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Abstract

In this work we present a detailed analysis using Markov chain theory of some versions
of the truel game in which 3 players with different markmanships try to eliminate each
other in a series of one-to-one competitions, using the rules of the game. The paradoxical
result in this game is that under certain circumstances the player with the highest mark-
manship does not necessarily have the highest survival probability. Besides reproducing
some known expressions for the winning probability of each player, including the equilib-
rium points, we provide with the expressions for the actual distribution of winners in a
truel competition.

1 Introduction

A truel game can be considered as the extension of a duel played by three individuals.
These players, which will be named as A, B and C, possess different markmanships, i.e.
the probability of hitting a chosen target. Markmanships will be denoted as a, b and c for
players A, B and C respectively. Without loss of generality we will assume throughout
this paper that the players are labeled such that a > b > c. In this game all players share
the same goal: to eliminate all the opponents so that eventually the game stops when
there is only one survivor left, the winner of the game. The mechanics of the truel can be
described by the following steps:

• (1) Each round – or time-step –, one of the truelists is chosen for playing.

• (2) He then decides who will be his target and, with a certain probability – the
markmanship – he does achieve the goal of eliminating that opponent from the
game.

• (3) Whatever the result obtained by the player, steps one and two are repeated again
until there is only one survivor.

Based on the rules used for selecting the players, we can distinguish between three
main types of truels:

• Random truel. At each round one of the remaining players is chosen randomly
with equal probability.
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• Sequential truel. In this case there exists an established firing order, which will
be followed throughout the whole game. We allow players with worst markmanship
to shoot firstly, followed then by players with better markmanship. According to
the notation introduced earlier, the firing order in the sequential truel is C–B–A.

• Simultaneous truel. In this version all players shoot at the same time.

A paradoxical or counter–intuitive result appears in this game, as the “truelist” with
the highest markmanship does not necessarily possess the highest survival probability.
This paradoxical result was already mentioned in the early literature on truels [1]. These
games were formally introduced for the first time by Kilgour in 1946 [2], although the
name truel was coined later by Shubik [3] in the 1960s. We may also find in the literature
other models similar to the truel game presenting also the same kind of counter-intuitive
results. A better known example is that of the like rock–scissors–paper game, a game
that has been applied to population dynamics [4, 5] and to some convective instabilities
in rotaring fluids [?]. It consists in a system with three species that interact with each
other creating a competitive loop: rock beats a pair of scissors, scissors beat a sheet of
paper and paper beats a rock. However, as will be shown later, the truel corresponds to
a more general game where players do not necessarily interact through fixed strategies.

Different versions of the truels vary on the number of tries (or “bullets”) available to
each player, on whether they are allowed to “pass”, i.e. missing the shoot on purpose
(“shooting into the air”), on the number of rounds being finite or infinite, etc. All these
modifications lead to games with different outcomes [6, 7, 8]. Besides, they can be fur-
ther extended through the introduction of coalitions between the truelists, that is, the
appearance of cooperations between different players so that they can set a common tar-
get (these games re known as cooperative truels [9]), in such a way that they can obtain
greater benefits from that coalition improving their own survival probability. We will
restrict ourselves to the case of unlimited ammunition, and the game will continue until
there is only one player left (so that there is no upper limit in the number of rounds);
besides, players are also allowed to lose their turn by shooting into the air, a possibility
that turns out to be useful in some particular cases.

The strategy of each player consists in choosing the appropriate target when it is his
turn to shoot. Rational players will use the strategy that maximizes their own probability
of winning and hence the ensemble of players will chose the strategy given by the Nash
equilibrium point. In a series of seminal papers [6, 7, 8], Kilgour has analyzed the games
and determined the equilibrium points under a variety of conditions.

In this paper, we analyze the games from the point of view of Markov chain theory.
Besides being able to reproduce some of the results by Kilgour, we obtain the probability
distribution for the winners of the games. We restrict our study to the case in which there
is an infinite number of bullets and consider two different versions of the truel: random
and fixed sequential chosing of the shooting player.
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Furthermore, we consider a variation of the game in which instead of eliminating the
competitors from the game, the objective is to convince them on a topic, making the truel
suitable for a model of opinion formation.

