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Multi-photon, multi-mode polarization entanglement in parametric down-conversion
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We study the quantum properties of the polarization of the light produced in type II spontaneous
parametric down-conversion in the framework of a multi-mode model valid in any gain regime. We
show that the the microscopic polarization entanglement of photon pairs survives in the high gain
regime (multi-photon regime), in the form of nonclassical correlation of all the Stokes operators
describing polarization degrees of freedom.

I. INTRODUCTION

The quantum properties of light polarization have been widely studied in the regime of single photon counts. In

comparison, only recently there has been a rise of interest towards the quantum properties of the polarization of
macroscopic light beams ﬂ, E, E, E], mainly due to their potential applications to the field of quantum information
with continuous variables and to the possibility of mapping the quantum state from light to atomic media ﬂﬂ]
A well-known source of polarization entangled photons is parametric down-conversion in a type II crystal. Here, a
pump field at high frequency is partially converted into two fields at lower frequency, distinguished by their polar-
izations. Due to spatial walk-off in the crystal, the two emission cones are slightly displaced one with respect to the
other, and the the far-field intensity distribution has the shape of two rings, whose centers are displaced along the
walk-off direction, as e.g. shown by Fig.1. The two regions where the far-field rings intersect have a very special role.
In the regime of single photon pair detection, the polarization of a photon detected in one of this region is completely
undetermined. However, once the polarization of one photon has been measured, the polarization of the other photon,
which propagates at the symmetric position, is exactly determined. In other words, when considering photodetection
from these regions, the two-photon state can be described as the ideal polarization-entangled stateé]. Photons pro-
duced by this process has become an essential ingredient in many implementations of quantum imformation schemes
(see e.g. [, H)).

The question that we address in this paper is whether the microscopic photon polarization entaglement leaves any
trace in the regime of high parametric down-conversion efficiency, where the number of down-converted photons can
be rather large [d], and in which form.

To this end parametric down-conversion is described in the framework of a multi-mode model, valid for any
gain regime, which includes typical effects present in a realistic crystal, as diffraction and spatio-temporal walk-
off. Quantum-optical polarization properties of the down-converted light are described within the formalism of Stokes
operators. These operators obey to angular momentum-like commutation rules, and the associated observables are
in general non compatible. We define a local version of Stokes operators and study the quantum correlation between
Stokes operators measured from symmetric portions of the beam cross-section in the far field zone. In the regions
where the two down-conversion cones intersect we find that all the Stokes operators are correlated at the quantum
level. Although the light is completely unpolarized and Stokes operators are very noisy, a measurement of a Stokes
parameter in one of these regions in any polarization basis determines the value of the Stokes parameter in the
symmetric region within an uncertainty much below the standard quantum limit.

A continuous variable polarization entanglement, in the form of quantum correlation between Stokes operators of
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FIG. 1: Parametric down-conversion from a type II crystal showing the two down-conversion cones at degeneracy.



two light beams, have been recently demonstrated [3]. In this work the entanglement is of macroscopic nature, and
spatial degrees of freedom do not play any role since the beams are single-mode. Continuous variable polarization
entanglement which takes into account spatial spatial degrees of freedom of light beams is described in [14], where we
study the properties of the light emitted by a type II optical parametric oscillator below threshold.

The analysis of this paper is rather focussed on providing a bridge between the miscroscopic and macroscopic domain,
since our model is able to describe the polarization entanglement in parametric down-conversion with a continuous
passage from the single photon pair production regime to the regime of high down-conversion efficiency.

