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The limiting resolution in optical interferometry is set by the number of
photons used, with the functional dependence determined by the state
of light that is prepared. We consider the problem of measuring the rotation of
a beam of light about an optical axis and show how the limiting resolution
depends on the total number of quanta of orbital angular momentum carried by the
light beam.

1. Introduction

It has long been recognized that the ultimate accuracy of optical measurements is
set by the quantum nature of light. Indeed the desire to approach these quantum
limits was a strong motivation for the study of non-classical and particularly
squeezed states of light [1]. The use of coherent laser sources typically provides
a limiting resolution that is inversely proportional to the square root of the mean
number of photons used in the measurement (N�1=2). This can be improved
upon by the use of squeezed states which enhances the resolution by the square
root of the degree of squeezing (N�1=2 expð�rÞ). The full quantum limit is
reached by complete control of the photon number and gives a quantum limited
resolution that is inversely proportional to the photon number (N�1), as recently
reviewed in [2].

One of the earliest proposals for the application of squeezed light was to improve
the sensitivity of optical interferometry [3], which was demonstrated very soon
after the first successful squeezing experiments [4, 5]. This was followed by a
demonstration of enhanced sensitivity in a spectroscopic measurement [6]. More
recently, it has been suggested that squeezed light can be used to enhance the
resolution of measurements of small displacements in optical images, or beam
displacements [7]. An experimental demonstration, based on squeezed light prepared
in a novel ‘flipped’ mode, followed soon afterwards [8].

The quantum limit for detection of phase shifts can be approached using a
balanced interferometer with equal intensity inputs [9]. It has also been suggested
that the same degree of resolution could be achieved by means of special beam-
splitters that send all of the light through one arm of the interferometer so
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that a two-mode ‘Schrödinger-cat’ state is prepared [10, 11]. The same N�1-limited
resolution can be obtained for beam displacements by use of a pair of specially
shaped modes, each having precisely the same number of photons [12].

In this paper we examine the factors limiting our ability to measure the rota-
tion of a beam about the optical axis. We will find that, as with interferometric
and beam-displacement measurements, the resolution depends on the number
of photons used and can be improved by the use of suitable non-classical states of
light. The resolution also depends, however, on the orbital angular momentum
of the light used to make the observation [13, 14]. We will find that it is the product
of the orbital angular momentum per photon, �hh‘, and the total photon number, N,
that determines the limiting resolution. Hence it is the total number of quanta
of orbital angular momentum, N‘, that sets the minimum detectable rotation.
Experiments demonstrating quantum effects in metrology have all been carried
out at low intensities. For this reason we neglect mechanical effects induced by
the light including distortion of optical components by heating and momentum
transfer due to radiation pressure.

After some general considerations, section 2, we present two different schemes to
measure small rotations, section 3 and section 4. A comparison of the resolution
achievable by different measurements concludes the paper, section 5.

2. General considerations

Let us consider a light beam propagating through an image rotator, that is a
device that rotates an input image about the optical axis. It is not necessary to
specify the form of the rotator, but elementary examples include a rotating Dove
prism [15], or a pair of stationary Dove prisms with a fixed relative orientation.
The latter arrangement has recently been used to detect optical angular momentum
at the single-photon level [16]. A further example of a beam rotator is a light
beam passing off-axis through a rotating glass disc, which induces a tangential
displacement, or rotation, of the beam [17]y.

In this work we consider a beam with an image, or transverse spatial
profile, uIðx, yÞ propagating in the z direction through an image rotator. The beam
after passing through the rotator has a transverse profile

uOðx, yÞ ¼ uIðx cos ��þ y sin ��, y cos ��� x sin ��Þ, ð1Þ

where �� is the azimuthal rotation angle and we fix the z axis as the rotation axis.
In sections 3 and 4 we will consider two different beams uI.

It is natural to describe the beam uI as a superposition of Laguerre–Gaussian
modes as these are eigenmodes of the z component of angular momentum, which
is the generator of the rotation. This means that the only effect of a rotator on

yIt has recently been suggested that the dual phenomenon, i.e. light carrying orbital angular
momentum exerting a torque on a transparent medium, should also exist [18].
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these modes is to add a constant phase shift. Laguerre–Gaussian modes, which at
the beam waist have the form [19]

up‘ðr,�Þ ¼
1

w0

p!

pðj‘j þ pÞ!