The paper is organized as follows: in Sec. 2, and in order to introduce the general
methods in an simpler context, we present a detailed analysis for the case of duels; Sec. 3
is devoted to the analysis of the random and sequential versions of the truels; we present
in Sec. 4 an analysis of the opinion model; in Sec. 5 we present the distribution of winners
corresponding to the truel games as well as the opinion model; the truels are generalized
to more than three players in Sec. 6 and, finally, in Sec. 7 we draw the conclusions.

2 The duels

In this simpler game we consider two players, A and B, with markmanships a and b

respectively, such that a > b. We will consider the random duel in which the person to
shoot next is randomly selected with equal probility between the two players, as well as
the sequential version in which the bad player, B, starts shooting and then they alternate
fires. In any case, the game continues until there is only one survivor. If we take the model
as an opinion model, the game continues until one player han convinced the other and
both share the same opinion. Clearly, in a duel it makes no sense for a player to lose his
opportunity to eliminate the opponent by shooting into the air and the only meaningful
strategy is to shoot into the other player.

An analytical study done with Markov chains for both the random duel and the opinion
model shows that both models can be described through the same Markov chain with three
states (see Appendix 8.1 for further details). If we denote the survival (or convincing)
probabilities of players A and B as πA and πB respectively we have

πA =
a

a + b
, πB =

b

a + b
, (1)

a result that indicates that the higher the markmanship of a given player, the higher the
survival (convincing) probability in the random duel (opinion model).

Turning to the case of the sequential duel, this game can be described with a Markov
chain with four states. The analytical expressions obtained for the survival probabilities
are

πA =
a

1 − (1 − a)(1 − b)
, πB =

b(1 − a)

1 − (1 − a)(1 − b)
, (2)

A closer study of Eqs. (2) shows that even though the worst player B starts shooting
first, he achieves a higher survival probability than A only when b > a

1+a
. Thus, in the

sequential duel the unfavorable situation of player B having a lower markmanship than
A is partially compensated by being the one shooting in first place.
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If a third individual comes into play, the previous situation of a duel is no longer simple.
Now every player in the truel must consider all possible actions that other opponents may
take and their corresponding outcomes. In the next section we analyze the different truel
games.

3 Truels

3.1 Random truel

Let us first fix the notation. We denote by PAB , PAC and PA0 the probability of player
A shooting into player B, C, or into the air, respectively, with equivalent definitions for
players B and C. These probabilities verify PAB + PAC + PA0 = 1. We will consider
only “pure” strategies, namely, only one of these three probabilities is taken equal to
1 and the other two equal to 0. Finally, we denote by π(a; b, c) the probability that
player with marksmanship a wins the game when playing against other two players with
marksmanships b and c. This definition implies π(a; b, c) = π(a; c, b) and π(a; b, c) +
π(b; a, c) + π(c; a, b) = 1. Recall that we use the convention a > b > c.

The corresponding Markov chain for this game is composed of 7 different states labeled
as ABC, AB, AC, BC, A, B, C according to the players remaining in the game. Three
of these states, A, B and C are absorbent states. The details of the calculation for the
winning probabilities as well as a diagram of the allowed transitions between states are
shown in Appendix 8.2. We now discuss the results in different cases.

As explained previously, completely rational players will choose strategies that are best
responses (i.e. strategies that are utility–maximizing) to the strategies used by the other
players. This defines an equilibrium point when all players are better off keeping their
actual strategy than changing to another one. Accordingly, this equilibrium point can be
defined as the set of probabilities Pαβ (with α =A,B,C and β =A,B,C,0) such that the
winning probabilities have a local maximum. This set can be found from the expressions
in Appendix 8.2, with the result that the equilibrium point in the case a > b > c is
given by PAB = PCA = PBA = 1 and PAC = PA0 = PBC = PB0 = PCB = PC0 = 0.
This strategy set is known as “strongest opponent strategy”, as each player aims at the
strongest of his opponents [1]. For this strategy and considering that a > b > c, the
winning probabilities are given by

π(a; b, c) =
a2

(a + c)(a + b + c)
, π(b; a, c) =

b

a + b + c
, π(c; a, b) =

c(c + 2a)

(a + c)(a + b + c)
.

