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Quantum fluctuations in a continuous vectorial Kerr medium model
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We consider a model for a Kerr medium in a planar resonator, which takes into account the vectorial
character of the radiation field. We analyze the spatial behavior of quantum fluctuations around a steady state,
with a roll-pattern configuration in the beam cross section, using a Langevin treatment based on the Wigner
representation. The spatial distribution of the quantum fluctuations around the roll pattern is dominated by the
neutral~or Goldstone! mode, corresponding to rigid spatial displacements of the pattern. The spatial configu-
ration of the field immediately outside the cavity input-output mirror depends on the time window over which
fluctuations are averaged: only when the time window is on the order of the cavity lifetime the output field
fluctuations are qualitatively similar to that of the intracavity field. The quantum correlations among the fields
in play, as described by the full multimode model, turn out to be in good agreement with those predicted by a
simple three-mode model.

PACS number~s!: 42.50.Lc, 42.50.Dv, 42.50.Ct, 42.65.Sf
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I. INTRODUCTION

It is by now well known@1# that nonlinear optical pattern
display deep quantum aspects that arise essentially from
quantum entanglement or quantum correlation of the spa
modes that generate the pattern@2#. Such quantum aspect
are reviewed in Refs.@1b, 3#, and arise both above and belo
the threshold of the instability that creates the pattern. In
above threshold case, the quantum features have been
ied almost exclusively for the simplest structure, i.e., the
~or stripe! pattern, and using three-mode models@4–7# that
allow for an analytical calculation of the relevant spectra
more extended literature concerns the below threshold c
basically devoted to the analysis of thequantum imagesgen-
erated by quantum fluctuations~see, e.g., Refs.@2,8–12#!. In
these papers the treatment is carried out analytically by
ing into account the whole infinite set of transverse cav
modes or, equivalently, by using models in which the rad
tion field displays full dependence on the continuous spa
variable in the planes transverse with respect to the direc
of propagation. Also cavityless configurations have be
considered~see, e.g., Refs.@13–18#!.

In this paper we will treat the above threshold case us
a continuous model, i.e., avoiding any restriction to a
duced number of spatial modes. This can be done by ad
ing the Langevin treatment of quantum fluctuations and
tical patterns introduced in Ref.@10#. A first advantage of
this treatment is the possibility of testing the limit of validi
of the three-mode model, by using a model that is capabl
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describing all the relevant spatial features on any scale
interest.

The main body of our calculations concerns the dir
analysis of quantum fluctuations around an inhomogene
roll-shaped stationary state, by linearization around t
steady state. By using the Wigner representation, we
scribe the dynamics of quantum fluctuations by means o
set of linearized Langevin equations. We also study the
havior of the whole radiation field, without splitting it into
the sum of a semiclassical stationary value and of the fl
tuations around it. This is obtained by using, again,
Wigner representation. In this case the time evolution eq
tion for the Wigner functional of the radiation field also in
cludes terms with third-order derivatives; however, in t
limit of large photon numbers one can argue that these te
can be neglected, and one is left with an approxim
Fokker-Planck equation with a positive-definite diffusio
matrix, equivalent to a set of classical-looking Langev
equations.

The continuous model offers the possibility of studyin
single stochastic realizations~snapshots! of the dynamics of
the fluctuations of the entire field, while the three-mo
model provides a crudely simplified description to this pu
pose. For example, the three-mode model predicts that, u
conditions of translational symmetry, the stripe pattern u
dergoes random rigid displacements to the left or to the ri
in the direction orthogonal to the stripes. The pattern ma
tains a precise orientation, which is determined by an ini
fluctuation, but has no definite equilibrium position in th
transverse plane, which gives rise to the random rigid d
placements, in which the roll position is governed by a d
fusive motion ~@5#, see also Ref.@19#!. The result of this
process is to wash out the roll pattern itself, if it is observ
on a time scale much longer than the diffusion time. T
continuous model allows us for investigating the dynam

a,
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of the roll pattern without introducing the oversimplificatio
of the three-mode theory. However, the drawback is that
have to numerically simulate the Langevin equations, eve
the linearized case, because the coefficients of the linear
equations are space dependent since the stationary
around which linearization is performed is inhomogeneou

Another goal of this paper is to describe the configurat
of the field outside the cavity. In all the previous work~see,
e.g., Ref.@10#! the Langevin equations were used to simul
the behavior of the intracavity field only. Here we focu
instead, on the output field, immediately beyond the inp
output mirror of the cavity. The output field arises from t
interference of the intracavity field transmitted by the cav
input-output mirror and the input field reflected by the inp
output mirror. Since the input field is assumed to have wh
noise fluctuations, while the spectral bandwidth~in temporal
frequencies! of the intracavity field is determined by the ca
ity linewidth, the configuration of the output field depends
the time scale over which it is observed.

The system studied in this paper consists of a cavity c
taining a Kerr medium and driven by a coherent, monoch
matic, and linearly polarized plane-wave field. The mo
@20,21# includes the vectorial character of the field, gener
izing the scalar model of Ref.@22#. Our analysis concerns th
self-defocusing case, in which one has the formation of a
pattern orthogonally polarized to the pump at the instabi
threshold@7,21#. In Ref. @7#, by using a three-mode mode
the anticorrelation between the quantum fluctuations of
intensity of the plane-wave pump and the sum of the int
sities of the two tilted waves that generate the pattern
analyzed. More precisely, a quantum-nondemolition~QND!
scheme that uses the tilted waves as ameterto measure the
intensity fluctuation of the pump, was formulated. In th
paper we will compare the prediction of the three-mo
model for the QND coefficients, with those of the comple
multimode model. We will show the comparison also for t
correlation between the two meter beams~i.e., the two twin
tilted waves!.

