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Abstract

A short review of our recent research involving the role of noise in
a variety of systems is given. Two classes of problems are discussed.
The first is the effect of fluctuations on cellular and intercellular cal-
cium oscillations. Oscillations in intracellular and intercellular calcium
ion concentrations are responsible for the regulation of a remarkable
number of different cellular processes in the human body. Fluctuation
effects that are ignored in deterministic models of these oscillations
are discussed. The second class includes two examples of coherence
resonance, in which noise induces some type of order in systems in
the absence of periodic forcing. The two examples reviewed include
system size resonance and coherence resonance in chaotic systems.
System size resonance (coherence resonance that depends on the num-
ber of elements of the system) is demonstrated for a globally coupled
FitzHugh-Nagumo model. Coherence resonance in chaotic systems is
illustrated for the Chua circuit.



1 Introduction

It has long been recognized that noise plays an important role in many areas
of science. Its origins go back to the work of Einstein and Langevin on the
theory of the random (Brownian) motion of a small particle immersed in a
fluid. In particular, Langevin developed a theory of the particle motion in
which he separated the total force on the particle into a systematic part (a
damping frictional force) and a fluctuating part (or noise). Since these forces
result from the surrounding environment of the particle, they are in fact re-
lated by a fluctuation-dissipation theorem. Langevin assumed that the noise
satisfied a Gaussian distribution and from this obtained a detailed descrip-
tion of the particle motion, including various time correlation functions. The
concept of a random force, specified by some assumed probability distribu-
tion function, has proved to be of great theoretical value. During the past
decades there have been enormous developments in both the application and
theory of stochastic processes [1, 2, 3].

The effects of noise are in general of two different kinds. On one hand,
noise can be somewhat deleterious and produce small changes to determin-
istic behavior that might alter an otherwise synchronized behavior. Modern
communication, for example, is hindered by background noise. On the other
hand, there is now an abundance of examples in which noise actually can
enhance order in the dynamical behavior of a system. Both effects are im-
portant to understand and this short review will deal with examples of both,
involving our own recent research activities.

That noise can have a constructive role has been one of the more impor-
tant discoveries of the last decades in the field of stochastic processes. The
pioneering example of this is that of stochastic resonance [4, 5], in which a
bistable system shows an optimal response (resonance) to a weak, periodic
forcing due to the influence of noise. In addition to stochastic resonance,
purely temporal dynamical systems can exhibit a variety of behavior, such
as noise-induced transitions [6] or noise-induced transport [7]. In spatially
extended systems, noise is now known to induce a large variety of ordering
effects [2], such as pattern formation [8, 9], phase transitions [10, 11, 12],
phase separation [13, 14], spatiotemporal stochastic resonance [15, 16] and
noise-sustained structures [17, 18]. In all these cases, some type of order
appears only in the presence of the right amount of noise.



The more common, degrading, effect of noise, is ubiquitous and remains
important to understand. It has many manifestations in nature, including
in many aspects of biology, such as cell biology, where fluctuations can play
a non-trivial role. In this short review article we discuss examples of each
that have relevance in physical and biological systems and that have been
the subject of our own recent research: oscillation in calcium ions and noise
induced resonances.

1.1 Oscillations in intracellular and intercellular cal-
cium ions

Oscillations in the intracellular and intercellular calcium ion concentrations
are responsible for the regulation of a remarkable number of different cellular
processes in the human body. Ca?* is crucial to the fertilization, develop-
ment and differentiation of cells, muscle contraction, metabolic processes and
gene expression. It is in fact a remarkable intracellular and intercellular mes-
senger, whose versatility is still only partially understood. A recent review of
its importance and universality [19] is given in an article entitled “Calcium-a
life and death signal”, whose authors note that almost everything we do is
controlled by Ca?*. Cellular Ca?* concentrations are typically about 100 nM
at rest, but rise to concentrations of roughly ten times this when stimulated.
Such increases can be produced by ligands (agonists) binding to receptors
located on the plasma membrane, through a process involving the second
messenger inositol-1,4,5-trisphosphate (IP3). An important characteristic of
the spike-like Ca?" oscillations is that they are primarily frequency, rather
than amplitude, encoded. Thus an increase in the agonist concentration in-
creases the frequency of oscillation, but has little effect on its amplitude.
Calcium signals can also be propagated between cells, providing an impor-
tant means of cell communication. Such intercellular communication can
take different forms, including diffusion of calcium or IP5 through gap junc-
tions and paracrine (indirect) signaling.

