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Abstract. A procedure which enables one to obtain Langevin equa-
tions from the Heisenberg equations of motion representative of a wide
class of non-linear optical devices is applied to the case of two-mode
squeezing in a parametric device where allowance is made for different
damping constants for the signal and idler modes, and a degenerate
parametric amplifier with a fourth-order (Kerr effect) interaction term.

1 Introduction

The customary procedure for the derivation of Langevin equations for
multimode optical fields generated by non-linear optical devices involves
several steps [1]. First, a master equation for the motion of a density ma-
trix has to be constructed from an effective Hamiltonian which includes
the free—field, interaction and damping terms, after adiabatic elimina-
tion of the fast (heat-bath) modes, for which some heuristic assumptions
regarding time-scale separation are usually considered. A generalized
Fokker-Planck equation for an adequate pseudoprobability density is
obtained next, after expansion of the density matrix on a suitable basis
set. From standard representation theory [2] it is known that the differ-
ent ways of ordering of the non-commuting operators lead to different
equations of motion and that such orderings are equivalent provided
that a correct representation exists. Different statistical properties will
result as a consequence of the use of different representations since the
equations of motion will evolve in time in an ordering—dependent way.
However, since most of the observables are related to photo-counting
devices, the normally ordered P (or generalized P) representations have
been widely used [3], although in principle any other representation
could also be employed if the final distribution is converted into nor-
mal order before the computation of field-statistical properties.
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The debate regarding the physical soundness of the different repre-
sentations is still open [4-6], and within it, a recent paper has empha-
sized the usefulness of the Wigner representation since it allows a direct
derivation of the Langevin equations for the optical fields involved. Such
a procedure is exact, provided that the effective Hamiltonian contains
terms up to second order in the field operators. For higher—order prob-
lems, it is well known that the resulting Fokker—Planck equation for the
Wigner quasi-probability distribution will, in general contain deriva-
tives higher than second order, and therefore a truncation of those (or
a linearization of the operator evolution equations) becomes necessary
for obtaining a tractable solution. The available evidence suggests that
[4,5] for a certain class of problems such as those related to quantum
tunneling between the two stable states of a parametric oscillator oper-
ating above threshold, the full quantum problem should be considered.
However, for problems not aiming to study the detailed dynamics near
threshold and in circumstances where the noise is low in comparison
with the mean values of the field amplitudes, the procedure described
in [6] seems appropriate. In what follows we will briefly describe the
application of the approach given in [6] to two representative cases of
non-linear devices currently used for the generation of squeezed light.

2 A non-degenerate parametric amplifier with
non-homogeneous linear losses

Apart from its interest as a squeezing device, some recent interest has
arisen since it has been suggested that such a setup could be employed
for high-accuracy (below shot-noise) absorption measurements [7]. The
model herein considered represents an intense (assumed undepleted)
laser beam of frequency 202, which upon illumination of a suitable non-
linear medium characterized by a second order coupling produces pairs
of highly correlated photons with frequencies 03 + € where € < 11 is the
modulation frequency.

The effective Hamiltonian written in the Schrédinger picture is writ-
ten in terms of free-field, interaction and dissipative parts as

H=Hy+ Hiy + Hp (1)

Hy=w;ata; +w_ata_

1 1
Hipt = Ef(t)diaf + 5]'(t)a+a_
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Hp = Zw,-bfb,- + fo(b,-ai + bj'a+) + ij—(bja'_f + bja-)
J J J

where the function f(t) contains the coupling terms f (t) = ix(t)e¥(s-00)
and the absorption losses have been included in the usual way in terms
of the b; heat-bath operators.