The paper is organized as follows: In Sec. II we descr
the quantum model and the evolution equation for the q
siprobability distributions of thec-number fields associate
with the quantum operators. In Sec. III we derive both
nonlinear Langevin equations for the dynamical evolution
the intracavity fields, and the linearized equations for
dynamics of the quantum fluctuations around the inhomo
neous steady state. The result of the numerical integratio
these equations is discussed in Sec. IV. The relation betw
the field inside the cavity and the output field is addresse
Sec. V, where we introduce a way to avoid instantane
divergences of the output field. In Sec. VI we calculate
quantum correlation between thex-polarized homogeneu
mode and they-polarized tilted wave modes in the outp
field as well as the correlation between the two tilted wa
and we discuss the applicability of this scheme for QN
measurements. We also present the comparison of our re
with the simplified three-mode model used in Ref.@7#. In
Sec. VII we give some concluding remarks. The paper a
includes two appendices, where we give several coefficie
corresponding to equations used in the main text.
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II. QUANTUM FORMULATION OF A VECTORIAL
KERR RESONATOR

We consider a one-directional ring cavity~Fig. 1! with
four flat mirrors, one of which has a high, but finite refle
tivity, and the others are fully reflecting. Inside the cavity
placed a sample of an isotropic Kerr medium, characteri
by a third-order susceptibility tensorx i jkl

(3) . The cavity is
driven by a coherent, plane-wave, monochromatic and
tionary field, with a uniform distribution in the transvers
plane and frequencyv0. The input field is linearly polarized
for definiteness along thex direction, so that its circularly
polarized components are equal:E015E025E0.

We consider the slowly varying envelope and parax
approximation, and the cavity mean-field limit@23#, that al-
lows to neglect the dependence of the field on the longitu
nal coordinatez along the sample. Under these conditio
only one longitudinal cavity mode is relevant, precisely t
one corresponding to the longitudinal cavity resonancevc

closest tov0. We denote byA1(xW ,t) andA2(xW ,t) the intra-
cavity field envelope operators corresponding to the ri
and left circularly polarized components. These operators
pend on the transverse space coordinatexW5(x,y) and timet,
and obey standard equal-time commutation relations,

@Ai~xW ,t !,Aj
†~xW8,t !#5d i j d~xW2xW8!, ~1!

where the indexesi , j stand for1,2. By adopting a picture
in which the fast oscillation at the carrier frequencyv0 is
eliminated, the reversible part of the dynamics of the int
cavity field is described by the following Hamiltonian@7#,
that represents a generalization to the vectorial case of
one introduced in Ref.@4# for a scalar Kerr medium:

H5H01Hext1Hint . ~2!

H0 describes the free propagation of the intracavity field
the paraxial approximation:

FIG. 1. Ring cavity with a Kerr medium. Mirror 1 partially
transmits the input beam with frequencyv0. Mirrors 2, 3, and 4 are
completely reflecting.
1-2
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QUANTUM FLUCTUATIONS IN A CONTINUOUS . . . PHYSICAL REVIEW A 62 063801
H05\KE d2xW @A1
† ~xW !~hu2a¹2!A1~xW !

1A2
† ~xW !~hu2a¹2!A2~xW !#, ~3!

whereK5cT/(2L) is the cavity linewidth, withc being the
speed of light,T the transmittivity coefficient of the input
output mirror, andL the total cavity length;hu is the cavity
detuning parameter;h is the sign of the Kerr nonlinearity
(h51 for the self-focusing case andh521 for the self-
defocusing case!; ¹2 is the two-dimensional transverse L
placian that models the effect of diffraction in the parax
approximation; the parametera has the dimension of an are
so thatl D5Aa'ALl/(2pT), with l being the wavelength
defines the length scale for transverse pattern formation

Hext models the coherent pumping by a classical pla
wave driving field of amplitudeE0:

Hext5 i\KE0E d2xW @A1
† ~xW !2A1~xW !1A2

† ~xW !2A2~xW !#,

~4!

where, without any loss of generality,E0 has been taken rea
Hint is the interaction Hamiltonian that describes the co

pling due to the Kerr nonlinearity:

Hint52h\KgE d2xW H a

2
@A1

† 2~xW !A1
2 ~xW !1A2

† 2~xW !A2
2 ~xW !#

1b@A1
† ~xW !A2

† ~xW !A1~xW !A2~xW !#J , ~5!

where the coupling constantg is related to the elementx1111
(3)

of the susceptibility tensor. Constantsa and b are also re-
lated to the susceptibility tensor components@24#. For an
isotropic medium they satisfya1b52. We will use typical
values for a liquid Kerr medium:a51/4 and b57/4
@20,21,25#.

The intracavity dynamics are described by a master eq
tion for the reduced density operatorr of the system:

]r

]t
5

1

i\
@H,r#1Lr. ~6!
06380
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The Liouvillian L accounts for dissipation through the pa
tially reflecting mirror, and is given by

Lr5K (
i 51,2

E d2xW$@Ai~xW !,rAi
†~xW !#1@Ai~xW !r,Ai

†~xW !#%.

~7!

Using the quantum-to-classical correspondence@26,27#, Eq.
~6! can be converted into an equation of motion for qu
siprobability distributions in the classical phase space of
system; these are functionals of thec-number fieldsa6(xW )
associated with the operatorsA6(xW ). In order to obtain this
equation, it is enough to formally substitute products of fie
operators and the density operator by suitable operat
over the distribution functionals according to the followin
scheme of correspondence relations@10#:

rA6
† ~xW !⇔S a6* ~xW !1

12s

2

d

da6~xW !
DWs~a1 ,a1* ,a2 ,a2* !,

A6
† ~xW !r⇔S a6* ~xW !2

11s

2

d

da6~xW !
DWs~a1 ,a1* ,a2 ,a2* !,

rA6~xW !⇔S a6~xW !2
11s

2

d

da6* ~xW !
D Ws~a1 ,a1* ,a2 ,a2* !,

A6~xW !r⇔S a6~xW !1
12s

2

d

da6* ~xW !
D Ws~a1 ,a1* ,a2 ,a2* !.

~8!

Here the parameter 1>s>21 defines the choice of the rep
resentation, namely,s511 corresponds to the Glaube
SudarshanP distribution;s50 to the WignerW distribution,
and s521 to the Husimi Q distribution. The symbols
d/da6(xW ) stand for functional derivatives.

The evolution equation for the quasiprobability distrib
tions is given by
]Ws~z1 ,z2 ,z3 ,z4!

]t
5E d2xWKF2(

i 51

4 S d

dzi~xW !
Qi D 1 1

2 E d2xW8 (
i , j 51

4
d2

dzi~xW !dzj~xW8!
Di j ~xW ,xW8!