� �1=2
exp �

r2

2w2
0

� �
r

w0

� �j‘j

Lj‘j
p

r2

w2
0

� �
expði‘�Þ, ð2Þ

are labelled by an angular index, ‘, associated with the angular momentum carried
by the beam [13], and by a radial index, p, giving pþ 1 bright rings in the intensity
profile (figure 1). Modes with p¼ 0 have a single intense ring with radius [20]

�rr ¼ w0 j‘jð Þ
1=2: ð3Þ

Modes with non-vanishing p have a less compact spatial distribution in the
transverse plane (see figure 1(c) and (d )).

Our study of rotation measurements starts with the realization that the optics
used will, inevitably, have a maximum distance from the optical axis beyond
which light will be lost by the experiment. For simplicity, we suppose that this
limit is set by the radius R of the rotator. This, in turn, sets a maximum value for

(a) (b)

(c) (d )

Figure 1. Intensity ð�j‘j exp½�ð�2=2Þ�Lj‘j
p ð�2ÞÞ2, with radial coordinate normalized with the

beam waist � ¼ r=w0. The dashed circle, with radius 8 represents the transverse extension
of a rotator. Beams with p¼ 0 have the maximum intensity at � ¼ ðj‘jÞ1=2. (a) Intensity for
‘¼ 49, p¼ 0, showing a bright circle with radius 7. (b) For the mode ‘¼ 64, p¼ 0 the
maximum intensity is at the boundary of the device. For increasing value of p we observe
a spreading in the intensity, as shown in (c) ‘¼ 49, p¼ 1 and (d) ‘¼ 49, p¼ 2. (The colour
version of this figure is included in the online version of the journal.)
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the angular momentum that can be carried by a mode propagating through it [21].
The Laguerre–Gaussian modes with non-zero p extend to a larger radius than those
with the same value of ‘ but p¼ 0 (see figure 1). This means that the largest
allowed angular momentum will occur for a p¼ 0 mode. For a mode with a bright
ring of radius (3) at the edges of the device (�rr ¼ R), the beam would be strongly
diffracted. The radial intensity distribution of the Laguerre–Gaussian modes,
for large values of j‘j, has the form

ju0‘ð�rrþ d Þj2 ’ ju0‘ð �rr Þj
2 expð�d 2=w 2

0 Þ, ð4Þ

so that the intensity tends to be radially distributed like a Gaussian centred in �rr
and with a waist w0. Hence we can set the limit for a transmitted Laguerre–Gaussian
mode for

�rrþ w0 ¼ R: ð5Þ

From equation (3) we obtain the maximum angular momentum index transmitted
by a device with maximum effective radius R as

‘M ¼
R

w0
� 1

� �2

: ð6Þ

We can use this result to suggest a probable limit for the smallest detectable
rotation ��. Consider the uncertainty relation for rotation angle and angular
momentum [22]

���L �
�hh

2
1� 2pPðpÞ
�� ��, ð7Þ

where the values of � are in the range ½�p, p�. The form of this uncertainty
relation has recently been confirmed experimentally [23] and states minimizing the
uncertainty product (7) have been derived [24]. For small angular uncertainties we
have

�� �
�hh

2�L
, ð8Þ

which gives a bound on the minimum possible ��:

�� �
1

2‘M
: ð9Þ

For the analogous problem of the optical phase [25] the minimum achievable
uncertainty is inversely proportional to the mean (or maximum) photon number
(N ) [26]. The minimum resolvable phase shift also seems to be inversely propor-
tional to N [9, 12]. This suggests that the minimum resolvable rotation given a single
photon will be

�� / ‘�1
M : ð10Þ

We expect that the optimal use of N photons will give a limit

�� / ðN‘MÞ
�1: ð11Þ
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The analogy between the uncertainty, ��, and the resolution, ��, leads us to refer
to (11) as the ‘Heisenberg’ limit.

