include the simulation of systems with a conserved order
parameter and an efficient implementation of the Fourier acceleration scheme.

A large class of problems can be reduced to computing averages according to a statistical distribution
exp (—H), where the Hamiltonian function H([¢]) depends on the N = L4 scalar variables {¢]) = (¢1,...,6n)-
Many numerical methods, such as Molecular Dynarmics, Langevin integration and Monte-Carlo (MC), have
been used to study these equilibrium properties of field-theoretical models{l]. Monte-Carlo methods have
the advantage that their only errors are of statistical origin and can be consequently decreased by increasing
the number of samplings, whereas Molecular Dynamics and Langevin suffer from systematic errors coming
from the finite time-step used in the numerical integration of the equations of motion. The main problem
of Monte—Carlo simulations is that in some cases, and specially near a second order phase transition, the
number of configurations necessary to achieve a given small error is very large (usually, grows as some power
of the system size N) thus requiring too much computer time. This is due to the phenomenon of critical
slowing down (CSD) that dramatically‘increases correlations near a critical point. More specifically, CSD
theory[2] tells us that near second~order phase transitions the correlation time, 7, of a measured observable
0, increases as T4 ~ £, being £ the correlation length and z the dynamical critical exponent. 75 can be
defined as some measure of the relaxation time of the correlation function of the observable O:

< O@®)0(0) > — < O(t) >< O(0) >

Colt) = < 02(0) > — < O(0) >2

1)

For finite systems close enough to the critical point, the correlation time increases with system side as
75 ~ L*, according to finite size scaling theory.

For the local updating schemes such as heat-bath or Metropolis the exponent z being near 2 strongly
demands on computer time. For spin models the collective updating scheme of Swendsen and Wang [3] has
proven quite successful in reducing the dynamical critical exponent and overcoming CSD. For continuous
field models, several methods such as Multigrid Monte-Carlo[4], time-step matrix Langevin method[5] or
overrelaxation (see [6] and references therein), have been proposed, although is not still clear if some reducing
can be achieved in non~trivial models such as the ¢* model.

In its simplest form, MC introduces a stochastic dynamics which involves the proposal of a new field
configuration plus an acceptance/rejection step. Ideally, every proposal should be completely uncorrelated
from the previous one. However, it is a major problem how to generate essentially independent configurations
and still keep the acceptance probability within some reasonable limits. The Hybrid Monte Carlo (HMC)
algorithm [7], uses the global update given by Molecular Dynamics to generate a new configuration which is
then accepted or rejected according to the usual rules of Monte~Carlo. We now describe a generalisation of the
standard hybrid Monte~Carlo method. The evolution is performed by an appropriate numerical integration
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of the corresponding system dynamics. To this end, a set of conjugate momenta variables [p] = (p1, ..., pn)
associated with a kinetic energy Hx = E:L p?/2 is introduced. The variables p; can be in general a vector
variable with D components, p; = (p},p?, ..., pP). The total Hamiltonian is H = H+Hg. We consider the
following dynamics written in compact vector notation:
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here the A® are some linear operators which can be represented as a matrix, and Fj represents the force as
computed from the Hamiltonian -8%],7'{. The standard HMC can be obtained simply by setting D = 1 and
A equal to the identity operator. It is easily verified that, for arbitrary matrices .4, the evolution equations
(2) exactly conserve energy, i.e., dH/dt = 0. For the numerical integration of the previous equations of
motion the “leap—frog” scheme can be used:
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The total energy, as a result of the time discretization used in the leap-frog scheme, is no longer conserved and
its variation A can be controlled by varying 6t. Detailed balance is satisfied if the configuration obtained
after evolving n time steps is accepted with probability min[l, exp(~AH)]. As in the standard HMC the
momenta variables are refreshed after every acceptance/rejection step according to the Gaussian distribution
of independent variables exp(—~H k). The evolution given by n leap—frog steps and the acceptance/rejection
step constitute what is called 1 MC trial.

The presence of arbitrary matrices A is closely related to the matrix—time-step integration techniques
for the Langevin equation introduced in reference [5]. In fact, it can be easily shown that our evolution
equations for n = 1 coincide exactly with the Euler scheme for solving the Langevin evolution equations.
The important part, however, is that the presence of an acceptance/rejection step makes the hybrid Monte—
Carlo approach "exact”, in the sense that averages are not biased by the choice of an arbitrarily large time
step.

