
GAIN NOISE IN DYE lASERS 

INTRODUCTION 

E. Hernandez-Garcia, M. San Miguel, R. Toral and M. Aguado 

Departament de Fisica, Universitat de les Illes Balears 
E-07071 Palma de Mallorca, Spain 

Dye laser light exhibits anomalous statistical properties. The current theoretical 
model1 of dye laser fluctuations includes pump fluctuations with a finite correlation 
time (colored noise). This standard model is obtained in an approximation which 
neglects fluctuations of the saturation term. The term neglected describes fluctuations 
in the gain parameter. The approximation is formally equivalent to consider fluctuations in 
the loss parameter. In this sense we refer to the standard model as loss-noise model, as 
opposed to the more fundamental gain-noise model, which we study here. Experimental 
evidence of colored gain-noise fluctuations has been reported2. A first understanding of 
the differences between gain and loss noise models can be obtained considering white noise 
fluctuations3. We find that a white gain-noise model already describes correctly 
anomalous intensity fluctuations and a first order-like transition for the most probable 
intensity value. An initial slow decay of the intensity correlation function can also be 
obtained within this model. However, the relaxation involving two-time scales which is 
observed experimentally can not be described by a white noise model. Instead, it requires 
colored noise modeling. Here we present a study of intensity correlation functions in the 
case of colored noise. A linearized analysis identifies that differences between the 
normalized intensity correlation functions of colored loss and gain-noise models associated 
with the correlation time of the noise 't are noticeable when the cavity decay rate and 't-1 
become comparable. We report here numerical calculations in which such differences are 
evidentiated in appropriate ranges of parameters . 

Our gain-noise model for a single mode dye laser in resonance is defined by the 
following stochastic equation for the intensity: 

dtI = 2(- K+rJ(1+/31)I+ D + (I /(1 +/31) (2Q) 1/2 ú E í F =+ (201)1/2 q(t) (1 ) 

where Ie is the loss parameter, r the gain parameter and p a positive parameter 
involving the matter-radiation coupling constant and the polarization and population 
inversion decay rates. The process q(t) models spontaneous emission noise of strength D. 
The random force ú E í F = models fluctuations of the gain parameter of strength Q. The 
spontaneous emission noise is taken to be Gaussian white noise of zero mean and correlation 
<q(t) q(f»=2S(t-f). The gain noise is also taken to be Gaussian of zero mean but with a 
finite correlation time 't: < ú E í F = ú E å = > = 't- 1 exp-(lt-q/ 't). 
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Fig. I. Parameter plane ai, a . Regions I, II and III correspond to dlfrerents shapes of 
Pst(l), as explained In the text. 

WHITE GAIN NOISE 

We first study the limiting case of white gain noise in which 't=0. We consider 
situations above threshold where spontaneous emission noise is known to have 
negligible influence: Then we can further simplify the problem taking 0=0. In such a case 
the model has two independent parameters which can be chosen as a1 = (r 10), a2= (KlQ). 
The corresponding white-noise version of the standard loss-noise model has only one 
independent parameter. In this convenient parametrization the standard loss-noise model is 
recovered from the gain-noise model in the limit a1->oo with a '" a1-a2 fixed. 

The stationary solution of the Fokker-Planck equation obtained for 't=O from (1) 
for the intensity distribution can be found analytically. The intensity fluctuations are well 
described by both the gain and loss-noise models. The analysis of the extrema of the 
stationary intensity distribution Pst(l) indicates the existence of three different regions 
in parameter space (see Fig.1): In region I (a>1), a single maximum at 1",,0 exists. In 
region II, Pst(l=O)=oo, and a relative maximum and minimum exist. In region III, 
Pst(l) decreases monotonously with the intensity. The mean intensity grows when 
decreasing a1 at a fixed or when increasing a at a1 fixed. In the second case, the most 
probable intensity changes discontinuosly at a=1 regardless of the value of a1 if 2.53 > 
a1 >1. This change becomes continuous at the same point a=1 for a> 2.53. The 
experimental finding of this discontinuity4 and of the presence of relative extrema in 
Pst(l) was interpreted as evidence of the existence of colored noise fluctuations. Our 
results indicate that both effects can be consisently described within a gain-noise model 
which only includes white noise. 

The early time decay of the normalized steady state intensity correlation function 1..(t) 
= «I(1"+t) I(r» - < 1>2) / <1>2 can be described in terms of an effective eigenvalue 1..eff 
proportional to the initial slope of 1..(t). In our case, the explicit form for 1..eff is, for 0=0, 
and't =0: 
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Fig. 2. Intensity correlation functions. A) Colored loss-noise model, 
2Q't=0.3, (1=1.13, ú Y N [ E N N = = 1.13 . Remaining lines are for the white 
gain-noi!ile model: B) (1= 0.32, (11 =0.417, ú Y f [ = = 3.31. C) (1= 0.7S, 
<11=1.63, ú Y N [ Z MK U T K = 0) (1= 1.30, (11=8.0, ú Y f [ = = 0.19. 