Besides its fundamental interest, we believe that the form of entanglement described in this work can be quite promising
for new quantum information schemes, due the increased number of degrees of freedom in play (photon number,
polarization, frequency and spatial degrees of freedom), and is well inserted in the recent trend toward entangled state
of increasing complexity (see e.g. [10], where a four-photon polarization entangled state is characterized)

The paper is organised as follow. Section [l describes the model for spontaneous parametric down-conversion, in
terms of propagation equations for field operators. Similar models are known in literature (see e.g. [13] and references
quoted therein), but besides presenting it in a systematic way, we include all the relevant features of propagation
through a nonlinear crystal and we provide a precise link with the empirical parameters of real crystals. Section [Tl
is devoted to the description of the quantum polarization properties of the down-converted light. Stokes operators
definition and properties are briefly reviewed in section [ITAl In Sec we generalize this definition to a local
measurement in the beam far field plane, and we introduce the spatial correlation functions of interest. Analytical
and numerical results for the degree of correlation of the various Stokes parameters detected from symmetric portions
of the beam cross-section are presented in sections [ILC] MTD] both in the case when a narrow frequency filter is
employed (Sec[ITTT]), and when the filter is broad-band (SeclITDD2)). Section [[V] provides an alternative description
of the system and of its polarization correlations in the framework of the quantum state formalism. Section [V] finally
concludes.

II. A MULTI MODE MODEL FOR TYPE II PARAMETRIC DOWN-CONVERSION
A. Field propagation

The starting point of our analysis is an equation describing the propagation of the three waves (signal, idler and
pump) inside a nonlinear x(?) crystal. We consider a crystal slab of length I.., ideally infinite in the transverse directions,
cut for type II quasi-collinear phase-matching. In the framework of the slowly varying envelope approximation the
electric field operator associated to the three waves is described by means of three quasi-monochromatic wave-packets.
We take the z axis as the laser pump mean propagation direction (Fig.1), and indicate with & = (z,y) the position

—

coordinates in a generic transverse plane. E§+)(z, Z,t), i = o,e,p designate the positive frequency part of the field
operator (with dimensions of a photon annihilation operator) associated to the ordinary (i = o, the ”signal”) and
extraordinary (i = e, the ”idler”) polarization components of the downconverted beam, and (i = p the ”pump”) the
high frequency laser beam activating the down-conversion process. Next we introduce their Fourier transform in time
and in the transverse domain:

- dz dt iz -
Ai(z,q,9) = / o | oo T MEN T i=oep (1)

Here ¢'is the transverse component of the wave-vector and €2 represents the frequency offset from the carriers w, +w, =
wp. In the following, we shall assume degenerate phase matching, so that w, = we = wj,/2. It is convenient to subtract
from the field operators the fast variation along z arising from linear propagation inside the birefringent crystal. We
write:

Ai(z,q, Q) = exp [iki. (7, Q)z]a;: (2, 7, Q) , (2)

where k;. (7, Q) = \/k2(q,w; + Q) — ¢2 is the projection of the wave-vector along the z direction, with k;(q,w; + Q)
being the wave number of the i-th wave. In the absence of any nonlinear interaction, we would have

d

—a;(2,4,Q2) =0 3

ii(=0.9) (3)
being Eq.@) with a;(z,7,Q) = a;(z = 0,4,Q) the forward solution of Maxwell wave equation in linear dispersive
media. For the pump wave, we assume that the intense laser pulse is undepleted by the down-convertion process, so
that a,(z,q,Q) = ap(z = 0,4, ). Moreover, we assume that the pump is an intense coherent beam and the operator



can be replaced by its classical mean value a,(q, €2).

For the signal and idler beams, the variation of a; operators along z is only due to the nonlinear term, proportional
to the x(®) material second order susceptibility. This is usually very small, so that a; are slowly varying along z.
This allows us to neglect the second order derivative with respect to z in the wave-equation. Hence the resulting
propagation equation takes the form (see also [L1] for more details, and [12] for an alternative derivation):

d . o, ’
&di (Z,q—;Q):X/dq—»//dQ/ ap (§+§/,Q+Q/)d; (z’q—»/,Q/)eflAij(qvq ;Q,Q )Z/lc 'L’?éj:O,e, (4)

where y is a parameter proportional to the second order susceptibility of the medium, and
Aij (4,759,9Q) =l [kiz (4, Q) + kjz (¢, Q) = kpz (T4 77, Q2+ )] ()

