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Summary. — We study the synchronized/unsynchronized transition as a function
of the noise intensity which appears in a system of globally coupled FitzHugh–
Nagumo units under the effect of white noise. By the use of the proper definition of
an order parameter, we obtain numerically the phase diagram as a function of the
noise intensity and coupling constant.
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1. – Model studied

In the last years, the phenomenon of synchronization in coupled limit cycle oscillators
has been extensively investigated[1, 2]. However, not such a thorough study has been
carried out for excitable systems, despite the fact that many features of the dynamics of
biologically relevant systems, for example, neurons, can be described by simple excitable
models. For example, it is found that epileptic crises are characterized by a particularly
large amount of neurons firing simultaneously[3].

It is the goal of this paper to delve into some aspects of the synchronization properties
of coupled excitable systems under the presence of noise. Although we do not have
any specific applications in mind, we believe that our results are quite general, since
we use a prototypical model of excitable dynamics. It is known that in those systems
noise can induce phenomena such as stochastic resonance [4] (under the presence of
an external forcing) or coherence resonance [5, 6, 7]. The latter is a mechanism by
which an unforced excitable system shows a maximum degree of regularity in the period
between emitted pulses in the presence of the right amount of noise. We focus here on
the stationary synchronization properties of the common firings[8], and a more detailed
study including the coherence resonance aspects is left for future work. We find that
there is a non-equilibrium phase transition between synchronized and desynchronized
states. We discuss the proper order parameter to characterize this transition and obtain
numerically the phase diagram.

We consider the FitzHugh-Nagumo model which provides the simplest representation
of firing dynamics and has been widely used as a model for spiking neurons as well as
for cardiac cells[9, 10] . The model is defined in terms of activation x and inhibition y
variables, as follows:

εẋ = x − 1
3
x3 − y(1)

ẏ = x + a + Dξ(t)(2)

where, following Ref.[5] , a Gaussian white noise ξ(t) of zero mean and correlations
〈ξ(t)ξ(t′)〉 = δ(t − t′) has been added to the slow variable y. D will be called the
noise intensity. The difference in the time scales of x and y is measured by ε, a small
number. We work exclusively in the so-called excitable regime, characterized by |a| > 1.

There is a single stable fixed point (x0, y0) which, in the absence of any external
perturbation, D = 0, is reached independently of the initial condition. When random
perturbations are present, the trajectories eventually exit the basin of attraction of the
stable fixed point and return to it after making an excursion in phase space, i.e. a pulse.

The next step is to consider an ensemble of N globally coupled systems:

εẋi = xi −
1
3
x3

i − yi +
k

N

N∑

j=1

(xj − xi)(3)

ẏi = xi + a + Dξi(t), i = 1, . . . , N(4)
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with independent noises, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′). The systems are globally coupled by
a gap-junctional form, as indicated by the last term of Eq.(3), where k is the coupling
strength.

Numerical simulations of this coupled system of equations(1) show that, for some
range of parameter values, the different units fire pulses at the same times. Notice that,
although some amount of noise is needed in order to induce firings and hence observe
synchronized behavior, too a large noise finally degrades the quality of the synchronized
state. A general framework to study such synchronization phenomena is given by the
work by Kuramoto[1] . He considers coupled phase variables φi(t) following a stochastic
dynamics and discusses the existence of a synchronized regime in terms of the coupling
strength and the noise intensity. It turns out that the Kuramoto model displays a genuine
phase-transition in which synchronization disappears if the noise surpasses a given critical
value. We will show that the same behavior can be observed in our model.

The first step consists in defining phase-like variables φi for our model. They should
satisfy the condition that their variation between 0 and 2π represents the pulse movement
starting from the fixed point, traveling through all the cycle, and ending again at the
fixed point. Several different approaches have been taken in order to evaluate the phases
φi. The most näıve, definition is based upon the fact that the limit cycles in which the
variables (xi, yi) evolve are approximately centered around the origin. Then, the easiest
choice is

φi = arctan
(

yi

xi

)
.(5)

However, this choice is only valid for particular cases of the parameters of the FitzHugh-
Nagumo model. For large noise intensities, for example, the pulses are not so clearly
centered around the origin. A definition of more general validity uses the so-called
Hilbert transform[2]. Let us consider the variable xi(t). From it we can construct the so-
called “analytic signal”, si(t) = xi(t) + i x̂i(t), where x̂i(t) denotes the Hilbert transform
of the function xi(t). For a general function, g(t), such a transform is defined as

ĝ(t) = − 1
π

PV

∫ ∞

−∞

g(τ)
t − τ

dτ(6)

where PV denotes the principal value of the integral. The phase is defined as the argument
of si(t), i.e.

φi(t) = arctan
(

x̂i

xi

)
.(7)

From a computational point of view, it is very costly to perform the convolution
involved in the Hilbert transform. We will show now that the same phase can be obtained

(1) The numerical integration of eqs. (3-4) use a stochastic Runge-Kutta method (known as
the Heun method [11]) with a time step h = 10−4.
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by a much more efficient procedure. This is based upon the equality

g(t) + iĝ(t) = 2F−1 [F [g(t)] · Θ(ω)](8)

involving the Fourier transform operator F . Here Θ(ω) is the Heaviside function: Θ(ω) =
0 for θ < 0, Θ(ω) = 1 for θ ≥ 0 defined in the Fourier space ω.