1 1
6 E d2xW8E d2xW9 (

i , j ,l 51

4
d3

dzi~xW !dzj~xW8!dzl~xW9!
Ti jl ~xW ,xW8,xW9!GWs~z1 ,z2 ,z3 ,z4!, ~9!

where (z1 ,z2 ,z3 ,z4)5(a1 ,a1* ,a2 ,a2* ). The coefficientsQi , Di j , andTi jl are given in Appendix A.
1-3
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III. DERIVATION OF THE LANGEVIN EQUATIONS

The time evolution equation~9! derived in the previous
section is of little practical use, both from an analytical a
computational point of view; for example in theP represen-
tation (s521) the diffusion matrix is not positive definite
while in the Wigner representation (s50) the third-order
derivative terms do not vanish. In order to derive a mo
manageable equation we have to introduce some approx
tion. The standard scheme~see, e.g., Ref.@27#, Sec. IV! in-
volves an expansion of Eq.~9! in terms of a parameter mea
suring the inversesystem size. In this way one obtains at th
same time the time evolution equations for classical fi
amplitudes, and those describing the dynamics of fluct
tions around the classical macroscopic fields. This is equ
lent to the linearization procedure outlined in the second p
of this section.

In our model the parameterg21 plays the role of a scaling
factor for the photon number; preciselyns5ag21 represents
the intracavity saturation photon number on the character
areaa in the transverse plane, and typically is a very lar
number. By reformulating Eq.~9! in terms of scaled fields
z̃i5Agzi , it is readily seen that the second-order derivat
terms scale asg, while the third-order derivative terms sca
asg2 ~the first-order derivative has terms of orderg0 andg).
In the case of the Wigner representation, it is possible
neglect the third-order derivatives~orderg2), resulting in an
Fokker-Planck equation that has a positive definite diffus
matrix @28#. From the Fokker-Planck equation we can obta
a equivalent set of Langevin equations. Once we have
Langevin equation a further approximation is possible:
drift Q1, in terms of the scaled fields, takes the for
Q1 5 @2(1 1 ihu) 1 igh(a1b/2)(s2 1) 1 ia¹2#z1 1 Eo
1 ih@az1z21bz3z4#z1 where the term igh(a1b/2)(s
21) is of higher order ing and can be neglected. Proceedi
in a similar way for all the drift terms, the set of Langev
equations, where we keep terms up to orderg1/2 ~the noise
terms!, finally read:

]a6

]t
52~11 ihu!a61 i¹2a61E01 ih@aua6u2

1bua7u2#a61A2j6~xW ,t !, ~10!

where, in order to simplify the notation, we have introduc
the scaled variables:

x̃5x/Aa,

t̃ 5Kt,
~11!

Ẽ05AgE0 ,

ã j5Aga j ,

and omitted the tildes. Herej6(xW ,t) are complex Gaussia
random variables of zero mean and variance given by
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^j i~xW ,t !j j* ~xW8,t8!&5
1

2ns
d i j d~xW2xW8!d~ t2t8!, ~12!

^j i~xW ,t !j j~xW8,t8!&50. ~13!

By letting ns→`, and hence dropping the stochastic no
termsj i , one recovers the classical time evolution equatio
of the model@20,21#, for the macroscopic fieldsE6(xW ,t):

]E6

]t
52~11 ihu!E61 i¹2E61E0

1 ih@auE6u21buE7u2#E6 . ~14!

Thus Eq. ~10! can be as well interpreted as the classi
nonlinear equations of the model, with a Gaussian noise t
added. The derivation of these equations from a quan
model adds to this picture the amplitude of the Gauss
noise, and allows us to interpret it as vacuum fluctuatio
entering the input-output cavity mirror.

In the rest of this section we will be interested in descr
ing the dynamics of small quantum fluctuations around
classical mean value, whose dynamics are described by
~14!. Rather than deriving this dynamics from the inver
system size expansion of Eq.~9!, we will use an equivalent
procedure, which amounts to expanding the master equa
~6! in a power series of fluctuation operators. To this purpo
we separate the field operators into two parts,

A6~xW ,t !5F6~xW !1dA6~xW ,t !, ~15!

whereF6(xW ) arec-number fields, representing macroscop
classical stationary fields, anddA6(xW ,t) are fluctuation op-
erators. Next, we expand both the Hamiltonian~2! and the
Liouvillian operator ~7! in power series of the fluctuation
operatorsdA6(xW ,t):

H5H (0)1H (1)1H (2)1•••, ~16!

L5L (0)1L (1)1L (2). ~17!

The zero-order termsH (0),L (0) do not give any contribution
to the dynamics; the first-order contributions give rise in t
master equation to terms that vanish identically when
c-number fieldsF6(xW ) are taken as the steady-state soluti
of the classical time evolution equations~14!.

The second-order term of the Hamiltonian is explicit
given by

H0
(2)5\KE d2xW (

i 51,2
dAi

†~xW !~hu2a¹2!dAi~xW !,

Hext
(2)50,
1-4
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Hint
(2)52h\KgE d2xW

a

2 (
i 51,2

@dAi
2~xW !Fi*

2~xW !

1dAi
†2~xW !Fi

2~xW !14uFi~xW !u2dAi
†~xW !dAi~xW !#

1b@F1~xW !F2~xW !dA1
† ~xW !dA2

† ~xW !

1F1~xW !F2* ~xW !dA1
† ~xW !dA2~xW !1H.c.#

1b@ uF1~xW !u2dA2
† ~xW !dA2~xW !

1uF2~xW !u2dA1
† ~xW !dA1~xW !#.
ra

l-
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iv

e

e

d
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06380
Higher order terms in the Hamiltonian are neglected, on
basis of a small quantum noise approximation, which is va
for a macroscopic system, i.e., for large saturation pho
numberns , not too close to critical points. The expressio
for the Liouvillian L (2) is obtained by simply replacing

A6(xW ) by dA6(xW ) in Eq. ~7!.
Next we apply to the approximated master equation

correspondence relations~8!, with the field operators re-
placed by the fluctuation operators. In the Wigner repres
tation we obtain the following Fokker-Planck equation:
]W0~z1 ,z2 ,z3 ,z4!