3. Displacement scheme

A natural way to measure small angles imparted by an image rotator is through
the displacement of a beam shining the rotator far from the axis, as in the
Jones experiment [17]. In this scheme the azimuthal displacement gives the measure
of the rotation angle, as shown in figure 2. Clearly the resolution is increased by
working at the edges of the device, that is at the maximum distance from the
device axis, and with a small size of the light spot. In the following we consider
a beam with a Gaussian transverse profile, centred in x ¼ r0, y ¼ 0

uIðx, yÞ ¼
1

p1=2w0
exp �

ðx� r0Þ
2
þ y2

2w2
0

� �
, ð12Þ

with a small beam waist w0 and large r0, ‘near’ to the edge of the device. Clearly
there are limits for the achievable experimental precision due simply to the finite
size of the optical elements used. Given a device with a radial size R, then the off-axis
Gaussian (12) will be transmitted if r0 þ w0 � R.

The rotated output beam obtained by equations (1) and (12) is

uOðx, yÞ ¼
1

p1=2w0
exp �

ðx� r0 cos ��Þ2 þ ð y� r0 sin ��Þ2

2w2
0

� �
: ð13Þ

∆
x

r0

dφ w0

R

Figure 2. Scheme based on displacement measurement. (The colour version of this figure is
included in the online version of the journal.)
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The effect of the rotation is to displace the output beam by �x ¼ ½r20ðcos ��� 1Þ2 þ
r20 sin2 ���1=2. For small �� we find

�� ¼
�x

r0
, ð14Þ

so that the resolution achieved measuring small angles in this scheme depends on
the lateral beam position r0 and on the precise measurement of the displacement
�x between the input and the rotated light spots.

Small displacements �x are measured with high resolution by shining a split
detector and taking the difference of the light intensities on the two halves [7].
For a perfectly aligned beam the signal detected is zero, while any small misalign-
ment gives an imbalance in the intensities. Given a Gaussian mode in a
coherent state with mean photon number equal to N, the minimum displacement
measurable is

�x ¼
p1=2w0

2

1

N1=2
: ð15Þ

The standard quantum limit (15) can be beaten by engineering the spatial
mode impinging on the detector and its statistics. In particular the input beam
is prepared by superposing an even Gaussian mode (12) with an odd flipped
mode uoddI ðx, yÞ ¼ uIðx, yÞ signð yÞ. We note that a flipped mode is not stable
under propagation as it has a discontinuity in y¼ 0 that would be smoothed
by diffraction. Nevertheless, it was experimentally possible to beat the shot noise
limit in displacement measurements by shaping this kind of beam [8].

In general we have [12]

�x ¼
p1=2w0

2
f ðN Þ ð16Þ

with f (N ) depending on the state in which the modes uoddI and uI are prepared.
If the Gaussian mode is in a coherent state with average intensity N and the flipped
mode is in vacuum then f ðN Þ ¼ N�1=2, as in equation (15). This is the limit
resolution obtained with classical states, i.e. the standard quantum limit. Better
resolution can be achieved if the flipped mode is prepared in a strongly squeezed
state, leading to f ðN Þ ¼ N�3=4. The reason for this behaviour is that both the
coherent and squeezed modes carry photons, with N being the mean total number [3,
12]. The best resolution is obtained with highly non-classical states, for instance
by preparing the two modes in number states jN=2i. In this case f � N�1 and
the displacement �x � N�1 is the ‘Heisenberg limit’ mentioned in the previous
section.

From these results for displacement measurements we obtain the maximum angle
resolution of the scheme in figure 2:

�� ¼
p1=2w0

2r0
f ðN Þ: ð17Þ

Clearly, �� depends both on the spatial characteristics of the mode (w0 and lateral
displacement r0) and also on the state of light (through f (N )). A decomposition
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of (12) in angular momentum eigenmodes allows us to write �� in terms of the

angular momentum index ‘. In particular for a Gaussian spot centred far

from the axis z (r0�w0) there is a large dispersion in the angular momentum

spectrum. We can see this either by writing uIðx, yÞ in terms of its angular Fourier

components [27]

uIðx, yÞ ¼
1

p1=2w0
exp �

x2 þ y2 þ r20
2w2

0

� � X‘¼þ1

‘¼�1

Ij‘j
r0ðx

2 þ y2Þ1=2

w2
0

� �
expði‘�Þ ð18Þ

or by explicitly constructing its decomposition in terms of the Laguerre–Gaussian

modes (see figure 3(b)). The latter procedure is carried out in the Appendix.

