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We propose a variant of the Simulated Annealing method for optimization in the
multivariate analysis of differentiable functions. The method uses the Hybrid
Monte Carlo algorithm for the proposal of new configurations. We show how this
choice can improve the performance of simulated annealing methods by allowing
much faster annealing schedules.

1 Introduction

We address here the problem of finding the value of the N-dimensional vector
x = (Z1,%2,...,ZN), absolute minimum of the real function E(x). For large
N, a direct search method is not effective due to the large configuration—space
available. Moreover, more sophisticated methods, such as those using the
gradient of F(x), might get stuck in local minima and never be able to reach
the absolute minimum. One of the most effective methods devised to overcome
these difficulties is that of “Simulated Annealing” (SA), which allows escaping
from local minima through tunnelling and by accepting higher values of E(x)
with a carefully chosen probability*. This method is based on an analogy
with Statistical Physics: a system with N degrees of freedom (z1,...,zn) at
temperature T has a probability of being on the state with energy E(x) given
by the Gibbs factor:

P(x) ~ exp(~E(x)/T) )

From this relation we can see that high energy states can appear with a finite
probability at high T'. If we now diminish the temperature slowly, the high
energy states become less probable and, as T — 0, only those states near the
minimum of E(x) have a finite probability to appear. In this way, by decreasing
the temperature we can arrive, when T' — 0, to the (absolute) minimum energy
state.

SA proceeds by interpreting the function E(x) we want to minimize as the
“energy” of a fictitious system. It then generates representative configurations
of this system at “temperature” T' and slowly lower in “time” the system
temperature T = T'(t) until it reaches T = 0 (annealing schedule). The Monte-
Carlo method is used to generate the representative configurations. It does
so by proposing configuration changes x — x’ with probability g(x'|x) and
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accepting those changes with probability A(x'|x). Some freedom is available
in the proposal and the acceptance probabilities, as far as the detailed balance
condition is satisfied:

9(x'[x)h(x'|x) P(x) = g(x|x")h(x|x') P(x') 2)

In the standard SA methods (see below), the proposal probability is a sym-
metric function of the difference Ax = x' —x, g(Ax) = g(—Ax). A commonly
used solution to the detailed balance equation is the Metropolis choice:

h(x'|x) = min (1, exp[- (E(x') — E(x)) /T)) 3)

The various SA methods differ in the choice of the proposal probability
g(Ax) and in the annealing schedule T'(t). The latter must be coherent with
the choice for g(Ax) in such a way that the configuration space is efficiently
sampled. Amongst the many choices proposed in the literature, we mention
the following two that will be used later:

-Boltzmann Simulated Annealing (BSAY: Based on a functional form derived
for many physical system belonging to the class of Gaussian-Markovian sys-
tems, the algorithm chooses a proposal probability given by a Gaussian distri-

bution: A |2
x
o6~ o0 |5

This requires a particularly slow annealing schedule: T'(t) = Tp/ In(t).
-Fast Simulated Annealing (FSAP: The proposal probability is given by a N—
dimensional Cauchy distribution:

(4)

9(Ax) ~ T(B)(JAX] + T(#)?)~"F (5)

which allows a much faster annealing schedule: T'(¢) = Tp/t.

2 Hybrid Simulated Annealing

The alternative method we propose —Hybrid Simulated Annealing (HSA)- uses
the Hybrid Monte—Carlo (HMC}) to generate the representative configurations.
The main advantage is that, by using a Hamiltonian dynamics for the proposal
of the new configuration, HMC allows a much faster annealing schedule, so
increasing the efficiency of the simulated annealing.

HMC introduces a set of auxiliary momenta variables p = (p1,...,pn)
and a Hamiltonian function H(x,p):
H(x,p) = E(x) + p°/2 (6)
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From the Gibbs factor:

P(x,p) ~ exp[-H(x,p)/T] = exp[—E(x)/T] exp[—p?/2T] (7

we see that, from the statistical point of view, the momenta p are nothing but
a set of independent Gaussian distributed random variables of zero mean and
variance equal to the system temperature.

For the proposal probability g(x'|x) HMC generates p using the Gaussian
distribution exp[—p?/27T] and then integrates numerically Hamilton’s equa-
tions of motion by using the leap—frog algorithm:

, ot?
x = x+ ?F(x) + étp (8)
ot
P = p+5(F(x)+FX)) 9)
where Fj(x) = —0E(x)/0z; is the “force” acting on the variable z;. This
proposal must now be accepted with a probability given by:
h(x'|x) = min (1, exp [~ (H(x') — H(x)) /T]) (10)

Notice that in the case T — 0 the random component of the evolution (the
momenta variables) in Eq.(8) is zero and then the proposal coincides with that
of gradient methods.

The HMC has been extensively used in problems of Statistical Physics.
For our purpose here, we have found that the use of the Hamiltonian dynamics
of the statistical system associated with the energy E(x), allows a much more
effective annealing schedule than, for instance, the Boltzmann and Fast an-
nealing methods mentioned above. In particular we have been able to use an
exponential annealing schedule: 7T'(t) = Tpe~°. This fast annealing schedule
can not be efficiently used with the FSA and BSA methods.

To make this point clear, we present results of the optimization of a typical
test function:

N

Ex) = b)Y va(z:—i+N/2),8] (11)
i=1

v(z,0) = 2°[1- Beos(2)] (12)

performed with the three methods described: HSA, BSA and FSA. The chosen
function presents many local minima but only one absolute minimum at x; =
i+ N/2 of value Epinimum (x) = 0 (we have used N =10, 8 = 0.5, a = 10 and
b = 0.0001). In the figure we plot the remaining energy versus the number n
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of function evaluations for each of the three methods: Hybrid, Boltzmann and
Fast Simulated annealing. It is clear from this figure that HSA requires orders
of magnitude less evaluations of the function than the other two methods and
can, therefore, give a precise answer in less computer time. This conclusion
remains despite the fact that HSA requires some extra work when computing
the evolution equations since it needs to compute also the forces F; acting on
the different variables.
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In conclusion, we have shown how the use of the Hybrid Monte Carlo algo-
rithm can indeed improve the performance of simulated annealing methods by
allowing much faster annealing schedules. It is conceivable also that one could
then use efficiently some of the acceleration schemes (Fourier, wavelet, etc.)
available for Monte Carlo methods in order to improve upon the convergence
of the simulated annealing techniques.

We acknowledge financial support from DGICyT, grants PB94-1167 and
PB94-1172. R. Salazar is supported by the Agencia Espafiola de Cooperacién
Internacional in the Mutis program.

References

1. S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Science 220, 671 (1983).

2. S. German and D. German, IEEE Trans. Patt. Anan. Mach. Int.
PAMI-6, 721 (1984).

3. H. Szu and R. Hartley, Phys. Lett. A 122, 157 (1987).

4. S. Duane et al., Phys. Lett. B 195, 216 (1987).

5. R. Toral, in 3th Granada Lectures in Computational Physics, P.L. Gar-
rido, J. Marro, eds. Springer (1995).

4



	C1013072009_00054
	C1013072009_00055
	C1013072009_00056
	C1013072009_00057