This relation can be proved by replacing

g(t) =
∫ ∞

−∞
g(to)δ(t − to)dto,(9)

in the right hand side of (8):

2F−1

[
F

[∫ ∞

−∞
g(to)δ(t − to)dto

]
· Θ(ω)

]
= 2

∫ ∞

−∞
F−1 [F [g(to)δ(t − to)] · Θ(ω)]dto

= 2
∫ ∞

−∞
F−1

[
g(to)δ(t − to)

eitoω

√
2π

· Θ(ω)
]

dto

= 2
∫ ∞

−∞

(
1
2
g(to)δ(t − to) +

i
2π

g(t0)
to − t

)
dto

= g(t) + iĝ(t)

Thus one can achieve the calculation of the Hilbert transform by using two Fourier
transforms. This leads to a very efficient numerical algorithm since the use of the fast
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Fig. 1. – Order parameter ρ as a function of noise intensity for a system of globally coupled
FitzHugh-Nagumo systems. Values of the parameters: a = 1., ε = 0.01, k = 1.
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Fourier transform involves a computer time of order O(T log T ) instead of O(T 2) which
would be the case if one evaluates directly the convolution that defines the Hilbert trans-
form (T is the length of the time series considered).

2. – Synchronization properties

We define an order parameter that allows us to measure the degree of synchronization
in the coupled system. In order to follow the Kuramoto scheme, we use the phases φi

introduced before in terms of the Hilbert transform, Eq. 7. Collective amplitude, ρ(t),
and phase, ψ(t), variables are defined as:

ρ(t)eiψ(t) =
1
N

N∑

i=1

eiφi(t).(10)

Initially, the order parameter ρ introduced by Kuramoto is defined as the time average:

ρ ≡ 〈ρ(t)〉t.(11)

In figure 1 we plot ρ as a function of the noise intensity D for different number of
coupled systems. It turns out that the order parameter continuously decreases with
increasing D, thus showing that the quality of the synchronization worsens for large
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Fig. 2. – In this figure we show the order parameter ζ for various system sizes, from N = 50
to N = 10000. It is also shown the dependence of the order parameter with system size. The
parameters of the simulation were a = 1. and k = 1. The inset shows that in the unsynchronized
state, the finite size effects scale as ζ = ζ∞ + O[N−1/2] for sufficiently large N .
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noise intensity. The dependence of the order parameter ρ for relatively large system size
(N > 100) disappears, showing that finite size effects are very small for these systems
sizes. Figure 1 shows that the Kuramoto order parameter for this coupled FitzHugh-
Nagumo model does not decay to zero with increasing noise intensity. This is due to the
fact that for an excitable system, most of the time all the units oscillate near the fixed
point. Hence, the order parameter ρ is different from zero, even in the case in which all
the units are uncoupled and fire unsynchronizedly. Since we are interested in measuring
the deviations from this unsynchronized state, we use a different order parameter, ζ, first
introduced in reference [12]

ζ =
〈∣∣∣ρ(t)ei ψ(t) −

〈
ρ(t) ei ψ(t)

〉

t

∣∣∣
〉

t
.(12)

In the case of complete desynchronization, ρ(t)eψ(t) is almost constant except for finite
system-size fluctuations (see the inset in figure 2):

ρ(t) ei ψ(t) = ρei 〈ψ(t)〉t + O[N−1/2].(13)

Replacing into Eq. 12, we get that ζ ∼= O[N−1/2], and ζ = 0 in the thermodynamic
limit. Therefore, any value of ζ > 0 indicates that the units have synchronized, and the
larger the value of ζ the higher the degree of synchronization.

In figure 2, we plot the new order parameter ζ, for the same values of the parameters
as in the previous figure. In this case, we notice the vanishing of the order parameter,
indicating clearly the existence of a phase transition at a critical value Dc ≈ 2.1 separating
the regime of synchronization/desynchronization. Note that the location of this transition
could not be easily derived from the data in figure 1. The complete phase diagram for a
wide range of values of noise intensity D and coupling constant k is plotted in figure 3.

3. – Conclusions

In summary, we have shown that an ensemble of globally coupled FitzHugh–Nagumo
excitable systems subjected to independent noises experience a loss of synchronization
for increasing noise intensity. Paradoxically, it is noise what initially induces the firings
and sets the possibility of observing synchronized pulses.

The synchronization/desynchronization transition requires a proper definition of the
order parameter for its characterization, since the usual measures used in coupled oscilla-
tors do not properly identify the transition point. We have found that a modified defini-
tion of the usual Kuramoto order parameter clearly displays such a transition. This order
parameter is obtained from phase-like variables defined through the use of the Hilbert
transform and we have given details of a numerically efficient method to compute the
phase variables. Further work will aim to characterize this non-equilibrium transition and
its universality class. Preliminary results show that the transition is present in locally
coupled systems in d = 2 dimensions, but not in d = 1.
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Fig. 3. – The order parameter ζ is plotted against the control parameters k, and D, it is apparent
a phase transition to desynchronization. In the simulations a = 1.

As stated before, we do not have any specific applications in mind, but since the
FitzHugh–Nagumo equations have been widely used to model some biological systems,
we believe that our results can be relevant when analyzing the collective response of such
systems in a noisy environment.
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