Considerable success has been realized in understanding these intracellular
oscillations through the use of deterministic equations for various intracellu-
lar biochemical processes. These can be extended to describe the synchro-
nization of oscillations between cells via gap junction diffusion or indirect



signaling. A recent comprehensive review of the modelling of cellular oscilla-
tions is given in [20]. Deterministic models, however, ignore the fluctuations
in the concentration of molecular species and the fact that chemical reactions
are stochastic processes, that occur with certain rates. Since the number den-
sities of the intracellular signaling molecules are typically low (of the order
of 1 — 10%2um=3, stochastic effects can be important. Such fluctuations, for
example, are responsible for the observed variation in the amplitudes and
widths of the Ca spikes; they also affect the synchronization of cells via cal-
cium signaling. In what follows we describe recent work on the role of noise
in two different types of intercellular calcium signaling [21, 22]. Other re-
cent studies of stochastic effects in cellular calcium oscillations are given in
(23, 24, 25].

1.2 Stochastic and coherence resonance

When a dynamical system is subjected to an external periodic forcing, it
is well known that synchronization between the system and the forcing can
occur under a wide range of circumstances. A resonance is defined as a
maximum in the response of the system when varying some control param-
eter (for instance, the frequency of the external signal). One might naively
believe that fluctuations, either in the input or in the intrinsic dynamics,
would worsen the quality of the synchronization. However, it is now well
established that, in certain situations, the response of a nonlinear dynamical
system to an external forcing can actually be enhanced by the presence of
noise (fluctuations).

We first describe briefly the phenomenon of stochastic resonance and the re-
lated phenomenon of coherence resonance, as these provide examples of the
powerful constructive role of noise. The paradigm of stochastic resonance
involves the motion of a heavily damped particle, moving in a symmetric
double well potential V(x). If one couples this particle to a heat bath at
temperature T, then the particle becomes subject to stochastic forces that
cause jumps between the two wells. with a rate first predicted by Kramers
[26]. The jump rate is proportional to exp (—é—‘;), where AV is the height
of the barrier separating the two minima and the noise strength D = kgT
(where kp is the Boltzmann constant). Now imagine applying a weak, peri-

odic force of frequency w to the particle. This tilts the double well potential
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asymmetrically up and down, periodically raising and lowering the potens-
tial barrier. Since the periodic force is weak, it does not cause the particle
to roll periodically from one minima to another. On the other hand, the
noise-induced jumps between the two wells can become synchronized with
the periodic forcing. Namely, if one varies the frequency of the forcing term
such that the average waiting time between two noise induced jumps is equal
to half the period of the forcing term, one can achieve synchronized reso-
nance. In this case there is a coordination of the noise-acted jumps between
the potential minima with the weak periodic forcing. There is by now an
abundance of examples of stochastic resonance in many fields of science and
engineering. A recent, thorough review of this topic is given by Gammaitoni
et al [3].

The related phenomena of coherence resonance, with which we will be con-
cerned, is a noise induced resonance that occurs in the absence of periodic
forcing. A typical example involves the role of noise on an excitable system.
Important biological examples of excitable systems include the Hodgkin-
Huxley model and the closely related FitzHugh-Nagumo model [27] of cellular
electrical activity. Although these models were originally developed to de-
scribe nerve pulses, they have been subsequently used for modelling of spiral
waves in two dimensional excitable medium. An excitable system is one in
which its rest state (corresponding to a fixed point which is a basin of sta-
ble attraction) is linearly stable against a perturbation. If the perturbation
is sufficiently large, however, the system undergoes a large excursion of its
variables (for the FitzHugh-Nagumo model this represents a nerve pulse) in
phase space before returning to its rest state. The total time between pulses,
tp, is the sum of two times: the excursion time ¢, (the time needed to return
from the excited state to the fixed point) and the activation time (the time
needed to excite the system from its fixed point), ¢,. These two times and
their fluctuations have a different dependence on the noise amplitude [28]. By
analyzing the behavior of each of these for small and large noise, respectively,
one can conclude that the normalized variance (“jitter”) in the fluctuations
should have a minimum as a function of the noise amplitude. This coherence
resonance is a nonlinear response of the system to purely noise excitation.
A similar effect, although induced by a different physical mechanism, is that
of stochastic resonance without external periodic force which can occur in a
system near a limit cycle bifurcation point [29, 30].



We will focus in this article on two particular cases in which noise plays
a constructive role: coherence resonance in chaotic systems and so-called
system size resonance, in which coherence resonance depends on the number
of elements of the system.

2 Stochastic effects in cellular calcium oscil-
lations

A number of theoretical models have been developed to explain intracellular
Ca oscillations [31, 32, 33, 34, 35]. The basis for most of these is that after an
agonist (hormone) binds to the extracellular side of a receptor bound to the
membrane, the G, subunit at the intracellular side of the receptor-coupled
G-protein is activated. This activated G-protein then stimulates a phospho-
lipase C which helps forming a second messenger IP; and diacylglycerol. IP3
then binds to specific receptors in the membrane of an internal store of cal-
cium (such as the endoplasmic reticulum). The binding helps the opening
calcium channels, which leads to a large flux of calcium ions from the internal
store into the cytosol, which then stimulates the release of additional calcium
ions. Some details of this complex progress, however, remain unknown. One
of the earliest and simplest models is the so-called minimal model, which is
an example of a calcium-induced, calcium release model [31, 32, 33]. As we
use this in our discussion below, we briefly describe this model here.