(3)
An analysis of these probabilities leads to the paradoxical result that when all players

use their ’best’ strategy, the player with the worst marksmanship can become the player

4



0 0,2 0,4 0,6 0,8 1
b

0

0,2

0,4

0,6

0,8

1

c

Figure 1: Diagram b vs c setting a = 1 where it is plotted with color codes which is the player
with the highest survival probability for the case of the random truel. The black color corre-
sponds to the region where player A has the highest winning probability, red color corresponds
to player B having the highest winning probability and finally the red color corresponds to
player C being the player with the highest survival probability.

with the highest winning probability. For example, when a = 1.0, b = 0.8, c = 0.5 the
probabilities of A, B and C winning the game are 0.290, 0.348 and 0.362 respectively,
precisely in inverse order of their marksmanship. This somewhat surprising result can
be easily understood if one realizes that players set as primary target either player A
or player B, leaving player C as the last option and therefore increasing his winning
expectation. In Fig. 1 we indicate y a color code the region in parameter space in which
each player possesses the highest survival probability when playing the random truel,
varying markmanships b and c and keeping a fixed and equal to 1. Note that the region of
player A is larger than the ones for B and C. In this figure, markmanship a has been set to
its highest possible value 1, because other values a 6= 1 can be related through the scaling
relations π(a; b, c) = π(1; b/a, c/a), π(b; a, c) = π(b/a; 1, c/a), π(c; a, b) = π(c/a; 1, b/a).

3.2 Sequential truel

In this version of the truel there is an established order of firing. The players shoot in
increasing value of their marksmanship. i.e. if a > b > c the firing order is C − B − A.
The sequence repeats until only one player remains. Again, we have left for Appendix 8.3

5



the details of the calculation of the winning probabilities. Our analysis of the optimal
strategies reproduces that obtained by the detailed study of Kilgour [7]. The result is
that there are two equilibrium points depending on the value of the function g(a, b, c) =
a2(1− b)2(1− c)− b2c− a b (1− b c): if g(a, b, c) > 0 the equilibrium point is the strongest
opponent strategy PAB = PBA = PCA = 1, whereas for g(a, b, c) < 0 it turns out that the
equilibrium point strategy is PAB = PBA = PC0 = 1 where the worst player C is better off
by shooting into the air and hoping that the second best player B succeeds in eliminating
the best player A from the game.

The winning probabilities for this case, assuming a > b > c, are:

π(a; b, c) =
(1 − c)(1 − b)a2

[c(1 − a) + a][b(1 − a) + a]
,

π(b; a, c) =
(1 − c)b2

(c(1 − b) + b)(b(1 − a) + a)
,

π(c; a, b) =
c[bc + a[b(2 + b(−1 + c) − 3c) + c]]

[c + a(1 − c)][b + a(1 − b)][a + b(1 − a)]
, (4)

if g(a, b, c) > 0, and

π(a; b, c) =
a2(1 − b)(1 − c)2

[a + (1 − a)c][a + b(1 − a) + c(1 − a)(1 − b)]
,

π(b; a, c) =
b
(

b(1 − c)2 + c
)

[b + (1 − b)c][a + b(1 − a) + c(1 − a)(1 − b)]
,

π(c; a, b) =

ac(1−b)(1−c)
a+c(1−a) + c(b+c(1−2b))

b+c(1−b)

[a + b(1 − a) + c(1 − a)(1 − b)]
, (5)

if g(a, b, c) < 0. Again, as in the case of random firing, the paradoxical result appears
that the player with the smallest marksmanship has the largest probability to win the
game. In Fig. 2 we summarize the results showing the regions in parameter space (b, c)
(setting a = 1) where each player has the highest probability of winning. In this case the
area where player A wins the truel decreases considerably respect to the previous truel
game. Basically the reason is that in this case player A is the last one to shoot, and the
advantageous situation given by its high markmanship is partially lost due to the imposed
firing order.