]t
5E d2xWF2(

i 51

4 S d

dzi~xW !
Qi D 1

1

2E d2xW8 (
i , j 51

4
d2

dzi~xW !dzj~xW8!
Di j ~xW ,xW8!GW0~z1 ,z2 ,z3 ,z4!, ~18!
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where now (z1 ,z2 ,z3 ,z4)5(Da1 ,Da1* ,Da2 ,Da2* ) are
the c-number fields corresponding to the fluctuation ope
tors. The drift and diffusion terms (Qi andDi j ) are given in
Appendix B. As it is well-known, for a quadratic Hami
tonian, the diffusion matrix of the Fokker-Planck equation
the Wigner representation is positive definite. This condit
is not necessarily fulfilled in other representations. A posit
definite diffusion matrix allows us to interpretDa1 and
Da2 as classical stochastic processes, described by a s
Langevin equations, equivalent to Eq.~18!, that are given by

]Da6~xW ,t !

]t
5$2~11 ihu!1 i¹21 ih@2auF6~xW !u2

1buF7~xW !u2#%Da6~xW ,t !

1 ih@aF6
2 ~xW !Da6* ~xW ,t !

1bF6~xW !F7* ~xW !Da7~xW ,t !

1bF6~xW !F7~xW !Da7* ~xW ,t !#1A2Da6
in~xW ,t !.

~19!

In this equation the scaling is the same as in Eq.~11!, for
what concerns time, space, and the stationary classical fi
while fluctuations are scaled withAa.

The stochastic termsDa6
in(xW ,t) can again be interprete

as vacuum fluctuations entering the cavity through the c
pling mirror @29#, and are described by Gaussian white noi
with zero average and correlations given by

^Da i
in~xW ,t !Da j*

in~xW8,t8!&5 1
2 d i j d~xW2xW8!d~ t2t8!,

~20!

^Da i
in~xW ,t !Da j

in~xW8,t8!&50,

where the subindicesi , j stand for the circularly polarized
components1,2.
-

n
e

t of

lds

-
,

IV. INTEGRATION OF LANGEVIN EQUATIONS

We consider the situation described by the classical eq
tions ~14! in which an instability leads to the formation of
stripe pattern in the transverse cross section of the intraca
field. For a linearly polarized inputE0, equations~14! admit
a stationary homogeneous solution, linearly polarized in
same direction than the pump, and given by

E1
st5E2

st5Est, uE0u25uEstu2@11~2uEstu22u!2#. ~21!

In the self-defocusing caseh521, the steady state~21!
becomes unstable when the pump intensity is increased
value such thatuEstu2.uEc

stu251/(b2a)52/3 @20,21#. For
anx-polarized pump field, and immediately above this ins
bility threshold, ay-polarized stripe pattern emerges, chara
terized by the critical transverse wave vector

kc5Au2a/~12a!, ~22!

while thex component remains basically homogeneous@30#.
This is usually called a polarization pattern since it emer
as a consequence of a polarization instability.

The classical fieldsF6(xW ) describing these stripe pattern
can be obtained by numerical integration@31# of the dynami-
cal equation~14!. The orientation of the stripes is selected
the initial condition. We choose an initial condition that f
vors the formation of vertical stripes. These fields obtain
numerically enter as space-dependent coefficients in the
earized Langevin equations~19!. Fluctuations are calculate
from these stochastic equations, which are numerically in
grated using a pseudospectral method in Fourier space
periodic boundary conditions. The method is first-order
curate in time@32#. Note that Eq.~19! describes the linear
ized fluctuations around a fixed stationary solution.

A main qualitative aspect of the fluctuations calculat
numerically in this way is the following. In a single stocha
tic realization of equations~19!, the fluctuations of the
x-polarized field component appear homogeneously dist
1-5
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ROBERTA ZAMBRINI et al. PHYSICAL REVIEW A 62 063801
uted in space; this follows from the spatial homogeneity
the x-polarized component of the stationary classical so
tion. However, fluctuations in they-polarized componen
tend to be distributed in space with a stripe structure, sim
to that of the corresponding steady-state solution, but shi
to the left or to the right by a quarter-period, as shown in F
2.

The spatial structure of the field fluctuations can be
derstood in terms of a Goldstone mode@33# as we explain in
the following. Very generally, consider a set of fieldsc i(xW ,t)
that obey dynamical equations of the form

]c i~xW ,t !

]t
5Fi~¹,c1 , . . . ,cN!, ~23!

whereFi is a general functional of¹ and the fieldsc i(xW ,t),
and such that they admit a stationary configurationc i

0(xW ).
The linear analysis of fluctuations around this stationary c
figuration is made by calculating the eigenvalues of the m
trix operator

Ml j 5F dFl

dc j
G

c i5c
i
0
. ~24!

If the system is translationally invariant,c i
0(xW1xW0) is also a

stationary configuration for any fixedxW0. From this condi-
tion, and in a system with spatial dimensionalityD, it fol-
lows immediately that theD independent components of th

FIG. 2. Upper plots: distribution in the transverse plane of
real part of they-polarized fluctuations for two different realization
in a stationary regime (Kt;104). For these two realizations th
patterns of fluctuations are shifted half of the wavelength one w
respect to the other. Bottom plots: The solid line shows the cr
section of the real part of the scaledy-polarized fluctuations aty
510. For comparison, the dotted line shows the real part of
scaledy-polarized stationary solution. We note that, as explained
the text, the scaling of the stationary solution and the fluctuation
different. The transverse system size is in scaled unitsL5128
3Dx where the integration discretization isDx50.6012. We have
takenu51, E050.91951.07E0

c .
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vector¹c i
0(xW ) are eigenfunctions ofM with zero eigenvalue.

For example, in D52 these two eigenfunctions ar
(]xc1

0 , . . . ,]xcN
0 ) and (]yc1

0 , . . . ,]ycN
0 ). These neutrally

stable modes of the linearized dynamics are the Goldst
modes. When noise is present, fluctuations around a st
stationary solution are damped, but Goldstone modes are
cited without cost and they dominate the spatial structure
the fluctuations. For a stripe pattern the Goldstone mod
given by the spatial gradient of the stripe pattern. This
another stripe pattern shifted in space by a quarter of
spatial period. The Goldstone mode is associated with r
spatial displacements of the stationary pattern in the dir
tion perpendicular to the stripes. Such rigid displaceme
are generated by fluctuations that change the value ofxW0, that
is, homogeneous fluctuations in a global and arbitrary ph
of the stripe pattern. The spatial structure of the fluctuatio
observed in Fig. 2 reflects a maximum of fluctuations cor
sponding to the Goldstone mode.