Due to the dispersion in the angular momentum spectrum, it is important to

consider the constraint, imposed by the extension R of the rotator, found in

section 2. From equation (6) and setting r0 þ w0 ¼ R we find the maximum
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Figure 3. The histograms show the probabilities P(‘) given in equation (A6). (a) The
symbols and (b) smooth line are Gaussians with width given by the variance
�‘ ¼ r0=2

1=2w0. (a) r0 ¼ 3w0. (b) r0 ¼ 10w0.
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resolution in the displacement scheme

�� ¼
p1=2

2

1

‘1=2M

f ðNÞ: ð19Þ

In equation (19) we immediately identify a ‘geometrical’ factor depending on
the angular momentum index and the statistical factor f. In analogy with the
standard quantum limit, obtained by using Gaussian coherent states in inter-
ferometry, we consider the dependence �1=‘1=2 in equation (19) as the standard
optical limit for rotation measurements, as it is obtained with Gaussian spatial
distributions. A spatial Gaussian mode prepared in a Gaussian coherent state then
gives a combined ‘standard quantum limit’ in which the minimum resolvable
rotation, / ðN‘MÞ

�1=2, is the inverse of the root square of the number of quanta
of angular momentum. For r0�w0, the Gaussian mode becomes a good approxi-
mation to an angle-angular momentum minimum uncertainty product state [24]
with h‘i ¼ 0, �‘ ¼ r0=2

1=2w0 ¼ ‘M=21=2 and �� ¼ 1=ð2‘MÞ
1=2. In figure 3 the P(‘)

are plotted for r0 ¼ 3w0 and r0 ¼ 10w0 and are compared with Gaussians having
the same variance. The approach to a Gaussian form is an indication of reaching the
minimum uncertainty product limit [24].

4. Interferometric scheme

If the incoming beam is an angular momentum eigenstate then the only effect of
the rotator is to add a constant phase shift. Interferometers form the basis of phase
shift measurements [28] and so it is natural to consider the interferometer shown
in figure 4 to measure rotations. The rotator is placed along one of the paths
inside the interferometer. Here the shift is in the azimuthal spatial profile of the field
and this contrasts with well-known interferometers [29] designed to measure shift
in the longitudinal phase of the light beam.

Given any mode of the form

vIðx, yÞ ¼ vðrÞ expði‘�Þ ð20Þ

entering in the rotator, the beam at the output will be

vOðx, yÞ ¼ vIðx, yÞ expði‘��Þ: ð21Þ

We note that the interferometer considered here has recently been used to detect
the angular momentum of single photons [16]. In the context of rotation resolution,
we are interested in the smallest angles �� that can be measured with this device.

The rotation through an angle �� on the beam (20) introduces only a homo-
geneous phase shift ‘�� on the whole beam, and so it follows that the description
of the interferometer in figure 4—illuminated by angular momentum eigenmodes—is
completely equivalent to standard interferometers [29] measuring longitudinal
phase shifts. We note that to have interference the input modes a and b need to
have the same angular momentum index (‘).

The difference in the intensities of the two beams emerging from the inter-
ferometer depends both on the phase shift, here ‘��, and on the quantum state of
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the incoming beams. In particular, when the noise level has the size of the signal we
are at the limit of the smallest detectable phase shift

�� ¼
1

‘
f ðN Þ, ð22Þ

with f ðNÞ ¼ N�1=2,N�3=4,N�1 depending on the input states of the modes a and b.
We have seen in section 2 how the transverse size of the device sets the limit of
the maximum value of ‘ of the beam that can be transmitted. By using the maximum
allowed angular momentum we reach the limiting angle resolution / 1=‘M.

It is particularly interesting to consider the case in which the beams entering in
the interferometer are prepared in the states jN=2ijN=2i [9, 12]. The angle resolution
is then

�� ¼ 2:24
1

‘MN
, ð23Þ

which is the ‘Heisenberg limit’ anticipated in section 2.