In this model, the calcium cell dynamics is described by two differential
equations for the cytosolic Ca?t concentration, ;, and the internal store of
Ca2+, Yo

d
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where V5 and V3 are certain nonlinear functions of y; and y, that depend on
several parameters. These rates describe, respectively, the pumping of Ca?"
into an IPs-insensitive store and the release of Ca%t from that store into the
cytosol. The latter is a process activated by the cytosolic Ca?t. The term
V, describes a constant input of Ca?* from the extracellular medium into
the cytosol, while the term 3;V; describes the IP; modulated release of Ca?*



from an IPj sensitive store. The parameter k; is a rate constant describing
a linear leak of y, into y;, while k& describes the linear transport of Ca?" into
the extracellular medium.

This model has been studied extensively [31, 32]. It is known that for
a given set of the parameter values Ca?" oscillations will occur when the
parameter (3, which increases with the concentration of the external hor-
monal stimulus, lies in a range B, < 51 < Bmaz- That is, there is a Hopf
bifurcation from a steady state solution to a periodic solution at [,,;,, fol-
lowed by a second Hopf bifurcation back to a steady state solution at (3,4
(these minimum and maximum values depend mainly on the parameters V}
and V7). The frequency of the oscillation depends on the value of 8 in the
region between these minimum and maximum values. This model provides
a useful starting point for a description of Ca?" oscillations, although it has
subsequently been replaced by more detailed models of the intracellular bio-
chemical processes.

2.1 Intercellular calcium spiking in hepatocytes

Recent experimental studies revealed the coordination of calcium oscillations
in heterogeneous hepatocyte cells [36, 37]. The authors of there references
studied the mechanisms that control the coordination and intercellular prop-
agation of calcium waves induced in rat hepatocytes (studying propagation of
such intercellular Ca?* waves in doublet and triplet cells). Initially they in-
vestigated [36] calcium waves induced by noradrenaline and showed that gap
junction coupling is necessary for the coordination of the oscillations between
the different cells. They also demonstrated that it is necessary to have hor-
mone stimulation at each hepatocyte in order to have cell-cell calcium signal
propagation. Furthermore, they found that there were functional differences
between adjacent hepatocytes. In a subsequent paper [37] they continued
these studies, combining single-cell studies with experiments on cell popula-
tions isolated from the peripheral (periportal) and central (perivenous) zones
of the liver cell plate. They found strong evidence that the sequential pat-
tern of calcium responses to vasopressin in these multicellular rat hepatocyte
systems was due to a gradient of cell sensitivity (from cell to cell) for the
hormone. The first cell to respond had the greatest sensitivity to the global
stimulus, while the last cell to respond had the least sensitivity. This is
an important observation, since such gradients may impose an orientation
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on calcium waves in liver cells and provide a pacemaker-like mechanism for
regulating intercellular communication in the liver. Based upon these exper-
imental studies, two theoretical models have been proposed. The first is due
to Dupont et al [38], whose deterministic model of coupled differential equa-
tions is based on junctional coupling of multiple hepatocytes which differ in
their sensitivity to the hormonal stimulus. As a consequence of this differ-
ence, the intrinsic frequency of intracellular calcium oscillations also varies
from cell to cell. These oscillators are coupled by an intercellular messenger,
which could be either Ca?* or inositol 1,4,5-trisphosphate IP;. The model
yielded intercellular waves that were confirmed experimentally [38]. The au-
thors also provided experimental evidence that the degree of synchronization
is greater for the first few spikes, in agreement with the prediction of their
model.

Hofer [39] proposed an alternative deterministic model to explain the exper-
imental results, based on the assumption that the rather large variation in
the intrinsic oscillator frequencies found in the experimental studies resulted
from random heterogeneities in the structural properties of the cells (such
as their sizes, shapes and endoplasmic reticulum content). He assumed that
the concentration of the second messenger IP3 rapidly reaches a steady-state
value (different for different cells) that is considered as one of the parameters
of the model. He also assumed that the intercellular synchronization was due
to a flux of Ca?" between cellular gap junctions. After certain approxima-
tions he obtained a deterministic model for the time evolution of the average
cytosolic calcium concentration, x;, and the average calcium concentration
of the j-th cell, z;. For the case in which only two cells are coupled, the
rather complicated equations take the form

dﬂ?j - . . .