4 Opinion model

The opinion model is based upon the random firing truel though this case is composed
of three people holding different opinions, A, B and C, on a topic. Their goal is to
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Figure 2: Same as Fig. 1 in the case that players play sequentially in increasing order of their
marksmanship.

convince each other in a series of one-to-one discussions. Thus, marksmanship a (resp. b,
c) is interpreted as the probability that player holding opinion A (resp. B or C) has of
convincing another player of adopting this opinion. The main difference with the previous
games is that the number of players present is always constant and equal to three, a fact
that will strongly conditionate the results.

The analysis with Markov chains can be found in Appendix 8.4. As in the case of the
random truel, there exist only one equilibrium point that corresponds to the strongest op-
ponent strategy. The probabilities of a final consensus opinion being A, B or C, assuming
a > b > c are

π(a; b, c) =
a2

[

2cb2 + a
(

(a + b)2 + 2(a + 2b)c
)]

(a + b)2(a + c)2(a + b + c)
,

π(b; a, c) =
b2(b + 3c)

(b + c)2(a + b + c)
,

π(c; a, b) =
c2

[

c3 + 3(a + b)c2 + a(a + 8b)c + ab(3a + b)
]

(a + c)2(b + c)2(a + b + c)
, (6)

Notice that, as before, thye satisfy the scaling relations π(a; b, c) = π(1; b/a, c/a), π(b; a, c) =
π(b/a; 1, c/a), π(c; a, b) = π(c/a; 1, b/a). As in previous cases, we have plotted in Fig. 3
in colour code the opinion with the highest probability of becoming majoritarian. In this

7



0 0.2 0.4 0.6 0.8 1
b

0

0.2

0.4

0.6

0.8

1

c

Figure 3: Same as Fig. 1 for the convincing opinion model.

case opinion A becomes majoritarian nearly for all values of b and c. Only for a tiny
region opinion C can become the majority opinion. This overwhelming dominion of A
can be understood if we recall that the total number of players always remains the same
throughout the game. Only the opinions held by the players change. So, once opinion A
convinces either a player with opinion B or a player with opinion C, it is very likely that
it will eventually become the majority opinion due to its high convincing probability.

5 Distribution of winners

Now imagine that we set up a truel competition. Sets of three players are chosen randomly
amongst a population whose marksmanship are uniformly distributed in the interval (0, 1).
The distribution of winners is characterized by a probability density function, f(x), such
that f(x)dx is the proportion of winners whose marksmanship lies in the interval (x, x +
dx). This distribution is obtained as:

f(x) =

∫

da db dc [π(a; b, c)δ(x − a) + π(b; a, c)δ(x − b) + π(c; a, b)δ(x − c)] (7)

or

f(x) = 3

∫ 1

0
db

∫ 1

0
dc π(x; b, c) (8)
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Figure 4: Distribution of winners for the random truel when the players use the strongest

opponent strategy.

We may also consider a variation of the competition in which the winner of one game
keeps on playing against other two randomly chosen players. The resulting distribution
of players, f̄(x), can be computed as the steady state solution of the recursion equation:

f̄(x, t + 1) =

∫

da db dc [π(a; b, c)δ(x − a) + π(b; a, c)δ(x − b) + π(c; a, b)δ(x − c)] f̄(a, t)

(9)
or

f̄(x) =
1

3
f̄(x)f(x) + 2

∫ 1

0
db

∫ 1

0
dc π(x; b, c)f̄ (b) (10)

In Fig. 4 we have plotted both distributions f(x) and f̄(x)1 when players adopt the set
of strategies corresponding to the equilibrium point given by Eq. (3), i.e., the strongest

opponent strategy. Notice that, despite the paradoxical result mentioned before, the dis-
tribution of winners still has it maximum at x = 1, indicating that the best marksmanship
players are nevertheless the ones who win in more occasions.