5. Conclusions

The resolution attainable in an optical measurement of rotations, ��, depends on
two factors, the number of photons and the orbital angular momentum content of
the beam. For a displaced Gaussian spot we find, for a single photon, that
�� / ‘�1=2

M , where ‘M is the largest angular momentum index supportable by the

δφ

i�δφ

�δφ

�δφ �δφ
�δφ

�δφ
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(a + ib)e
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22ieˆˆ
i

2
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2
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i
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2
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Figure 4. Interferometric phase measurement using angular momentum eigenstates. The
single mode annihilation operators are âa ¼

Ð
dxvIðxÞâaðxÞ, b̂b ¼

Ð
dxvIðxÞb̂bðxÞ, where âaðxÞ

and b̂bðxÞ are continuum annihilation operators [30]. (The colour version of this figure is
included in the online version of the journal.)
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image rotator. If the measurement is performed by using a coherent state with
mean photon number N then we find that �� / ðN‘MÞ

�1=2, i.e. that it is inversely
proportional to the square root of the number of quanta of angular momentum. Use
of non-classical states of light can enhance the sensitivity by changing the functional
dependence on N. In particular, use of correlated number states can produce a
resolution that is proportional to N�1. We can also increase the sensitivity by
changing the functional dependence on ‘M. Using eigenmodes of orbital angular
momentum leads to a resolution proportional to ‘�1

M , with the ultimate ‘Heisenberg’
limit being / ðN‘MÞ

�1.
We have demonstrated a clear analogy between orbital angular momentum in

rotation measurements and photon number in interferometry. There are, however,
very important practical differences. Creating states of well-defined orbital angular
momentum is relatively straightforward, while making photon number states is
very difficult. Secondly, enhancement of resolution based on controlling the photon
number requires extremely high efficiencies of photon detection as any losses rapidly
degrade the signal by changing the expected photon number. Using eigenmodes
of orbital angular momentum, however, is relatively robust as no matter how
many photons are lost, each of the remaining photons still carries ‘�hh units of
angular momentum.
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Appendix A: Laguerre–Gaussian expansion of a displaced Gaussian beam

We require the expansion of our displaced Gaussian mode (12) in terms of the
complete set of Laguerre–Gaussian modes: that is we wish to write (at the beam
waist)

uIðx, yÞ ¼
X1
‘¼1

X1
p¼0

cp‘up‘ðr,�Þ, ðA1Þ

where x ¼ r cos�, y ¼ r sin� and up‘ðr,�Þ are the normalized Laguerre–Gaussian
modes (2). We find the amplitudes cp‘ by writing both the displaced Gaussian
and the Laguerre–Gaussians as sums of Hermite–Gaussians and then evaluate their
overlap using the properties of Hermite polynomials. The displaced Gaussian can
be written in the form

uIðx, yÞ ¼
1

p1=2w0
exp �

ðx2 þ y2Þ

2w2
0

� �
exp

r0x

w2
0

�
r20
2w2

0

� �

¼
1

p1=2w0
exp �

r2

2w2
0

� �
exp �

r20
4w2

0

� �X1
n¼0

1

n!

r0
2w0

� �n

Hn
x

w0

� �
, ðA2Þ
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where we have used the generating function for Hermite polynomials [31]. The
Laguerre–Gaussian modes, with ‘ � 0, can be written in the form [32]

up‘ðr,�Þ ¼
ð�1Þ p

22pþ‘w0

1

pðj‘j þ pÞ!p!

� �1=2
exp �

r2

2w2
0

� �

�
X‘þ2p

k¼0

ð2iÞkP
ð‘þp�k, p�kÞ
k ð0ÞH‘þ2p�k

x

w0

� �
Hk

y

w0

� �
, ðA3Þ

where

P
ðn�k,m�kÞ
k ð0Þ ¼

ð�1Þk

2kk!

dk

dtk
½ð1� tÞnð1þ tÞm�

�����
t¼0

: ðA4Þ

The expansion for negative values of ‘ can be obtained by complex conjugation.
We can calculate the coefficients cp‘ using equations (A2) and (A3) together with
the orthogonality properties of the Hermite polynomials:

cp‘ ¼

ð1
�1

ð1
�1

u�p‘uI dxdy

¼ ð�1Þ p
1

ðj‘j þ pÞ!p!