P f (@), 2j) +v(@: — 7)) (3)
dz;
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where the functions f and g are specific nonlinear functions of z; and z; The
last term, proportional to 7y, describes the diffusion between cells. 7 is a junc-
tional coupling coefficient and is proportional to the gap-junctional perme-
ability. The indices can adopt the values (7, j) = (1,2) and (2,1). The model
can be easily generated to the case of more than two cells. An important
parameter in these equations is the IP3 concentration in cell 5. The equa-



tions also contain In the functions f and g) the parameters p; = A@M/ Cé,
aj = ALp/A%by and B; = CFp/CL which define various structural character-
istics of the j-th cell and account for the heterogeneous behavior of different
cells. The variables A}, and A}, are the areas of the endoplasmatic retic-
ulem and plasma membrane of cell j respectively. The details of the model
are given in [39]. Hofer showed that this model yields results for two and
three coupled cells that are in good agreement with many of the experimental
results of Tordjmann et al [36, 37]. However, as in the case of the Dupont
et al study [38], there are observed differences that one could ascribe to the
role of noise. This led to our own work [21].

To understand the limitations of deterministic models such as the above,
note that these completely ignore the fluctuations that result from the fact
that chemical reactions do not occur uniformly nor continuously in time. To
consider the effects of such fluctuations, we studied stochastic versions of
both models. Rather than adding noise to these models, we found a better
approach in a Monte Carlo method developed by Gillespie [40, 41]. Gillespie
took into account the facts that the concentration of a molecular species can
only vary by a discrete amount (rather than continuously, as assumed above)
and that a chemical reaction is itself a stochastic process, that occurs with a
certain rate. Therefore one cannot determine which of several reactions will
occur next. One can only determine the probability that a given reaction will
take place. Thus one introduces rate constants corresponding to the various
terms in the differential equations and also defines

o= =g 6
Q2 is the volume of the cytosolic compartment of the cell; fluctuation effects
will obviously be more important for small 2. In the limit of €2 tending
to infinity, the stochastic model yields the same results as the deterministic
model, as the effects of such fluctuations become negligible. The population
numbers X; and Z; can vary by discrete, integer, amounts according to some
probability that reflects the possible reactions taking place in the system.
The possible events and their reaction constants are defined in [21]. We
then carried out a Monte Carlo simulation of the stochastic version of the
deterministic models of Hofer and Dupont et al. We will illustrate some of
our results for Hofer’s taking the value Q = 300 um? for the cytosolic cell
volume. Fig. 1 compares the calcium oscillations for one isolated cell in our
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stochastic model for = 300 um? and 10° um? respectively. Note from this
figure that the stochastic effects are important for Q = 300 um? whereas the
result for large 2 = 10° um? agrees with the deterministic limit.

Next we studied the behavior of two connected hepatocytes which are
globally stimulated. The calcium oscillations in the two cells are totally
uncoordinated if the membrane permeability is set to zero, as should be the
case (Fig. 2a). For a value of the permeability v=0.07 s~ we found 1:1
locking (Fig. 2b). We also found agreement with Hofer’s results in the limit
of large €2, as is to be expected.

We also simulated an aspect of the experiment in which the membrane
permeability between cells was blocked for a time interval (after oscillations
were established) in such a way as to prevent Ca?* from passing through the
membrane (7 is set to zero in the model). In this case the cells lost their
synchronization, but after washing the chemical responsible for the blocking,
the cells regained synchronization. Our simulations confirmed this behavior
and also showed a variation in the amplitude of oscillations and fluctuations
in the baseline value of Ca?", in agreement with the experimental results
[37]. These effects are absent in the deterministic limit of the model.

Finally, we modelled the experimental study of a triplet of hepatocytes, in
which one can also see synchronized intercellular signaling. However, if a
heparin treatment is applied to the intermediate cell the calcium oscillations
of the middle cell are altered. In addition, the synchronized spiking between
the first and third cells is destroyed. Fig. 3 (fig3i.ps) shows the results of our
simulation. It can be seen that after the heparin application at ¢ = 200 s,
calcium oscillations were no longer present in the second cell. In addition,
the first and third cells in the triplet spike asynchronously. These results are
in good agreement with the experimental results [37].

2.2 A model of unidirectional, paracrine calcium sig-
nalling

In general, the signalling between cells is bidirectional, as in the model dis-
cussed above. However, there is a recent experiment [42, 43| in which the
authors deliberately produce a unidirectional signalling, by setting up so-
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called “donor” and “sensor” cells. The oscillations induced in the donor cells
by an agonist input were shown to produce oscillations in the sensor cells via
an indirect (paracrine) signalling mechanism. In an attempt to explain these
experimental results, we proposed a simple deterministic model which we
studied by numerical means [22]. We also studied the effects of fluctuations,
using the method of Gillespie described above. Our results were in quali-
tative agreement with the experimental results, in terms of predicting the
observed unidirectional signalling. In addition, however, we found a “Devil’s
Staircase” behavior for both the deterministic and stochastic versions of the
model (in the latter case, for reasonable choices of the cell volume). The
Devil’s Staircase behavior has not yet been observed experimentally.