In Fig. 5 we plot the distribution of winners f(x) and f̄(x) in a competition where
players play the sequential truel. As before, the solid line corresponds to the former truel
competition and the discontinuous line corresponds to the competition where the winner
of the truel goes on playing. Notice that now the distribution of winners f(x) has a
maximum at x ≈ 0.57. This result reflects the counter–intuitive result obtained earlier,

1In this case, the integral relation Eq. (10) has been solved numerically.
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Figure 5: Same as Fig.4 in the case that players play sequentially in increasing order of their
marksmanship. Notice that now both distributions of winners present maxima for x < 1
indicating that the best a priori players do not win the game in the majority of the cases.

and is that players who perform better on average are not those with higher markmanship,
instead, are the ones with intermediate values.

Finally, we plot in Fig. 6 both distributions of winning opinions, f(x) and f̄(x). As
in the case of the random truel, we can observe how the player most favored on average
is the one with the highest markmanship available.

6 Generalization to N players : N–uels

We have shown for three players the existence of an interesting and a priori counter–
intuitive result where the player with the highest markmanship does not win the truel in
all cases. But, what happens if there are more than three players? For a general case of N
players, it is rather difficult to obtain exact analytic expressions. Already for a low number
of individuals the expressions obtained increase very rapidly in complexity. However, by
means of computer simulations we are able to obtain the distribution of winners for a
number of players N > 3.

In the upper panel of Fig. 7 we show a histogram corresponding to the ranking obtained
when the random truel is played by 4 players. The fourth classified would correspond to
the distribution of players eliminated from the game in first place, the third classified
would be the one eliminated in second place and so on. The distribution of the fourth
classified shows that individuals eliminated firstly in the game are those with higher
markmanships. Indeed, the maximum is located at x = 1, indicating then that the better
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Figure 6: Same as Fig.1 for the convincing opinion model.

you are the higher the probability of being eliminated. Another aspect we can extract
from this figure deals with the distribution of the first and second classified: these curves
correspond to the case where there are only two players left in the game, i.e., to a duel.
Therefore, as we have seen previously, it is more likely in this situation that players with
lower markmanships are eliminated firstly rather than those with higher markmanships
(that is the reason why the curve for the second classified presents a maximum in the
origin). It is worth mentioning that already for 4 players the histogram associated to the
first classified – i.e., the winner of the 4–uel – presents a maximum for a value of x < 1.
This result implies that the best performing player does not correspond anymore to the
player with the highest markmanship, as it happened for N = 3. Indeed, the optimum
value is located in between (0.35, 0.45).

Our next step would be a survey for different values of N . In the lower panel of Fig. 7
we see how the histogram of the winners of a N–uel evolves when varying N . It can be
clearly seen that for values of N ≥ 4 the optimum/maximum value of the distribution is
indeed progressively enhanced and shifted towards zero when N is increased.

7 Summary

We have presented a detailed analysis of the random truel, the sequential truel and an
opinion model using the methods of Markov chain theory. We are able to reproduce in
a language which is more familiar to the Physics community most of the results of the
alternative analysis by Kilgour [7]. Besides computing the optimal rational strategy, we
have focused on computing the distribution of winners in a truel competition. We have
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Figure 7: Upper panel: Histogram of the classified corresponding to the random truel for
N = 4 players. Lower panel: Different histograms of the first classifieds when playing the
random N–uel corresponding to different values of N = 3, 4, 10, 25 and 50.

shown that in the random case (as well as in the opinion model), the distribution of winners
still has its maximum at the highest possible marksmanship, x = 1, despite the fact that
sometimes players with a lower marksmanship have a higher probability of winning the
game. In the sequential firing case, the paradox is more present as the distribution of
winners has a maximum at x < 1. Finally we have presented some numerical results
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concerning the distribution of winners when N > 3 and shwon that already for N = 4 the
distribution presents a maximum value located at x < 1. Furthermore, as N increases
this optimal value tends to zero.