The stripe pattern of the fluctuations is shifted with r
spect to the underlying steady-state stripe pattern a quart
the spatial period either to the right or to the left. Over lar
time scales, fluctuations in a region of the plane can in p
ciple make a half-period spontaneous jump between th
two configurations. This implies a spontaneous change in
direction of displacement of the steady-state pattern,
which fluctuations are associated. We have visualized
effect in a one-dimensional~1D! system, described by th
same dynamics. The 1D stationary pattern shows a reg
modulation along the spatial coordinate, similar to a sect
of the two-dimensional pattern perpendicular to the direct
of the stripes. Again, the spatial structure of the fluctuatio

e

h
s

e
n
is

FIG. 3. Fluctuations (y-polarized component! in a 1D system.
Horizontal axis: transverse spatial coordinate; vertical axis: tim
As time goes on a jump of half a period takes place in the posi
of the fluctuating stripes in the left side of the figure, as eviden
by the white frames. Parameters areE050.919,u51. The integra-
tion time isKt5300 (60 000 integration time steps! and the trans-
verse system size isL52563Dx.
1-6
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reflects the corresponding Goldstone mode with right or
displacements of the stationary pattern. We have plotted
time evolution of the spatial distribution of fluctuations
Fig. 3. In this figure the two white frames evidence a port
of the transverse section of the beam where, as time goe
a phase jump takes place.

The random rigid motion of the stripe pattern in the 1
case can be shown explicitly by displaying the entire fi
instead of the fluctuations of the field. This can be obtain
by numerically integrating the full nonlinear Langevin equ
tions ~10! for the field @34#. Figure 4 shows a stochast
realization, from which it can be clearly seen that the lo
tion of the maxima and minima of the pattern move in spa

FIG. 4. Spatiotemporal evolution of the real part of they polar-
ized component of the field, using the nonlinear Langevin equat
~10! in a 1D system. Horizontal axis: spatial transverse coordin
vertical axis: time. We show 2000 snapshots of the transverse
distribution, taken every 400 time units (80 000 integration tim
steps!, in a lattice of 128 points. The stripe on the bottom shows
time-averaged pattern. The noise strength (2ns)

21/2 is 0.02, and the
other parameters are as in Fig. 2.
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as time goes on. This is precisely the diffusive motion of t
roll pattern predicted in Ref.@5#. The stripe on the bottom o
Fig. 4 shows the time average of the pattern, which confir
that the roll pattern is washed out by this motion, if th
average is made over time intervals large with respect to
diffusion time. Figure 4 confirms also that the fluctuatio
associated with the Goldstone mode, and leading to r
spatial displacements to the left and to the right random
are undamped. Being more precise, the motion of the
terns is not strictly rigid. The reason for this is that in a lar
continuous system there are long-wavelength and wea
damped modes, connected with the Goldstone mode, tha
easily excited by noise~soft modes! @33#. These continuous
band of modes do not come into play when a continuo
system is described in an approximation consisting of a
discrete modes. These soft modes are responsible for
local deformations of the fluctuating pattern. They are a
known to destroy long-range order in 1D systems in the lim
of systems of infinite size@35#. An example of this decaying
correlations in a prototype model~Swift-Hohenberg equa-
tions! of pattern formation is discussed in Ref.@36#. Our
numerical simulations are made for rather large optical s
tems. Still they are far from the limit of infinite size consid
ered from a statistical physics point of view. In order to s
how long-range order is destroyed, we need to conside
system with a sizeL much larger than the correlation leng
l. To visualize this effect, we show in Fig. 5 the result of
simulation for a system which is 64 times larger than the o
of Fig. 4. One observes domains of the system with a s
given by the correlation length,l !L, in which the pattern
drifts as a whole in a given direction, as it was the case
Fig. 4. However, the pattern moves locally in different dire
tions giving a local drifting in opposite directions for differ
ent regions of the system. The pattern is essentially cohe
in domains of the size ofl, but there is no long-range order i
the system as a whole.

In 2D, and for relatively small systems, we obser
stripes that can be understood as a set of strongly coupled
patterns. A zero wave number in the direction of the strip
is strongly dominant. The field fluctuations are still govern
and patterned by the Goldstone mode as shown in Fig
However, phase jumps as the one described in Fig. 3 are
unlikely during finite observation times. In addition, th
long-wavelength soft modes associated with the Goldst

s
e;
ld

e

size
h of the
FIG. 5. Spatiotemporal evolution of the real part of they polarized component of the field, in a large 1D system. The total system
is L581923Dx and the total integration time is 10 000. Only one seventh of the total system is shown here. The correlation lengt
patternl is indicated. Other parameters are as in Fig. 4.
1-7
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ROBERTA ZAMBRINI et al. PHYSICAL REVIEW A 62 063801
modes are known to destroy long-range order in spatial
mension larger than 2. When excited by noise they soften
order parameter, but while long-range order is complet
lost in d51, d52 is the critical dimension with a logarith
mic divergence such that the periodicity is not totally lo
@35#.

V. FIELDS OUTSIDE THE CAVITY

In the framework of standard input-output formalism f
optical cavities@37#, the field immediately outside the cavit
coupling mirrorA6

out is linked to the intracavity field, and to
the reflected input fieldA6

in by

A6
out~xW ,t !5A2A6~xW ,t !2A6

in~xW ,t !, ~25!

where scaling @see relations ~11!# is such that
^A6

out†A6
out& (^A6

in†A6
in&) represents the average number

photons crossing an areaa in a time K21. Notice that the
mean value of the input field is related to the pump am
tude introduced in Eq.~4! by ^A6

in&5E0 /A2. Hence, taking
the mean value of Eq.~25! we have

F6
out~xW ,t !5A2F6~xW ,t !2E0 /A2. ~26!

The same input-output relation~25! holds for the field fluc-
tuation operatorsdA6 .

In the quasiclassical description of quantum fluctuatio
@29#, also c-number fluctuationsDa6(xW ,t) in the Wigner
representation have similar input-output relations:

Da6
out~xW ,t !5A2Da6~xW ,t !2Da6

in~xW ,t !, ~27!

where nowDa6
in(xW ,t) are Gaussian stochastic processes

represent input vacuum fluctuations, and have correlat
given by Eq.~20!.