We first briefly describe the experiment [42]. The system studied is in it-
self a “model” system, in that it is composed of two different cell types with
quite different properties. The first are “sensor” (HEK293) cells which have
been stably transfected with extracellular-sensing receptors (CaRs). These
CaRs are coupled to the phospho-inositide pathway, but are insensitive to
hormonal stimulation. The second are “donor” (BHK-21) cells, which have
have not been transfected with CaRs. In contrast to the first cell type,
these cells are sensitive to hormonal stimulation by AVP, 5HT or histamine.
This specially prepared cellular system thus allows the distinction between
“donor” cells (BHK-21 cells, not transfected, but able to respond to a hor-
monal stimulus) and “sensor” cells (HEK293 cells, transfected, but unable to
respond to the hormonal stimulus). These two cell types were maintained in
close proximity. Histamine was then added to the bath, producing calcium
oscillations in the BHK cells. Less than 10 seconds later, calcium oscillations
were observed in nearby HEK-CaR cells. As there was no gap-junction com-
munication, the authors interpreted their results as providing evidence for a
gap-junction-independent mode of intercellular communication, mediated by
CaR and extracellular Ca?".

As one still does not understand in detail the complex biochemistry involved
in the CaR coupling, we considered a simplified model that might capture the
qualitative features of this new form of signalling. There are two aspects to
describing the intercellular communication: the intracellular dynamics and
the coupling between cells. As there are many different models for the intra-
cellular calcium oscillations, we chose the simplest, i.e. the minimal model
discussed above. We coupled two such cells, the donor cell and the sensor
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cell, by assuming that the stimulus of the target cell is proportional to the
cytosolic calcium content of the first cell. Since some of the cytosolic Cat
produced in the donor cell is extruded into a small space near a CaR re-
ceptor, this seems to be a reasonable assumption. This avoids modeling the
extracellular diffusion of Ca?* as well as the complex receptor dynamics that
is presumably involved in the calcium-sensing receptor mechanism proposed
by Hofer et al. [42]. However, our model is consistent with the spirit of the
single cell minimal model in that it provides a minimal two cell coupling that
yields interesting intercellular communication. We should also note that un-
der in vivo conditions, hormones are not released steadily, but are released
in a pulsatile fashion. Thus our results for the sensor cell responding to an
input signal are also applicable to the physiologically interesting question of
how the intracellular cytosolic calcium responds to a pulsatile application of
agonists.

The donor cell dynamics is described by two differential equations for its
cytosolic Ca?* concentration, y; and its internal store of Ca?t, y,, given in
equations (1) and (2). The sensor cell is modelled using the same equations
for its cytosolic and internal calcium concentrations y’l and y’2 as given in
Egs. (1) and (2). However, instead of a term [,V] representing a constant
stimulus, we use the term Sy, V/, which provides the coupling between the
cells. This assumes that the stimulus to the sensor cell from the extruded
calcium from the donor cell is proportional to the latter’s cytosolic calcium
concentration. In general, the structural parameters Vy, Vi, Vo, Vs, k¢, k of
the first cell and Vg, VY, Vy, V3, k%, k' of the second cell can be different,
but for the sake of simplicity we took them to be the same. We found in
general that oscillations in the donor cell due to a constant hormonal input
produce oscillations in the sensor cell. This is in qualitative agreement with
the experimental observation [42], but the detailed predictions of our model
require further experimental study.

We calculated the N:M rhythms predicted for this coupled minimal model as
a function of B; for fixed [, where N denotes the number of stimuli arising
from the donor cell and M the number of responses of the sensor cell in a
given time interval. For example, the frequency of response can be the same
as the frequency of the stimulus, i.e. N:M is 1:1. However, in general the
Ca?t response in the sensor cell is blocked when the frequency of pulses of
the donor cell is increased. Fig. 4 shows a 3:2 response. This phenomenon of
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blocking is also seen in heart patients, where it is known as Wencekbach pe-
riodicity. As one varies (3, the sensor cell passes through a sequence of N: M
phase locked regimes (in response to the oscillatory stimuli from the donor
cell) and exhibits a “Devil’s staircase” behavior [30], as shown in Fig. 5.
That is, between any two steps there is a countless number of staircases [44]
This response of the sensor cell is similar to experimental results of Schofl et
al. [45] who applied square wave pulses of phenylephrine to liver cells every
30 seconds. They found stimulus/response rhythms such as 2:1, but with less
regularity than shown here [23]. A subsequent stochastic study based on a
deterministic model of intracellular dynamics due to Chay et al [34] yielded
results qualitatively similar to the experiment [23].