We acknowledge financial support by the Ministerio de Educación y Ciencia (Spain)
and FEDER projects FIS2004-5073, FIS2004-953. P.A. is supported by grant from the
government of the Balearic Islands.

8 Appendix

8.1 Duels

In Fig. 8 we show a Markov chain with three states 0, 1, 2 corresponding to the random
duel and also the opinion model. The Table in Fig. 8 shows the correspondence between
the players remaining on the game and their corresponding state for both the random
duel and the opinion model.

r0

0 21

p p
01 02

Random Duel Opinion Duel

States Remaining players Remaining opinions

0 A B A B
1 A A A
2 B B B

Figure 8: Table: description of the different states for the random duel and opinion model.
Diagram: Markov chain corresponding to both the random duel and opinion model with two
opinions.

From Markov chain theory[8] we can calculate the probability uj
i that starting from

state i we eventually end up in state j after a sufficiently large number of steps. We are
interested in calculating the probability that starting from state 0 we end up either in
state 1 or state 2. The set of equations to be solved are

u1
0 = p01u

1
1 + p00u

1
1 (11)

u2
0 = p02u

2
2 + p00u

2
0 (12)

(13)

where the transition probabilities pij between states are given by :

p00 =
1

2
[2 − a − b] , p01 =

1

2
a , p02 =

1

2
b (14)
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Recalling that by definition uj
j = 1 we may solve Eqs. (11,11) obtaining

u1
0 =

p01

1 − p00
, u2

0 =
p02

1 − p00
, (15)

Substituting the transition probabilities in the previous set of equations we obtain the
survival probabilities for player A (u1

0) and player B (u2
0)

πA =
a

a + b
, πB =

b

a + b
, (16)

We now consider the Markov chain describing the sequential duel. It is composed of
four states 0, 1, 2, 3 and is depicted in Fig. 9. The table from Fig. 9 shows the relation
between the states and the players that are still on the game.

201

p
01

p
02

p
10

p
13

3

States Remaining players

0 A B
1 A B

2 A
3 B

Figure 9: Table: description of the different states for the sequential duel where it is high-
lighted which player is shooting. Diagram: Markov chain with four states corresponding to the
sequential duel.

The set of equations to be solved are

u2
0 = p02u

2
2 + p01u

2
1 (17)

u3
0 = p01u

3
1 (18)

u2
1 = p10u

2
0 (19)

u3
1 = p13u

3
3 + p10u

3
0 (20)

(21)

where

p01 = 1 − a , p02 = a , p10 = 1 − b , p13 = b (22)

The general solutions for Eqs. (17),(18),(19),(20) are

u2
0 =

p02

1 − p01p10
, u3

0 =
p01p13

1 − p01p10
, (23)

which, after substituting the transition probabilities give as a result
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πA = u2
0 =

a

1 − (1 − a)(1 − b)
, πB = u3

0 =
b(1 − a)

1 − (1 − a)(1 − b)
, (24)

8.2 Random firing truel

In this case we may distinguish seven possible states according to the remaining players
labeled as 0, 1, . . . , 6. The allowed transitions between those states are shown in the
diagram in Fig. 10, where pij denotes the transition probability from state i to state j
(the self–transition probability pii is denoted by ri).

2

1

3

4

5

6

r3

r2

0

r1

5r

r6

4r

r0

p
01

p
02

p
03

p
14

24
p

15
p

35
p

26
p

p
36

States Remaining players

0 ABC
1 AB
2 AC
3 BC
4 A
5 B
6 C

Figure 10: Table with the description of all the possible states for the random firing game, and
diagram representing the allowed transitions between the states shown in the table.