Intracavity fluctuationsDa6(xW ,t) can be simulated by
means of numerical integration of Eq.~19!. The problem
arises with the input termDa i

in(xW ,t), because it is a Gauss
ian white noise,d correlated in time, so that its instantaneo
value is ill defined. This implies that the instantaneous va
of the input and output fields is ill defined. A similar proble
is encountered when calculating the instantaneous frequ
during the switch on of a laser using a semiclassical mo
that includes spontaneous emission white noise@38#. A way
to give meaning to these fast fluctuating quantities is to
erage the fluctuations integrating in a time window@38,39#.
In numerical simulations, the divergence is strictly avoid
due to the fact that the time is discretized. However, it
usually necessary to take very small time steps to pres
the accuracy, so that large fluctuations will still be prese
This behavior can be regularized taking the average o
several steps of integration that corresponds precisely to
integration of fluctuations in a time window.

We briefly discuss here how to perform a numerical re
ization of the output field. This requires the integration
Eq. ~19! together with Eq.~27!. We consider a discretize
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time t5nt, where t!1 is the time step for integration
From Eq.~27!, the output field integrated over one time ste
is

Da6,n
out ~xW !>E

nt

(n11)t

Da6
out~xW ,t !dt

5A2E
nt

(n11)t

Da6~xW ,t !dt2Da6,n
in ~xW !, ~28!

whereDa6,n
in (xW ) are the input field fluctuations, integrate

over one time step:

Da6,n
in ~xW !5E

nt

(n11)t

Da6
in~xW ,t !dt. ~29!

These are Gaussian random numbers of zero mean and
relations

^Da i ,n
in ~xW !Da j ,n8

* in
~xW8!&5

t

2
d i , jd~xW2xW8!dnn8 ,

~30!
~ i , j !5~1,2 !.

From Eq.~19! we have

Da6~xW ,nt1s!5Da6~xW ,nt!1Q6~nt!s

1A2E
nt

nt1s

Da6
in~xW ,t8!dt81O~s3/2!, ~31!

where Q1 (Q2) correspond to the expressionsQ1 (Q3)
given in Appendix B. Then, integrating both sides of E
~31! over a time step:

E
nt

(n11)t

Da6~xW ,t !dt'Da6~xW ,nt!t1
t2

2
Q6~nt!

1A2E
nt

(n11)t

dtE
nt

t

Da6
in~xW ,t8!dt8.

~32!

FIG. 6. ~a! Distribution in the transverse plane of they-polarized
output field fluctuations~real part!. The output field has been ave
aged over 0.5 time units, which corresponds to 100 integration t
steps. For comparison, the instantaneous real part of the fluctua
of the field inside the cavity is shown in~b!. Parameters as in Fig. 2
1-8
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Substituting Eq.~32! in Eq. ~28!, we have

Da6,n
out ~xW !

t
5A2Da6,n~xW !1

t

A2
Q6~nt!1

h6,n~xW !

t
,

~33!

where terms of order higher thant have been neglected
h6,n(xW ) are defined as

h6,n~xW !52E
nt

(n11)t

dtE
nt

t

Da6
in~xW ,t8!dt82Da6,n

in ~xW !.

~34!

As they are a linear combination of a Gaussian process,h6,n
are Gaussian random numbers with zero mean and cor
tions given by

^h i ,n~xW !h j ,n8
* ~xW8!&5~ 2

3 t32t21 1
2 t!d i j d~xW2xW8!dnn8 .

~35!

The correlation betweenh6,n(xW ) and the input fluctuations is
given by

^h i ,n~xW !Da j ,n8
* in

~xW8!&5
t

2
~t21!d i j d~xW2xW8!dnn8 . ~36!

In Fig. 6 we show a realization of the output field flu
tuations averaged over 100 integration time steps~this is
(1/100t)(n51

100 Dan
out) which corresponds to a time window

of 0.5 time units. The output fluctuations@Fig. 6~a!# are
qualitatively very similar to the intracavity fluctuations@Fig.
6~b!#.

VI. QUANTUM CORRELATIONS

Quantum fluctuations in the presence of a stripe patter
they-polarized field have been already studied in this sys
using a three-mode approximation@7#. In this section we
make a comparison between the results of Ref.@7# and the
ones obtained using the continuous model presented in
paper. In particular, we want to check the conditions
using the Kerr cavity as a QND measurement device.
consider anx-polarized input field that carries a signal th
has to be measured with the smallest possible perturba
The idea is to take advantage of the correlations between
pattern fluctuations and the homogeneous mode fluctuat
@40# to perform an indirect measurement of the signal flu
tuations by measuring the fluctuations of the pattern mo
kW c and2kW c @7#, which work as meter in the QND measur
ment. Herekc52p/lc , where lc is the wavelength tha
characterizes the roll pattern near the instability thresh
and is given by~22!. In the far-field plane of they-polarized
field, these two modes give rise to an intensity distribut
with two large maxima in symmetrical position. In the fo
lowing we identify the far-field plane with the Fourier plan
(kx ,ky) @41#, and thus the field distribution in the far-fiel
plane is given by the spatial Fourier transform of the fie
immediately outside the cavity:
06380
la-

in
m

is
r
e

n.
he
ns
-
s

d,

n

Aj
out~kW ,t !5E d2xW

2p
e2 ikW•xWAj

out~xW ,t !. ~37!

We consider the operator

NjR
out~ t !5E

R
d2kWAj

†out~kW ,t !Aj
out~kW ,t !, ~38!

that represents the number of photons with polarizationj per
unit time over a regionR of the far field. In general the
polarization could be circular~right or left! or linear (x or
y). As we did for the intracavity fields~15!, we can separate
the stationary mean field from the fluctuations in the outp
cavity field,

Aj
out~kW ,t !5F j

out~kW !1dAj
out~kW ,t !, ~39!

where F6
out is given by Eq.~26!. Neglecting second-orde

terms in the field fluctuations

^Aj
†outAj

out&5F j*
outdAj

out1F j
outdAj

†out1dAj
outdAj

†out ,
~40!

we introduce the scaled photon fluctuations as,

dNjR
out5

E
R
d2kW @F j*

out~kW !dAj
out~kW ,t !1H.c.#

AE
R
d2kW uF j

out~kW !u2

. ~41!

With this normalization, the squeezing spectra take the va
1 for the shot-noise level.