It has been proved5 that when only colored noise is present, Aeff is strictly zero. This is 
the case for the colored loss-noise model when spontaneous emission noise is neglected. As 
a consequence, a small initial slope of the correlation function has been interpreted as a 
signature of colored noise. A calculation of Aeff for the white gain-noise model gives the 
following findings: for a close to a1, and both not too large, Aeff takes very small values, 
much smaller than the ones for the white noise limit of the loss-noise model. Then, a 
small initial slope in the correlation function should not be uniquely associated with 
the presence of colored noise. 

A true experimental evidence of the presence of colored noise is the existenceS of 
an initial plateau in the correlation function which lasts for a time of the order of 
the correlation time of the noise, followed by a faster decay. This is seen in Fig.2, where 
we compare a correlation function for the colored loss-noise model with several ones for 
the white gain-noise model. All these correlation functions have an initial value close to 
A(0)=0.6 and they have been obtained by computer simulation. Although the white gain-
noise model can give a very small initial slope, it does not reproduce the two-time scales 
obtained in the colored loss-noise model . The two time scale behavior seen in 
measurements of the initial decay of A(t) is the remainig feature indicating that a 
correct modeling of external pump noise in dye lasers must take into account a finite 
correlation time. 

COLORED GAIN-NOISE 

The characteristic feature of the decay of correlations functions with colored noise 
which we have discussed above appears both in a loss or gain-noise model. As a first guide to 
distinguish between these two models we consider a linearization approximation. The 
spectrum of the linearized fluctuations around the deterministic steady state intensity 10 = 
(r- IC ) I PIC , defined as the Fourier transform of A(t), can be calculated for the gain noise 
model from equation (1). We obtain. 

(3) 
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where y=2 0 Cl Cl2 I Cll. The first tem of the spectrum is associated with spontaneous 
emission noise and can be negleted. The second term is a product of two lorentzians. one is 
given by the spectrum of the colored gain noise and the second has a width y. The same 
calculation for the loss noise-model. linearizing around the corresponding steady state 
intensity 10 ' = (r - K ) I P r gives2 the same result with y' = 20 Cl. It is clear that both 
spectra will be different in domains in which Cl2 and Cll are grossly different. that is Cl '" 
Cl 1 (I» K). In particular this includes the region II of Fig. 1 in which both models are 
different for 't = O. Linearization has a different range of validity for the gain and loss noise 
models. An evidence of the differences in the correlation functions for the range of 
parameters just discussed is given in Fig.3 .• where results of a direct simulation of (1) are 
shown. The value of 't is the one determined in Ref.2. while rand K have been arbitrarily 
varied to meet the requeriment r»K. A more interesting difference in the correlation 
functions of the two models arises only as a consequence of the value of 't . A guide to this 
result is obtained by a linearized calculation of 1..(0) which for the gain-noise model gives 
for D=O : 

(4) 

Again the same result is obtained for the loss noise model with y replaced by i. For the 
range of parameters of Ref.2 in which Cl» 0 't- 1 and Cl and Cll of the same order. 
differences between the two models should occur for Cl2 O't <1 ( K't <1). Evidence for this is 
given in the simulation results of Fig 4. The values of the gain and loss parameters are the 
ones determined in Ref. 2 but 't has been changed from a value 't = 2.10-5 sec. such that K't 
» 1 to a value for which K 't '" 1. It is finally interesting to note that for the values of 'to r 
and K of Ref.2. A (t) is very similar for the gain and loss-noise models in agreement with 
the above discussion. However. important differences occur in the un normalized correlation 
function C(t) = <1(t+1')I(1'» _<1>2 as shown in Fig.5. 
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Fig. 3. Intensity correlation functions: r=106 s-1.1(=1 04 s-1.'t= 2.10-5 s, 
0= 10-3 s-1, Q= 5.10-6 s-1, ú Z =10-2 . A) Loss-noise model, 
8)Gain-noise model. 
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Fig. 4. Same as Fig. 3 except 1: = 10-7 s, r = 2 .10 7 s-1 1C = 10 7 s- 1 
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Fig.S. Unnorma];zed correlation functions. Same parameters as in 

Fig. 4 except 1:= 2 .10- 5 s A) Loss-noise model. 
B) Gai n - noise model. 
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