The Heisenberg equations of motion for the a4, a_ and b; modes can
be written with ease and the heat-bath modes are then adiabatically
eliminated. '

By means of the correspondence ay — ay (and al — a}) the
Langevin equations of motion can be obtained for the two complex quan-
tities describing the output modes with the result

&y = —i(Q+ e~ iyy)ay —if(t)a’ + Ly(t)
a-=—i(Q-€-iy_)a- —if(t)al + L_(t) (2)

where the damping constants 44 denote the linear losses for the two
modes and the terms Ly (t) represent complex white noise with a mean
variance given by :

< Li(t) >=0=< Li(t)Li(t') >

< Ly(t)L3(t') >=2D46(t - t') (3)

in terms of diffusion constants D, which basically represent the spectral
densities at the frequencies of the two modes of the heat-bath,

2Dy = v4(1 + 2a) (4)

where i is an effective temperature.

The solution of (2) is a Wigner probability density, and a Fokker—
Planck equation can be derived after separating the two real parts of
the complex stochastic processes

a2 () = [z£(t) + iy (£)) O -4 (5)
which transforms the system (2) into

Ty = ~7+Z+ + Kzz + L1,
V£ = —7Tiy: ~ Kyg + L+y (6)
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where
< Lizy(t)>=0

< Li;(t)Lij(l') >= DiS.-,-S(t - t'), ,i=1z,y .

It is straightforward to obtain from (6) a Fokker-Planck equation
for the Wigner function which contains derivatives up to second order.
On the other hand, a stationary solution for (6) exists which, above
threshold, can be written as :

z4(t) = [do + ()] + [Bo + A(R)]e™>

z-(t) = p1[do + aft)e " + py[Bo + B(t)]e " (7)

where

' 1/2
+7- +7-\?
A¢=7+27 ﬂ:[(7+27) _(%7__‘:)} ,

T+ — A4 T+ A
x T K

o= [y [ gl €

and a solution for the y; variable can be easily found upon the corre-
sponding changes of variable.

The second and fourth-order expectation values can now be com-
puted and the detailed expression for second and fourth-order correla-
tions will be given in a forthcoming paper [8].

The quantity of interest for absorption mesurements would be the
spectrum of fluctuations of the intensity difference between the signal
I, and idler I. modes

Sp) = [dre ™ < L () - L), L) - L.0) > (8)
which can be written in terms of the intra- and interbeam fluctuations

as

So(w) = Si4(w) + 5-_ (w) = Sy (w) - S—+(w) (9)
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Sit(w)+S-._(w) = /drc"‘“'[( Ii(t47), I (t) > + < I-(t+1),1_(t) >]

St (W) 454 () = / dre=7[< L (t+1), I(t) > + < I_(t+7), I (t) >].

The evaluation of the spectral components can be obtained after
some calculus and the detailed expressions will be given elsewhere [8].
A normalized spectrum may be defined as

Sp(w)
Sr2 (@) +5_() (10)

Sp(w) =

so that the shot-noise limit is Sp(w) = 1 and perfect noise suppression
means Sp(w) = 0. The shape of the spectrum for several values of the
asymmetric losses is shown in Figure 1. As can be seen upon inspection
of the figure, the increase in the loss coefficient of one of the modes leads
to an increase in the intensity fluctuations and therefore it may be used
in order to perform absorption measurements well below the shot-noise
limit. A full detailed discussion will be given elsewhere [8].

3 Squeezing from fourth-order interaction in a
degenerate parametric amplifier

It has been shown that [9] an intense coherent beam which propa-
gates along an optical Kerr medium, exhibits “self-squeezing” (ampli-
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tude squeezing), and that the effect could be remarkably high provided
that the incident pump strength is strong enough. The effect of such
higher—order interactions coupled to a standard two-photon medium was
analyzed by Tombesi [10] some time ago. The interest in the already
mentioned study was focused on the possibilities of generating strong
squeezed light at short interaction times (i.e. in travelling-wave geome-
tries). Our interest here is to explore the field—statistical properties of
a more realistic model of a parametric amplifier where the crystal losses
are explicitly accounted for.
The effective Hamiltonian is written as

1
H=Qa%ta+ Ef(t)a*" + -;—f'(t)a2 + g-a'*za2 + D wbfbi+
J

+_xj(b;a* +bta), (11)
i

where the first term on the right-hand side is the free-field contribution,
the second-order interaction is described by the terms which contain the
function f(t) = ix(t)e*(#~%), where x(t) characterizes the coupling,
and the fourth-order term is written in terms of the non-linear coupling
coefficient T which is taken to be proportional to the third-order sus-
ceptibility. The interaction with the heat-bath modes is comprised in
the last term.