The far-field intensity distributions are strongly peak
around kW50 (x-polarized component! and
kW5kW 6c (y-polarized component!. We are going to conside
three regionsR0 , R1, and R2, around the homogeneou
modekW50 and the two pattern modeskW c and2kW c , respec-
tively. When the size of each region is on the order of t
diffraction lengthl D , the whole peak is enclosed. We co
sider thex-polarized photon fluctuations in the first regio
dNxR0

out , which for simplicity we will call dN0
out . In regions

R1 and R2 we consider they-polarized photon fluctuations
dN1

out5dNyR1

out anddN2
out5dNyR2

out . Finally we also consider

the y-polarized photon fluctuations in the regionR1

1R2 , dN112
out 5dNyR11R2

out . Notice that as uF j
out(kW c)u2

5uF j
out(2kW c)u2 then dN112

out 5dN1
out1dN2

out . In the QND
measurements,dN0

out is the outgoing signal while we ar
going to usedN112

out as the meter.
The expression of the squeezing spectrum of the fluc

tions in any of these regions is@42,43#,

Si~v!5^dNi
outdNi

out&v , ~42!

where the notation̂&v means Fourier transform of the sym
metrized correlation, and it is defined, for some generic v
ablesW andZ, as,
1-9
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ROBERTA ZAMBRINI et al. PHYSICAL REVIEW A 62 063801
^WZ&v5E
2`

`

^W~ t !Z~0!&symme
2 ivtdt, ~43!

with

^W~ t !Z~0!&symm5^W~ t !Z~0!1Z~0!W~ t !&/2. ~44!

The conditional variance ofN0
out given a measurement o

N112
out is given by,

V~0u112!5S0S 12
u^dN0

outdN112
out &vu2

S0S112
D . ~45!

This is a measure of the correlations between the outgo
signal N0

out and the outgoing meterN112
out . Strong correla-

tions correspond to small values ofV(0u112).
Additionally, we study how the fluctuations of the hom

geneous mode are transferred from the input to the outpu
the cavity~the nondemolition character of the measureme!,
and also from the input to the pattern modes~accuracy of the
measurement!. This information is given by the following
normalized correlations@42#,

Cs5
u^dN0

indN0
out&vu2

^dN0
indN0

in&v^dN0
outdN0

out&v

, ~46!

Cm5
u^dN0

indN112
out &vu2

^dN0
indN0

in&v^dN112
out dN112

out &v

, ~47!

where thex-polarized input fluctuations are given by,

dN0
in5

E
R0

d2kW @Fx*
in~kW !dAx

in~kW ,t !1H.c.#

AE
R0

d2kW uFx
in~kW !u2

5dAx
in~kW50,t !1H.c. ~48!

FIG. 7. Conditional varianceV(0u112) given by Eq.~45!. The
solid line represents the three-modes model while the dots repre
the continuous model. Parameters:h521 ~self-defocusing case!,
E050.919, andu51.7.
06380
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The last equality comes from the fact that the input fie
mean valueFx

in(kW ) has only contributions atk50. Since the
input beam is in a coherent state, the fluctuations corresp
to the shot-noise level:̂dN0

indN0
in&v51.

In order to perform a QND measurement of the input fie
fluctuationsdN0

in using the pattern fluctuationsdN112
out as a

meter, it is required thatV(0u112),1 andCs1Cm.1.
Another quantity of interest~not related to the QND con

ditions!, which is able to show the quantum nature of flu
tuations, is the correlation between the two opposite pat
modeskW c and 2kW c . In parametric down conversion it i
known that the conservation of transverse momentum le
to the emission of correlated photons that propagate in s
metrical directions; this implies a high correlation betwe
fluctuations in the two symmetric portion of the beam cro
section in the far field@9,10#. In the process of four wave
mixing, present in ax (3) medium, the same situation ap
pears. In this case the correlation has been studied wi
semiclassical model@40#. The appropriate variable that give
us information about the quantum correlation of the patt
modes is the conditional variance ofN1

out given a measure-
ment onN2

out ,

V~1u2!5S1S 12
u^dN1

outdN2
out&vu2

S1S2
D . ~49!

ent

FIG. 8. CorrelationsCs ~a! andCm ~b! given by Eq.~47!. The
solid lines represent the three-modes model while the dots repre
the continuous model. Same parameters as in Fig. 7.
1-10
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QUANTUM FLUCTUATIONS IN A CONTINUOUS . . . PHYSICAL REVIEW A 62 063801
If the correlation̂ dN1
outdN2

out&v is big enough, we will have
a variance below the shot-noise level:V(1u2),1, which
means a reduction of the fluctuations below the class
limit.

We have evaluated the correlations and variances
scribed above by numerically simulating Eq.~19! for a de-
tuning u51.7. For this value of the detuning, the thresho
for pattern formation isE0

c50.869. At each time step, th
fluctuations in the output fieldDa6

out have been numerically
calculated using Eq.~33! and averaging over a time 0.5
which corresponds to 100 integration time steps. Thec num-
bers corresponding to the operatorsdNR j

out are calculated as
in Eq. ~41! substitutingdAj

out by Da j
out . The two times sym-

metrized correlations~44! are then calculated using the co
respondingc numbers and averaging over time for a stoch
tic realization of the output field. In the results shown belo
averages have been performed over 20 000 time units.
nally, we fast Fourier transform these correlations to obt
the squeezing spectrum as well as the conditional varian

In Fig. 7 we show the results for the conditional varian
V(0u112) for a pumpE050.919, that is quite close to
threshold. The symbols correspond to the results obta
from the continuous model whereas the solid line repres
the three-mode approximation@7#. The correlation between
the outgoing signal and the outgoing meter is well below
shot-noise level~shown as a dashed line!. As predicted by
the three-mode model, we can use a vectorial self-defocu
Kerr medium to prepare a state of the homogeneous ou
with known fluctuations. Comparing both models, the thr
mode model predicts slightly larger correlations@smaller val-
ues forV(0u112)# than the continuous model. This fact ca
be explained taking into account that the correlat
^dN0

outdN112
out &v in Eq. ~45! is smaller in the continuous cas

This is so because part of the energy is translated to
higher-order modes that were neglected in the three mo
approximation.