We also studied a stochastic version of our model, using Gillespie’s method
[40], for different values of the cell volume 2 (assumed to be the same for
both cells). For very small Q fluctuations destroy the phase locking, while
in the limit of large ) one recovers the deterministic limit. Both results
are what one would expect. For intermediate values of €2, however, such as
Q = 2000pm?, which is the approximate volume of hepatocyte cells, we find
that phase locking persists, although with occasional lapses. Some typical
results for this case are shown in Fig. 6. Thus we find a stochastic version of
the Devil’s staircase for values of the cell volume that are realistic. We also
found that cells can switch between frequencies in the stochastic model if we
choose f; and f5 such that the deterministic model would give a frequency
locking of the cells on the edge of one of the steps of the Devil’s staircase.
Hopefully this work will lead to further experimental investigations of the
possibility of a Devil’s Staircase behavior in cellular calcium oscillations.

3 System size resonance

System size resonance is a type of coherence resonance in which the resonance
occurs for a specific number of elements of the system [52, 53, 54, 25]. In
this section, we review our work on system size resonance in the FitzHugh-
Nagumo model [47]. As noted earlier, this model provides a simple represen-
tation of firing dynamics and has been widely used as a prototypic model for
spiking neurons. It has also been used to describe certain aspects of cardiac
cells [48, 49]. Our model is a set of N FitzHugh-Nagumo systems that we
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couple through a long-range, global interaction:

' % +K§X ) (6)
i = Ti— Q¥ —Yi T = Tj— Ty
€T T 335 Y Nj:l ]

where independent noises of intensity D have been added to the variables y;
as in ref. [28]. The small parameter € introduces a difference in the time scales
of x; and y;, with x; and y; being the fast and slow variables, respectively.
As usual, we choose the &;(t) to be white noises with Gaussian distribution
of zero mean and correlations (§;(¢)&;(t')) = 6;;6(t — t'). The systems are
globally coupled by a gap-junctional form, as indicated by the last term of
Eq.(6), where K is the coupling strength. Similar globally coupled models
have been used previously to study array enhanced stochastic resonance in
the coupled FitzHugh-Nagumo equation [50].

The case of interest is the excitable regime, ¢ > 1. In that case, as dis-
cussed in the introduction, if K = 0 each system emits (nerve) pulses that
are trajectories in phase space triggered by the noise term. Coherence reso-
nance occurs when the regularity of the time between pulses is optimal for
a certain value of the noise intensity D [28]. The behavior is the same for
all the systems for K = 0; there is, of course, no correlation between the
responses of individual systems.

To study the collective response of the coupled system, we introduce the
average values of the activator and inhibitor variables as

X() = X a) ®)

V() = D) )

One can get a qualitative understanding of the origin of system size resonance
for this model by following an approach by Desai and Zwanzig [51] (see also
reference [52]). This approach leads to an approximate equation for these
average values of the form:

eX = F(X,K)-Y (10)

: D
Y :.X+a+7ﬁﬂﬂ (11)
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where £(t) is a white noise source. The exact form of the function F'(X, K),
which depends on the global variable X as well on the coupling strength K,
is not necessary for the qualitative argument. We need only observe that in
the (exact) equation for Y (t) the noise intensity appears rescaled as D/v/N.
Therefore, this approximation suggests that the optimal effective noise inten-
sity for the appearance of coherence resonance can be achieved by varying
the number of coupled elements N, as in the case of stochastic resonance for
the bistable system considered in [52].

To obtain a quantitative description of this system size resonance, we nu-
merically integrated the equations of motion (6) and (7). Our results are
summarized as follows: The left panel of Fig. 7 shows the temporal behavior
for the variable X (t) while the right panel of the same figure shows the tem-
poral behavior for the variable x;(¢) of one of the elements chosen randomly,
for three different values of the number of coupled elements (see the caption
of the figure for details of the parameters). Notice that for N = 160 the regu-
larity of the emitted pulses peaks is better than that corresponding to larger
or smaller values of N. This is a clear signature of coherence resonance. It
can also be seen that the regularity in the averaged variable X (¢) is better
than in one of the individual elements, showing that the coupling allows for
a smoothness of the temporal behavior. It is worth noting that the peaks
in the collective variable X (¢) and z;(t) are very well synchronized in time
indicating that the individual systems are pulsing synchronously in time. In
Fig. 8 (left panel) we show the temporal behavior for the slow variable Y (¢),
as well as a time trace for a single y;(¢) (right panel). In contrast with the
fast variable X, the averaged slow variable Y'(¢) shows a nice regular behav-
ior for an intermediate number of elements, while the individual traces y;(t)
do not.