We will follow an analogous procedure to the one previously used
except that a linearization has to be introduced in order to deal with
the higher—order term.

The Heisenberg equations for the field operators are readily obtained
and upon the elimination of the heat-bath modes one gets

= —i(1—4y)a—if(t)a" — iTa*a* + L(t) (12)
< L(t)L*(t) >=2D6(t - ¢'), 2D =~(1 +2A)

where 7 is the damping constant and L(t) are (complex) white noise
terms. The linearization of the Heisenberg equation can be done pro-
vided that a separation can be made between the c-number part and
the part carrying the quantum fluctuactions §a, that for the destruction
operator becomes

a = (a@+ 8a)e2(0-9)
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We can now replace the quantum noise term §a by the complex
stochastic process §a

ba = —i(Q ~ iy)da - if(t)ba’ — iT&(2&'6a + ada’) + L(t) (13)

which has a solution given as a Wigner probability density. The asso-
ciated Fokker-Planck equation in the W representation will thus corre-
spond to a reduced form where the derivatives higher than second order
have been truncated.

The complex aft) stochastic processes can be converted into real
ones as was done previously (Eqn. (5)) , and the Langevin equations for
the two field quadratures will be

= (-7+x)z+Ty(y’ +2°) + L,

y=(-v-x)y-Tz(y* +2*)+ L,

where the noise terms have the same properties as those given in (6).
By introduction of a rescaled time r = t(y + &) and defining the
dimensionless constants

K- r
= , v =
k+7 Tt+K

b

the equations can be written as
t=pr+vy(z® +y?)+ L,

y=-y-— uz(:l:2 + y’) + L, (14)

which have a deterministic stationary solution which verifies

t] & .
Sie N

® I

In consequence, it can easily be verified that for u < O the trivial
solution (z,,y,) = (0,0) is obtained and two other stationary solutions
are found above threshold (i.e. for x4 > 0)

(Z,,9,) = (0,0) forpu <0

2= ¥ P+ W) g = -u?, forp>0  (15)

71



A local stability analysis can be carried out by means of a lineariza-
tion around the deterministic solution and one finds that below threshold
only the trivial solution is stable whereas a saddle point is approached at
threshold and the two solutions above threshold become the only stable
ones (a ‘pitchfork’~type bifurcation is developed as one passes through
the threshold).

In the limit of vanishing damping (v = 1) the system becomes of
Hamiltonian nature and evolves according to

t=z+vy(y +2%) = _____GH;:::, y)

0H(z,y)
— a1 — 2 2 —_— ’
y=-y-vz(y +1%) 3.

, H(z,y)=zy+ ;(z’+ v’)?.

From the equations (14) the fuctuations around the steady states
as well as the effects due to the presence of the non-linear term can

be computed and some results are presented in an accompanying paper
[11].

4 Summary

The method of computing the statistical properties of non-linear optical
devices described in [6] which allows one to obtain the field-statistical
properties from the Heisenberg equations of motion has been applied to
two representative classes of model Hamiltonians. In the first case, since
the model involved only contains terms up to second order, the obtained
results should be considered as exact as the ones obtained by means of
the standard P representation. Since a linearization has been introduced
on the second case, the results have a range of validity which may exclude
the parameter region located near threshold. A more detailed discussion
on this topic is contained in an accompanying paper [11].
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