We are particularly interested in the calculation of u4
0, u5

0 and u6
0, corresponding to

the winning of the game by player A, B and C respectively. The relevant set of equations
is

u4
0 = p01 u4

1 + p02 u4
2 + p03 u4

3 + p00 u4
0, u5

0 = p01 u5
1 + p02 u5

2 + p03 u5
3 + p00 u5

0,
u4

1 = p14 u4
4 + r1 u4

1, u5
1 = p15 u5

5 + r1 u5
1,

u4
2 = p24 u4

4 + r2 u4
2, u5

2 = r2 u5
2,

u4
3 = r3 u4

3, u5
3 = r3 u5

3 + p35 u5
5.

We can then solve the previous set of equations for u4
0 and u5

0, and then obtain u6
0

through the relation u4
0 + u5

0 + u6
0 = 1, obtaining
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u4
0 =

p01 p14

(1 − p00)(1 − r1)
+

p02 p24

(1 − p00)(1 − r2)
,

u5
0 =

p01 p15

(1 − p00)(1 − r1)
+

p03 p35

(1 − p00)(1 − r3)
, (25)

u6
0 =

p02 p26

(1 − p00)(1 − r2)
+

p03 p36

(1 − p00)(1 − r3)
.

Where the transition probabilities pij are given by

r0 = 1 − 1
3(a(1 − PA0) + b(1 − PB0) + c(1 − PC0)), p01 = 1

3(aPAC + bPBC),
p02 = 1

3(aPAB + cPCB), p03 = 1
3(bPBA + cPCA),

p14 = p24 = 1
2a, p15 = p35 = 1

2b,
p26 = p36 = 1

2c, r1 = 1 − 1
2(a + b),

r2 = 1 − 1
2(a + c), r3 = 1 − 1

2(b + c).

(26)

8.3 Sequential firing

As in the random firing case, we describe this game as a Markov chain composed of 11
different states, also with three absorbent states: 9 , 10 and 11. In Fig. 11 we can see the
corresponding diagram for this game, together with a table describing all possible states.
Based on this diagram, we can write down the relevant set of equations for the transition
probabilities uj

i :

u9
0 = p03u

9
3 + p01u

9
1 + p04u

9
4, u10

0 = p03u
10
3 + p01u

10
1 , u11

0 = p01u
11
1 + p04u

11
4 ,

u10
1 = p12u

10
2 + p15u

10
5 + p16u

10
6 , u9

1 = p12u
9
2 + p15u

9
5, u11

1 = p12u
11
2 + p16u

11
6 ,

u11
2 = p28u

11
8 + p27u

11
7 + p20u

11
0 , u9

2 = p27u
9
7 + p20u

9
0, u10

2 = p28u
10
8 + p20u

10
0 ,

u9
3 = p35u

9
5, u10

3 = p35u
10
5 + p3 10,

u9
4 = p47u

9
7, u11

4 = p47u
11
7 + p4 11,

u9
5 = p53u

9
3 + p59, u10

5 = p53u
10
3 ,

u10
6 = p68u

10
8 , u11

6 = p68u
11
8 + p6 11,

u9
7 = p74u

9
4 + p79, u11

7 = p74u
11
4 ,

u10
8 = p86u

10
6 + p8 10, u11

8 = p86u
11
6 .

(27)
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States Remaining players

0 A B C

1 A B C
2 A B C
3 B C
4 A C
5 B C

6 A B
7 A C

8 A B

9 C
10 B
11 A

Figure 11: Table: Description of the different states of the game for the case of sequential
firing. The highlighted player is the one chosen for shooting in that state. Diagram: scheme
representing all the allowed transitions between the states shown in the table for the case of a
truel with sequential firing in the order C→ B → A with a > b > c.

The general solutions for the probabilities u9
0, u10

0 and u11
0 are given by

u9
0 =

1

1 − p01p12p20

[

p59(p03p35 + p01p15)

1 − p35p53
+

p79(p04p47 + p01p12p27)

1 − p47p74

]

,

u10
0 =

1

1 − p01p12p20

[

p3 10(p03 + p01p15p53)

1 − p35p53
+

p01p8 10(p16p68 + p12p28)

1 − p68p86

]

, (28)

u11
0 =

1

1 − p01p12p20

[

p4 11(p04 + p01p12p27p74)