� �1=2
r0
2w0

� �2pþj‘j

exp �
r20
4w2

0

� �
: ðA5Þ

The modulus squared of these amplitudes are plotted in figure 5, for r0=w0 ¼ 3
and 10.
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Figure 5. Probabilities jcp‘j
2¼f½expðr20=2w

2
0Þ�=½ðj‘jþpÞ!p!�gðr0=2w0Þ

4pþ2j‘j. Parameter r0=w0¼

3 and 10.
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It is straightforward to find the fractional power in a displaced Gaussian
beam associated with each value ‘, or equivalently the probability, P(‘), that a
single photon will be found to have angular momentum �hh‘:

Pð‘Þ ¼
X1
p¼0

cp‘
�� ��2¼ exp �

r20
2w2

0

� �
Ij‘j

r20
2w2

0

� �
, ðA6Þ

where In is the modified Bessel function of order n [31]. That this probability
distribution is normalized follows from the property:

expðzÞ ¼ I0ðzÞ þ 2
X1
n¼1

InðzÞ: ðA7Þ

References

[1] R. Loudon and P.L. Knight, J. Mod. Opt. 34 709 (1987) and references therein.
[2] V. Giovannetti, S. Lloyd and L. MacCone, Science 306 1330 (2004).
[3] C.M. Caves, Phys. Rev. D 23 1693 (1981).
[4] M. Xiao, L.-A. Wu and H.J. Kimble, Phys. Rev. Lett. 59 278 (1987).
[5] P. Grangier, R.E. Slusher, B. Yurke, et al., Phys. Rev. Lett. 59 2153 (1987).
[6] E.S. Polzik, J. Carri and H.J. Kimble, Phys. Rev. Lett. 68 3020 (1992).
[7] C. Fabre, J.B. Fouet and A. Maı̂tre, Opt. Lett. 25 76 (2000).
[8] N. Treps, U. Andersen, B. Buchler, et al., Phys. Rev. Lett. 88 203601 (2002).
[9] M.J. Holland and K. Burnett, Phys. Rev. Lett. 71 1355 (1993).
[10] J. Jacobson, G. Björk, I. Chuang, et al., Phys. Rev. Lett. 74 4835 (1995).
[11] S.M. Barnett, N. Imoto and B. Huttner, J. Mod. Opt. 45 2217 (1998).

(b)
0.08

0.06

0.04

0.02

0.00

35
30

25
20

15
10 −20

−10
0

10
20

Figure 5. Continued.

624 S. M. Barnett and R. Zambrini



[12] S.M. Barnett, C. Fabre and A. Maı̂itre, Eur. Phys. J. D 22 513 (2003).
[13] L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, et al., Phys. Rev. A 40 8185 (1992).
[14] L. Allen, S.M. Barnett and M.J. Padgett, Optical Angular Momentum (Institute of

Physics, Bristol, 2003).
[15] E. Hecht, Optics, 4th ed., section 5.5.2 (Addison Wesley, San Francisco, 2002).
[16] J. Leach, M.J. Padgett, S.M. Barnett, et al., Phys. Rev. Lett. 88 257901 (2002).
[17] R.V. Jones, Proc. R. Soc. A 328 337 (1972).
[18] M. Padgett, S.M. Barnett and R. Loudon, J. Mod. Opt. 50 1555 (2003).
[19] A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986).
[20] L. Allen and M.J. Padgett, Opt. Commun. 184 67 (2000).
[21] R. Zambrini, L.C. Thomson, S.M. Barnett, et al., J. Mod. Opt. 52 1135 (2005).
[22] S.M. Barnett and D.T. Pegg, Phys. Rev. A 41 3427 (1990).
[23] S. Franke-Arnold, S.M. Barnett, E. Yao, et al., New J. Phys. 6 103 (2004).
[24] D.T. Pegg, S.M. Barnett, R. Zambrini, et al., New J. Phys. 7 62 (2005).
[25] D.T. Pegg and S.M. Barnett, Phys. Rev. A 39 1665 (1989); J. Mod. Opt. 36 7 (1989).
[26] G.S. Summy and D.T. Pegg, Opt. Commun. 77 75 (1990).
[27] M.V. Vasnetsov, V.A. Pas’ko and M.S. Soskin, New J. Phys. 7 46 (2004).
[28] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press,

Oxford, 2000).
[29] B. Yurke, S.L. McCall and J.R. Klauder, Phys. Rev. A 33 4033 (1986).
[30] A. Gatti, H. Wiedemann, L.A. Lugiato, et al., Phys. Rev. A 56 877 (1997).
[31] M. Abramowitz and I.A. Stegun (Editors), Handbook of Mathematical Functions (Dover,

New York, 1970).
[32] E. Abramochkin and V. Volostnikov, Opt. Commun. 83 123 (1991).

Resolution in rotation measurements 625


	first