is the phase mismatch function. Equation (@) describes all the possible microscopic processes through which a pump
photon of frequency wy, + Q + ', propagating in the direction ¢+ ¢’ is annihilated at position z inside the crystal,
and gives rise to a signal and an idler photon, with frequencies w,/2 + 2, wp/2 + ', and transverse wave vectors ¢,
q’, with an overall conservation of energy and transverse momentum. The effectiveness of each process is weighted by
the phase mismatch function (H), which accounts for conservation of the longitudinal momentum. In the limit of an
infinitely long crystal, where longitudinal radiation momentum has to be conserved, only those processes for which
A;; = 0 are allowed. For a finite crystal, however, the phase matching function has finite bandwidths, say ¢o in the
transverse domain and €2 in the frequency domain.

Equation (@ ) couples all the signal and idler spatial and temporal frequencies within the angular bandwith of the
pump 6q ~ w%)’ with w,, being the pump beam waist, and within the pump temporal spectrum 62 ~ 1/7,, where 7,
is the pump pulse duration. In general, no analytical solution is available and one has to resort to numerical methods
in order to calculate the quantities of interest, as described in[L1].

A limit where analytical results can be obtained is that of a pump waist and a pump duration large enough, so that
0q << qo, 62 << . In this case the pump beam can be approximated by a plane wave

ap(@+7, Q2+ Q) = apd (§+7)0(Q+ Q) , (6)
Equation @) reduces to
d . T s —iA(7,9Q)z2/1
lcd_ao (Zaan) = 0aQ, (z,—q,—Q)e @ ‘,
z
d e
lcd—ae (z2,—q,—Q) = aal (2,q4,9) e IA@R)2/le (7)
z

where o = l.xa, is a linear gain parameter, and
A((fv Q) = lc [koz ((Tv Q) + kez(fq’v *Q) - kp] . (8)

is the phase mismatch of a couple of ordinary and extraordinary waves propagating with symmetric transverse wave
vectors ¢ and —¢, and with frequencies w,/2 + Q, wp/2 — Q.

Solution of the propagation equation ([d) is found in terms of the field distributions at the input face of the crystal.
Coming back to the field operators defined by Eq. (), we define the field operators at the input and output faces of
the crystal slab as

A7) = ai(=0,4,9) (9)

A G, Q) = a;(2 = 1., G, Q) exp [iki. (7, Q)L,] (10)

By solving Eq.([[@) the transformation from the input to the output operators is found in the form of a two-mode
squeezing transformation:

AZMT.Q) = Uo(@DAT(T.) + Vo7, QAT (-7, -9)

AZNG,Q) = Ue(@ QAT Q) + Ve(q, QAL (~7,-9) (11)

linking only symmetric modes ¢,  and —¢, —(2 in the signal and idler beams (see e.g. [13] for a similar transformation
in the type I case). If we require that free space commutation relations

[A;i"(q-; ), AnG, Q)| =6;0(0—q7)(Q—-)  dij=oe (12)



are preserved from the input to the output, it can be easily shown that the complex coefficients of the transformation
() need to satisfy the following conditions:
S o2 ~ o2
Uo(q, ) Ve(—q, —)

1 (i=o,¢) (13)
Vo(q, Q)Ue(—q, —Q) (14)

By taking the modulus of the second relation and making use of the first two ones, the complex equation ([[d]) can be
written as two equivalent real equations:

Vo(@. Q) = [Ve(—7, - (15)
arg [Uo(4, Ve (=7, —Q)] = arg[Vo(q, Q)Ue(—7, —Q)] := 20(7, Q) (16)

With this in mind, the coefficients of the transformation [[dl) can be recasted in the form