1 − p47p74
+

p01p6 11(p16 + p12p28p86)

1 − p68p86

]

,

with transition probabilities given by

p01 = (1 − c) + cPC0, p03 = cPCA, p04 = cPCB ,
p12 = (1 − b) + bPB0, p15 = bPBA, p16 = bPCA,
p20 = (1 − a) + aPA0, p27 = aPAB , p28 = aPAC ,
p35 = p86 = 1 − b, p3 10 = p8 10 = b,
p47 = p68 = 1 − a, p4 11 = p6 11 = a,
p53 = p74 = 1 − c, p59 = p79 = c.
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8.4 Convincing opinion

For this model we show in Fig. 12 the diagram of all the allowed states and transitions,
together with a table describing the possible states.
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61
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41
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States Opinions

0 A B C
1 C C C
2 B B B
3 A A A
4 B C C
5 B B C
6 A C C
7 A A C
8 A B B
9 A A B

Figure 12: Table: description of the different states of the opinion model. Diagram: scheme
representing the allowed transitions between the states.

The corresponding set of equations describing this convincing opinion model, as derived
from the diagram, are

u1
0 = p00u

1
0 + p06u

1
6 + p04u

1
4 + p05u

1
5 + p07u

1
7,

u2
0 = p00u

2
0 + p04u

2
4 + p05u

2
5 + p08u

2
8 + p09u

2
9,

u3
0 = p00u

3
0 + p08u

3
8 + p09u

3
9 + p07u

3
7 + p06u

3
6,

u1
4 = r4u

1
4 + p45u

1
5 + p41, u2

4 = r4u
2
4 + p45u

2
5,

u1
5 = r5u

1
5 + p54u

1
4, u2

5 = r5u
2
5 + p54u

2
4 + p52,

u1
6 = r6u

1
6 + p67u

1
7 + p61, u3

6 = r6u
3
6 + p67u

3
7,

u1
7 = r7u

1
7 + p76u

1
6, u3

7 = r7u
3
7 + p76u

3
6 + p73,

u2
8 = r8u

2
8 + p89u

2
9 + p82, u3

8 = r8u
3
8 + p89u

3
9,

u2
9 = r9u

2
9 + p98u

2
8, u3

9 = r9u
3
9 + p98u

3
8 + p93.

(29)
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And the general solution for the probabilities u1
0, u2

0 and u3
0 is

u1
0 =

1

1 − p00

[

p61(p06(1 − r7) + p07p76)

(1 − r6)(1 − r7) − p67p76
+

p41(p04(1 − r5) + p05p54)

(1 − r4)(1 − r5) − p45p54

]

,

u2
0 =

1

1 − p00

[

p52(p04p45 + p05(1 − r4))

(1 − r4)(1 − r5) − p45p54
+

p82(p08(1 − r9) + p09p98)

(1 − r8)(1 − r9) − p89p98

]

,

u3
0 =

1

1 − p00

[

p73(p06p67 + p07(1 − r6))

(1 − r6)(1 − r7) − p67p76
+

p93(p09(1 − r8) + p08p89)

(1 − r8)(1 − r9) − p89p98

]

, (30)

where the transition probabilities are given by

p04 = 1
3cPCA, p06 = 1

3cPCB , p08 = 1
3bPBC ,

p05 = 1
3bPBA, p07 = 1

3aPAB , p09 = 1
3aPAC ,

p41 = p61 = 2
3c p45 = p98 = 1

3b, p54 = p76 = 1
3c,

p52 = p82 = 2
3b, p67 = p89 = 1

3a, p73 = p93 = 2
3a,

p00 = 1
3 [3 − a − b − c], r4 = 2

3(1 − c) + 1
3(1 − b), r5 = 1

3(1 − c) + 2
3(1 − b),

r6 = 2
3 (1 − c) + 1

3 (1 − a), r7 = 1
3(1 − c) + 2

3(1 − a), r8 = 2
3(1 − b) + 1

3(1 − a),
r9 = 1

3 (1 − b) + 2
3(1 − a).

(31)
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