We have introduced a class of HMC methods characterized by the matrices A?. One can then choose the
matrices A* that better suit a particular problem. We will show two applications: simulation of conserved
order parameter systems{8] and implementation of Fourier acceleration.

The case of a system whose order parameter & = }; ¢; is conserved can be simulated by introducing this
new conservation law via the matrices A¥. For that purpose, we choose D = d (the system dimensionality)
and the operator A* equal to the k — th component of the lattice gradient operator V. The condition
D = d is necessary in order not to introduce any spurious counservation laws in the system. It can be shown
that the corresponding leap—frog evolution equations:
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exactly conserve the order parameter. Moreover, the previous equation for the field ¢ is exactly the Euler
scheme (apart from a trivial time rescaling) for the solution of the celebrated Cahn-Hilliard-Cook equation{9)]
for the study of the dynamics of systems with a conserved order parameter.

Fourier acceleration turns out to be a particular case of our general equations in which the matrix A is
chosen to be diagonal in Fourier space. A simple example is given by the Gaussian model, defined by the
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following Hamiltonian: .
=SB L9002 ;

w=3[fet+ 51901 6

index i runs over the N = L? sites of a 9-dimensional square lattice, with periodic boundary conditions (a
similar analysis can be carried out in any spatial dimension but we refer to the case d=2 for simplicity).
Introducing the associated momenta (scalar, D = 1) variables, the total Hamiltonian H in terms of the

Fourier transform of fields and momenta, ér and pi reads:
RN (7 P ATUND S
R=3 [Fibr + gl ()
k=1
where w? = p + 4(sin?(kz/2) + sin®(ky /2)). )
If we choose for A a diagonal matrix in Fourier space of diagonal elements Ay, the leap—frog algorithm
in Fourier space reads:
wktik(&)
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where cx = fikwkét.

We now turn to the question of the optimal choice for the matrix A. From equation (7) it is immediately
seen that if we choose the matrix A such that Ap=1 Jws the iteration equations get independent of the mass
 and all the modes are equally updated. This is, in effect, an exact implementation of the method of Fourier
acceleration. This choice of the matrix clearly reduces completely CSD (z = 0) in the sense that correlation
times are independent of the mass even when the mass goes to zero and the model becomes critical.

By using the evolution equations together with the assumption that the field variables ¢ (0) are in
thermal equilibrium and, therefore, follow the distribution exp(—7H}, one can compute the equilibrium average
discretization error as:

< H(nét) = H(0) >=< AH >= sin?(nf) (8)

Nt
32 — 8612
with 8 = cos™3(1 - %3) This is related to the average acceptance probability p by the relation[10]: p =
erfe(3v/'< AH >)

By making the assumption that the probability to accept or reject the whole configuration at a given
step is equal to p and independent of the previous time-evolution of the system, one obtains the correlation
functions for the magnetization:

Cp(m) = Cy(m nét) = [1 - 2psin2(%0-)]m (9)

and the energy:
Cn(m) = Cx(m nbt) = [1 - psin®(nf)]™ (10)

Both correlation functions decay exponentially and a measure of the correlation time is given simply by
e = —1/log(|Cu(1)]) and 5 = ~1/log(Cx(1)). In figure 1 we compare both correlation times given by
the above expressions with simulation results for the case L = 32 and n = 4 as a function of 6. We observe
a rather good agreement between the analytical expression and the simulation results. We have used the
shown minimum in the correlation time of the energy as a function of 6¢ to find the optimal n for a given
system size that minimizes the computer effort (27 + 1)n. It can be shown numerically that the optimal
values scale as n ~ L}/? and 6t ~ L~Y/2. For large L, the corresponding correlation times rp and 73 turn
out to be L-independent and are given by mp = 2.5, ¢ = 1.5 approximately. The optimal acceptance
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Figure 1: Comparison of Ca(1) (continuos line) and C(1) (dashed line) obtained from eqs. (9) and (10)
for a system of size L = 32 and n = 4 with simulation results.

probability p & 0.67 and the product nét ~ 1 are also independent of the system size. So, the time needed to

get an independent configuration is constant in the natural units of the dynamics, but the computer effort
measured by the number n of updates needed to get 1 Monte Carlo step increases as L1/2.
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