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Abstract. A model system representing a degenerate parametric am-
plifier plus a fourth-order term (Kerr effect) is analyzed. Such higher-
order interaction leads to the appearance of a pitchfork bifurcation show-
ing bright-squeezing in the stationary states. A numerical simulation of
the transient processes is presented and the transient-squeezing charac-
teristics are finally discussed.

1 Introduction

It has been shown that [1] an intense coherent beam which propagates
along an optical Kerr medium, exhibits *self- squeezing” (amplitude
squeezing), and that the effect could be remarkably high provided that
the incident pump strength is high enough. The effect of such higher-
order interactions coupled to a standard two-photon medium was an-
alyzed by Tombesi [2] some time ago. The interest in the already
mentioned study was focused on the possibilities of generating strong
squeezed light at short interaction times (i.e., in travelling-wave geome-
tries). Our interest here is to explore the field- statistical properties of
a more realistic model of a parametric amplifier where the crystal losses
are explicitly accounted for. The effective Hamiltonian, the obtention
of the semiclassical equations and the stability analysis have been pre-
sented in an accompanying paper [3].

2 Fluctuations around steady-states

As it has been shown (3], the stochastic equations for the quadrature
fluctuations around the stable solutions are
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The stationary covariance matrix
oij =< Tiz; > - < 1 >< j; > (2)
can be obtained from the solution of [4]

Ao + AT = - DI, (3)

where A is the drift matrix (expressed in terms of the coefficients given
in eq. (1)) and I is the unit matrix. In the case below threshold, the
mean square fluctuations in the two quadrature components are

2 _A1+2m) _ o (1+24)
<zt>= i=n) y IR (4)

The zero-point fluctuations are < z? >=< y? >= 1/4, so that,
for sufficiently low temperature (#*# — 0), the y-component is squeezed.
Since the fluctuations are about the steady-state value (Zg,§s) = (0,0),
this represents a squeezed vacuum state. The product of the mean
squares is in this case
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that is greater than 1/16. Thus, the state is not a minimum uncertainty
state.

Above threshold a pitchfork bifurcation appears leading to two steady-
state solutions (bistability, {3]) which are

zs = Flui/v(1+u)s

- 1_
gs = -ndzs. (6)

Making use of eq. (2) and diagonalizing the covariance matrix, the
stationary variances become

D
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Fig. 1: Comparison between the stationary variances numerically deter-
mined (o correspond to I'/x = 2x 1072, O to I'/« = 2x10~3) and
the variances determined from the linearized theory (solid line).

As it is shown in fig. 1 the 22-component is squeezed. Note that since
(Zs,¥s) are real and different from zero, ®bright squeezing” appears.

3 Analysis and discussion of the results

3.1 Stationary behaviour

Besides the linearized analysis of the Langevin equations a numerical
approach has been carried out. Both kinds of results are shown in fig.
1. It can be easily seen that for regions far away from threshold, the
linearized theory is in good agreement with the simulation results. How-
ever, for some values the linearized theory predicts maximum squeezing
whereas a substantial increase in ¢33 is found in the simulation. Such a
fact arises from the bistable behaviour of this system. As can be seen
[3] the nontrivial solutions are located at points (Zs, §is) depending upon
the values of I'/x and v4/k. Therefore their relative separation can be
controlled by a suitable choice of I'/x. For values of I'/x < 2 x 1073
and v/k = 0.9,no jumps between the stable states occur in observable
time. For larger values of I'/x the probability of hopping attains larger
values thus leading to an increase in 3.

3.2 Transient behaviour

We have analyzed the transient behaviour by means of a numerical pro-
cedure. All the obtained curves are for i = 0 and x = 0.5. The case
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below threshold is shown in figure 2. The figures 3 and 4 display the
results for different parameters and initial condition values. It is worth
noting that the stationary values are greater than those of the previous
analysis. This is due to the fact that the numerical analysis is performed
as an average over trajectories and bistability forces,that about half of
trajectories go to one of the stationary states while the rest go to the
other. The main result common to all curves is the existence of "over-
squeezing” with respect to the stationary value. Figure 3 shows the
curves which correspond to a coherent initial state and to a squeezed
initial state. No dependence upon the initial state in 022 value during
” oversqueezing” is observed, i.e., after a certain time the transient evo-
lution loses the memory about the initial conditions. The time where
”oversqueezing” occurs is larger, as could be expected, for a initial
coherent vacuum.

variances

Fig. 2: Transient variances
oc Y : y 7 below threshold.
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Fig. 3: Minimum transient variances above threshold (solid line coherent
initial state, dashed line < (Az)? >= 1/2, < (Ay)? >= 1/6

squeezed initial state. Both I'/x = 2 x 1073, v/x = 0.75).
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Fig. 4: Minimum transient variances above threshold(solid line I'/x = 2 x
1073, 4/k = 0.64, dashed line I'/x = 2x 1072, 4/x = 0.64, pointed
line I'/k = 2 x 1073, v/k = 0.75. All with coherent initial states).

Figure 3 shows the dependence with respect I'/x and 4/x. The
time-lag where "oversqueezing” occurs is larger for I'/y = 2 x 1073, as
it could be expected since the nontrivial stationary states are now far
from the origin. On the other hand, as is shown in the figure,such a
time-lag becomes larger as one approaches the threshold (i.e., larger for
v/x = 0.64 than for 0.75).

Finally it is worth remarking that the o2, value in the ”oversqueez-
ing” region does not show any noticeable dependence on I'/x or v/x.

4 Conclusions

The effect of a fourth-order (Kerr-effect) non-linearity in a degenerate
parametric amplifier has been analyzed. From the analysis of the semi-
classical equations it has been found that maximum squeezing occurs in
the vicinity of the threshold. On the other hand, the bistable behaviour
encountered above threshold may provide a means for the generation of
bright-squeezed light. Some care should be taken with respect to the
results obtained near threshold since: a) the model herein analyzed con-
stitutes an oversimplification of a real device (undepleted pump), and
b) the full quantum-dynamics has not been explored, and therefore, the
estimated jump rates between the two stable states should be taken as
semiquantitative {5].

A substantial "oversqueezing” has been found when analyzing the
transient dynamics. The time duration where ”oversqueezing” occurs
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is enlarged near threshold. On the other hand, the best results are
obtained for small values of I'/x.

The obtained results may therefore indicate a way for the generation
of bright-squeezed light in travelling-wave devices.
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