We computed various quantities commonly used to quantify the coherence
resonance effect[28]. We show only one here, namely the time correlation
function Cx (t) of the averaged X variable, defined as

(OX(t)oX(t+1t))
Cx0 X))
SX() = X(0) -~ (X() (13

(12)

and similarly the correlation function Cy (¢) for the averaged Y variable. Here
the averages () are with respect to the time t', after a small transient has
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been neglected. Fig. 9 shows this correlation function for both the X and
Y variables. It can be seen that the correlations extend further in time for
an intermediate value, neither very large nor very small, of the number of
coupled systems N. One can obtain a quantitative indicator of this effect
from the characteristic correlation times 7y and 7y for each variable as

TX,Y = ‘/0 |CX,y(t)| dt (14)

We found that both times reach a maximum at approximately the same
value N = 160, indicating that, for the set of parameters chosen, the maxi-
mum extent of the time correlation occurs for this specific number of coupled
excitable systems.

We also analyzed the jitter of the time between pulses [28]. A pulse in
the X (¢) variable is defined when X (t) exceeds a certain threshold value X
(taken arbitrarily as X, = 0.3, although other values yield similar results).
The jitter Ry is defined as the root mean square of the time 7'x between two
consecutive pulses normalized to its mean value:

o[Tx]
(Tx)

and an equivalent definition for the jitter Ry of the Y variable. The smaller
the value of Rx y, the larger the regularity of the pulses (a value of Rxy =0
indicates a perfectly periodic signal). We found that the jitter in each vari-
able has a well defined minimum at a value of N = 80, again showing the
existence of the system size resonance. We should also note that when com-
paring with the results of the correlation time, it is not uncommon that the
two indicators (the correlation time 7 and the jitter R) have their optimal
values at different values of the system parameters [28, 55].

Rx =

(15)

Since the FitzHugh-Nagumo system has been used previously to model some
biologically relevant systems, we believe that our results, along the same lines
as those of references [53, 54], can be relevant when analyzing the collective
response of such systems in a noisy environment, and can help to explain the
observed size of some groups of excitable cells in living organisms.
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4 Coherence resonance in chaotic systems

Finally we discuss an interesting case in which one can have the main features
of coherence resonance in non excitable systems. Namely, we recently showed
[55, 56] that a Chua system, in a chaotic regime and in the presence of noise,
can exhibit oscillations whose regularity is optimal for some intermediate
value of the noise intensity. The Chua system with additive noise [57]can be
written as:

& = aly - h(z))
Y = z—y+z (16)

z = —PBy—vyz+E&(@2)

where £(t) is as usual a Gaussian white noise, of zero mean and correla-
tions (£(t)€(t')) = D?*5(t — t'). The nonlinear function h(z) is given by
h(z) = bx + (| + 1| — |z — 1[). We chose the values a = —1/7, b = 2/7,
a = 4.60, 8 = 6.02, v = 0. For these values, the Chua system has two
chaotic attractors: a single scroll and its mirror image. Depending on the
initial conditions, the system will choose one attractor or the other. Thus,
in the absence of fluctuations the attractors are independent and one cannot
be reached from the other. The trajectories around each attractor have a
well defined angular frequency wy, which for these values of the parameters
1S wy ~ 3.

If one numerically solves the above equations, one finds that noise produces
a rather different behavior; the system now jumps back and forth between
the two attractors. In Fig. 10 we show three trajectories of the variable z(t)
corresponding to increasing levels of the noise intensity. We observe three
qualitatively different behaviors when increasing the noise level. For very
small D (Fig. 10a) the average time of jumps between the attractors is large
and the system spends most of the time rotating around one of these attrac-
tors. At the same time, the dispersion of the jumping time is also large. As
D increases, approaching an optimum value (Fig. 10b), the system jumps
between the two attractors more regularly. These jumps occur when the tra-
jectory passes as close as possible to the other attractor. Finally, when D
is very large, the system jumps more often but these jumps may start from
different points of the trajectory and the behavior of the system is more ir-
regular (Fig. 10c). The regularity already mentioned can be clearly observed
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in Fig. 11 where we plot the variance of the residence time in each attractor,
normalized to its mean value, as a function of the noise intensity. This curve
exhibits a minimum at a noise level D =~ 0.09. It is also worth noting that
following a jump from one attractor to the other, the new motion usually
starts close to the center of that attractor, in an inner orbit. It is therefore
not ready to jump to the other attractor until it reaches its outer orbit. This
fact can be deduced from Fig. 10 by observing the time the system jumps
from one attractor to the other.