In Fig. 8 we plot correlationsCs andCm . As before, the
solid line corresponds to results from the three-mode mo
and the symbols to the continuous model. Again there
small difference between the two models, which is mo
clearly seen in the correlation between the incoming and

FIG. 9. Conditional varianceV(1u2) given by Eq.~49!. The
solid line represents the three-modes model while the dots repre
the continuous model. Same parameters as in Fig. 7.
06380
al

e-

-
,
i-

n
s.

ed
ts

e

ng
ut
-

e
es

el
a

e
e

outgoing signal,Cs , for high frequencies. Also the peak i
the correlation between the incoming signal and the outgo
meter,Cm , is slightly narrower. Nevertheless, the fitting o
the curves is good and demonstrates the validity of the th
modes approximation close to the instability threshold. Fr
the plots it can be seen that the conditionCs1Cm.1 is
fulfilled for a range of frequenciesuvu,0.3. In this range of
frequencies, all the conditions for a QND measurement
the x-polarized input fluctuations using they-polarized pat-
tern as a meter, are satisfied.

Similar results can be obtained for other values of
detuning, provided we are below the limit of bistability fo
the homogeneous solution (u,A3). However, as the detun
ing is decreased the QND performance is degraded, as
dicted by the three-mode model@7#.

Finally, in Fig. 9, we plot the conditional varianc
V(1u2). The results of the two models coincide perfectly f
small frequencies. As predicted by the three mode model,
conditional variance is dramatically reduced at low freque
cies. In fact it goes to zero at zero frequency, showing
existence of strong quantum correlations between the
opposite pattern modeskW c and2kW c . For larger frequencies
the results form the continuous model shows a large dis
sion, although they basically coincide with the predicti
from the three mode model. The large dispersion could
reduced increasing the statistics, that is, integrating ove
longer stochastic realization.

VII. CONCLUSIONS

Our analysis, based on the classical-looking set of Lan
vin equations in the Wigner representation, led to the follo
ing main results. The numerical solutions of the compl
nonlinear Langevin equations in the 1D spatial case h
confirmed that the stripe pattern undergoes locally rigid r
dom translation to the left and to the right, as predicted
the three-mode model@5#. On the other hand, in 2D, phas
jumps of the entire pattern are extremely unlikely to occ
during finite observation times. The underlying presence
such displacements is manifested, however, by the sp
configuration of the fluctuations, which is dominated by t
Goldstone mode. Such a mode is the eigenstate of the lin
ized problem with zero eigenvalue, and it is given by t
spatial gradient of the underlying stationary stripe patte
The Goldstone mode is always present in a system with b
ken translational symmetry, as the one that emerges
pattern forming instability. It is excited, at no cost, by noi
and leads to rigid translations of the pattern. In a continu
system there are also soft modes arbitrary close to the G
stone mode that produce local deformations of the pat
and that would destroy long-range order in 1D systems in
limit of very large system size.

We have formulated a general description of the spa
configuration of the output field immediately beyond t
input-output mirror, for an arbitrary size of the time windo
over which fluctuations are averaged. We have shown
the spatial configuration of the output field is closely simi
to that of the intracavity field, provided that this time win
dow is on the order of the cavity linewidthK21, which cor-

ent
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responds to select a spectral bandwidth of the output fluc
tions on the same order as that of the intracavity fluctuatio

We analyzed on the one side the anticorrelation betw
the quantum fluctuations of the intensity of thex-polarized
pump field and they-polarized pattern modes, and on th
other the correlation between the intensity fluctuations of
two symmetrical components~twin beams! of they-polarized
field. It turns out that the predictions of the three-mo
model are in good agreement with the results of the mu
mode model. In the case of the system analyzed here,
agreement persists also well beyond the instability thresh
in all the regions where the roll pattern is found, because
amplitudes of the modes different from those of the thr
mode model remain negligibly small. We believe, howev
that for other models such an agreement can be found
general, only close to the instability threshold. Hence
conclusions concerning the validity of the QND scheme f
mulated in Ref.@7# are confirmed.
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APPENDIX A

We give here the coefficients of the equation for qu
siprobability distribution~9!. For simplicity, we use the no
tation (z1 ,z2 ,z3 ,z4)5(a1 ,a1* ,a2 ,a2* ). The dependence
on space and time of variableszi is omitted to simplify the
notation. The drift terms are,

Q15@2~11 ihu!1 igh~a1b/2!~s21!1 ia¹2#z1

1Eo1 ihg@az1z21bz3z4#z1 ,

Q25Q1* ,

Q35Q3~z1 ,z2 ,z3 ,z4!5Q1~z3 ,z4 ,z1 ,z2!,

Q45Q3* .

The diffusion terms are,

Di j ~xW ,xW8!5G i j d~xW2xW8!
06380
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G5S csaz1
2 12s csbz1z3 0

12s 2csaz2
2 0 2csbz2z4

csbz1z3 0 csaz3
2 12s

0 2csbz2z4 12s 2csaz4
2

D ,

~A1!

with cs5 ihgs. The third-order terms are,

Ti jl ~xW ,xW8,xW9!5Q i j l d~xW2xW8!d~xW82xW9!, ~A2!

where the nonzero terms ofQ i j l are

Q [112]5 i
a

2
~12s2!hgz1 , Q [334]5 i

a

2
~12s2!hgz3 ,

Q [122]5Q112* , Q [344]5Q334* ,
~A3!

Q [123]5
b

2a
Q334, Q [124]5

b

2a
Q344,

Q [234]5
b

2a
Q122,Q [134]5

b

2a
Q112.

Square brackets (@ #) indicate the possible permutations
indices.

APPENDIX B

In this appendix we give the coefficients of the Fokke
Planck equation~18!. As in Appendix A, we use the notatio
(z1 ,z2 ,z3 ,z4)5(Da1 ,Da1* ,Da2 ,Da2* ). For the drift
terms we have,

Q15$2~11 ihu!1 i¹21 ih@2auF1~xW !u2

1buF2~xW !u2#%z1~xW ,t !1 ih@aF1
2 ~xW !z2~xW ,t !

1bF1~xW !F2* ~xW !z3~xW ,t !1bF1~xW !F2~xW !z4~xW ,t !#,

Q25Q1* ,

Q35$2~11 ihu!1 i¹21 ih@2auF2~xW !u2

1buF1~xW !u2#%z3~xW ,t !1 ih@aF2
2 ~xW !z4~xW ,t !

1bF2~xW !F1* ~xW !z1~xW ,t !1bF2~xW !F1~xW !z2~xW ,t !#,
~B1!

Q45Q3* .

The diffusion terms are

Di j ~xW ,xW8!5G i j d~xW2xW8!, G5S 0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D .

~B2!
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