Uo((j’ Q) = U((j: Q)eiW(lj’Q) ) Vo((j: Q) = V(J} Q)ew)(qﬂ’ﬂ) (17)
U 9) = (-4, ~Q)e 5D V,(g.0) = V(~q,~Q)e#(5-9)
with
U(q,Q) = coshr(q,Q)e¥ @V eif(@)
V(7,Q) = sinhr(q, Q)eiw(’j’me_w(’j’m, (18)

where (g, Q),0(q, Q, ¥(q,Q, 6(F,
(| (- -



that the three wave-packets move with different group velocities v;. The third term describes the effects of temporal
dispersion. In writing the fourth term, we assumed that the crystal is uniaxial and the crystal optical axis lies in the
z-y plane. This term is present only for the extraordinary waves , and SZZ = —p; where p; is the walk-off angle of the
wave. Finally, the last term describes the effects of diffraction for a paraxial wave.

With this in mind, the phase matching function can be written in the form:

2
1
A((T, Q) = AO + pelc(Jy — % + Q7_coh + ie(QTcoh>2 (24)
0
where
1)
Ag = (ko + ke — kp)lc (25)

is the collinear phase mismatch (i.e. the phase mismatch of the three waves at the carrier frequencies when
propagating along the longitudinal direction);

2)
1ke+k 2
o T - [
le 2kok, Ao 2nen,
with A = 4mc/w, being the wavelength in vacuum at the carrier frequency w,/2, and n.,n, the odinary and
extraordinary refraction indexes inside the crystal at the carrier frequency. This parameter defines the typical
bandwidth of phase matching in the transverse g-space domain. Its inverse l.,, = 1/qo will be referred to as
the coherence length.
3)
le I
Fo, = e e 27
coh U; ’U; ( )

with v; being the group velocities of the two waves, is the the difference between the time taken by the signal
and idler wave-packets to cross the crystal. This defines the typical scale of variation of gain functions in the
temporal domain for type II phase matching, and it will be referred to as the amplifier coherence time.

4) Finally

<d2ko n koe) le (28)
€= —=
oz d02 ) 72,

is a dimensioneless parameter that depends on the temporal dispersion properties of the signal and idler pulses
(typically e << 1).

The equation A(g, ) = 0 defines in the (gs, ¢y) plane a circonference, centered at the position

1
¢ =0, 4y =gc = 54pele (29)
and with radius given by
¢ 1
qr = qot| Ao + q—g + Q7eon + ie(QTcoh)Q . (30)
0

This corresponds to the phase matched modes for the signal (ordinary) wave. Phase matched modes for the idler
wave, emitted at the frequency —€2, lye on the symmetric circonference.

Figure [ plots some examples of this phase matching circles, in the form of polar plot, with 6 being the polar angle
from the pump direction (z axis) outside the crystal and ¢ the azymutal angle around z. Parameters are those of
a BBO crystal, cut for degenerate phase matching at 49.6 degrees, for a pump wavelength of 351 nm. They have
been calculated with the help of empirical Sellmeier formulas for refraction indices in Ref.[1d]. For comparison,
superimposed to the curves calculated by means of Eq. ), the figure shows the “exact” phase matching curves,
calculated with the method described in [16], by means of a public domain numerical routine available at [14]. The
plots show a rather good agreement, in any case within the error inplicit in the use of empirical Sellmeier formulas.






B. Stokes operator correlation in the far field of parametric down-conversion

The main idea of this paper is to study the quantum correlation between Stokes operators measured from symmetric
portions of the far field beam cross-section. To this end, we consider a measurement of the Stokes operators over a
small region D(Z) centered around a position Z in the far-field plane of the down-converted field, and over a detection
time T (tpically we will take T" much larger than the crystal coherence time).