We also calculated a variety of quantities that have been used to show the
existence of coherence behavior. For example, we determined the correlation
function, defined as C(t) = [(z(t)z(t + 1)) — (x(t))?]/[(=(t')?) — (z(t'))?],
averaged over t', for the same noise intensities of Fig. 10. We found that
for the optimum noise level the correlation function has the longest tail.
We also calculated two other quantities: The correlation time 7., defined as
7. = J° C(t)? dt and the minimum of C(t) = C,,(t). For the entire range of
noise levels considered, the former exhibits a local maximum at the optimum
noise level, although almost hidden by the fact that 7, is very large for very
low noise level when the system remains most of the time rotating around
one of the attractors. By contrast, Cy,(¢) exhibits a clear minimum for the
optimum noise level.

Although we have not discussed it here, one can also show that a simple
model, composed of two separate limit cycles, is able to exhibit coherence res-
onance. Within this model one can in fact predict, e.g., the limits of R(D) by
a simple analytical approximation. The behavior of the chaotic Chua model
follows qualitatively the results derived in the simple model,with coherence
resonance illustrated by the dependence of several different quantities on the
noise intensity.

These results show that the phenomenon of coherence resonance can be ob-
served in a chaotic system. This is not an obvious conclusion since until
recently the excitability has been considered to be a necessary ingredient for
the existence of coherence resonance.
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Figure 1: Calcium oscillations in the stochastic version of Hofer’s model for a
single cell, N = 1, for different values of the volume Q = 300 um?, 10° um3.
We observe that the deterministic limit is already achieved for = 10°. We

have taken as initial condition for th@gell the resting state without agonist,
P =0uM.
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Figure 2: Calcium oscillations for agdoublet of cells, N = 2, for different
values of the permeability constant 7: (a) v = 0s™%, (b) v = 0.07s™!. Pa-
rameters: p; = ps = 0.02, §; = 0.15, B, = 0.2, P, = P, = 2.0 and the cell
volume is Q = 300 ums3.
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Figure 3: Simulation of heparin treatment for middle cell in the stochastic
version of Hofer’s model for a cell triplet, N = 3. The treatment starts at
time=200s. We have used the following parameters: P, = P, = P3 = 2uM,
p1—0025 p2—0018 ,03—002 61 52 53—01 ’7_0078 Weplot
the time series of the variables 1, x and x5 in the case with Q = 300 pum?
where stochastic effects are important; treatment starts at time=200s.
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Figure 4: Calcium oscillations of two connected cells (5

Frequencies of cells are locked in a sequence of 3:2. Deterministic model.

26



1.0— —B L ] s L | L ] “1 1
0.9- 8;7\' _
] B =013 _ -;7.6
2 0.8- : 6:5 5:4
4:3
On .
© 0.7 \4 3:2
0.6-
0.5- 2:1 4

0.150.160.170.180.19 0.20
B,

Figure 5: Devil’s staircase, a ratio N/M (where N is the number of spikes of
the donor cell and M is the number of spikes of the sensor cell) as a function
of 31 at fixed 5>,=0.3.
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Figure 6: Calcium oscillations of two connected cells (51=0.17, $,=0.3). Fre-
quencies of cells are locked in a sequence of 1:1 with occasional fluctuations.
Stochastic model with € = 2000.
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Figure 7: Time series for the averaged variable X (¢) (left panel), and for the
individual variable z;(¢) (right panel) of the set of coupled FitzHugh-Nagumo
systems, as obtained from a numerical integration of Eqs.(6-7), for different
values of the number of coupled elements: N =1 (top), N = 160 (middle)
and N = 1000 (bottom). Observe that the largest regularity is obtained for
the intermediate value of N. The equations have been integrated numerically
using a stochastic Runge-Kutta method (known as the Heun method [1])
with a time step A = 10~ and setting the following parameters: a = 1.1,
e=0.01,K=2D=0.T.
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Figure 8: Time series for the averaged variable Y (¢) (left panel), and the in-
dividual variable y; () (right panel) of the set of FitzHugh-Nagumo systems,
Eqgs.(6-7). Similarly as in Figure 8, observe that again the largest regularity
for the averaged Y variable is obtained for the intermediate value of N. In
this case, however, there is no obvious increase in the regularity of the y;
individual variables.
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Figure 9: Correlation functions Cx(t) and Cy(t) of the averaged variables
X (t) and Y (t), respectively, for the cases of N =1 (dotted line), N = 160
(solid line) and N = 1000 (dashed line). Notice that, in agreement with
the qualitative results derived from figures 7 and 8, the slower decay of the
correlations corresponds to the intermediate values of the system size N.
Same parameters as in figure 7.
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Figure 10: Time series for the z variable of the Chua system given by Egs.
(16) for three different noise levels: a) D = 0.02, b) D = 0.08, optimum noise
level, and ¢) D = 0.16.
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Figure 11: Standard deviation normalized by the mean time o/(T) for the
Chua system given by Eqs. (16) for noise levels ranging from 0.01 to 0.17.
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