) = / i / 47 6:(F' 1) (36)
T Jp@

where
Go(,t) = Al(Z,0)A(Z,t) + Al(Z, 1) Ac(T,1) (37)
61(2t) = Al(Z,0)AL(Z,t) — AL(Z, 1) Ac(T, 1), (38)
&Q(fa t) - AZ(_’vt)AE(_‘vt) +Al(f5 t)AO(_'a t) ) (39)
bo(@,t) = i [AL(@0A(@,1) ~ AN(T, A7, 1)] (40)

flo /e denotes the field operator for the ordinary/extraordinary polarized beam in the far-field plane, which can be
observed in the focal plane of a lens, placed as shown in figure
By using the free field commutation relations ([[J), it can be easily shown that

[51(2), 82()] = 2i83(%) ,  [S2(), S5(D)] = 2181(&) ,  [S3(D), 51(D)] = 2i%2(7) , (41)

while operators measured from different (and not connected) detection pixels commute.
In the following, we shall consider Stokes operator correlation functions of the form:

(§8:(7) 68;(Z")) = (Si(@) 5;(T")) — (Su(@) (S;(@)), (1,5 =0,...3). (42)
A useful tool for calculation are the correlation functions of the Stokes operator densities (BZED) :
Gij(Z,27) = (6:(@, t + 1) 6 (&', 1)) — (6:(T, t + 7)) (6;(Z', 1)) (43)
and their spectral densities

Gij(#,3";Q) = / dre' " Gy (%, 25 1) (44)

Their relation with the correlation functions of the measured Stokes operator [{Z) is given by:

T\ =~
(65:() 65;(z") / dxl/ dE /le—smc2 (QE) Gij (%1,2(;9Q) . (45)
D(Z)

We notice that:

T T
lim —sinc® ( Q= | = §(Q 46
Jin Laine (03 ) =a(e). (46)
and that this function acts under the integral as a frequency filter with bandwidth AQ = 27/T. We shall assume in
the following that the detection time is much larger than the crystal coherence time. Under this assumption

65;(7)68;(2")) T2Ten dz Azl Gy (71,70 =0 47
J D(*) D(*’) 1 J 1

When a lens of focal length f is placed at a focal distance both from the crystal output plane and the observation
plane (see figure B), the field operators in the far-field plane are connected to those at the crystal output by the usual
mapping [2(]

Ao = 2 ar (7= .0) | (45)
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FIG. 3: Schematic set-up for a measurement in the far field plane with a compensation crystal. BBO1, down-conversion crystal
of length I.; \/2@45 half-wave plate, rotates polarization by 90 degrees; BBO2, compensation crystal of length [, L lens of
focal length f.

where f is the focal length of the lens used to image the far field plane and A; is the wavelength (in vacuum) at the
frequency wp/2 + Q.

Since the light statistics is Gaussian (the output operators are obtained by a linear transformation acting on input
vacuum field operators) all expectation values and correlation functions of interest can be calculated by making use
of the second order moments of field operators. These can be easily calculated in the far field plane by assuming that
the down-converted field operators at the input crystal face are in the vacuum state and by using the input/output
relations ([I), toghether with (@), thus obtaining

(Al7.Q)4;7',Q")) = 6,507 - 7)6(Q - Q) V(@ QP | (49)
(AEDA,E,0)) = ~2(1 - 5:,)5@E +F) 5O+ QW(F OV, (752, -9), (i=0.). (50)

In this formula

0}, @ =vi(i-7.0) (1)
Aif

where U;, V; are are the gain functions defined by ([([ZHZZ). It can be noticed the presence of the nonzero “anomalous”
propagator (), a term which is characteristic of processes where particles are created in pairs. In order to simplify
the notation, in the following we shall consider the case @ << w,/2, and take A\, = Ae = A = 2),. In a real
experimental implementation, however, the validity of such an approximation should be carefully checked when not
using narrow frequency filters; twin photons produced at different wavelengths A¢, A\,, and travelling with symmetric
¢, —q transverse wave vectors are actually propagating at different angles from the pump and will be intercepted in
the far field at two sligtly different radial positions.

The fact that the field spatial correlation are perfectly localized in the far field (the Dirac-delta form of the correlation
peak) is a consequence of the traslational symmetry of the model in the transverse plane (plane wave pump and
a crystal slab infinite in the transverse direction). A trivial formal fault is that the far field mean intensity of the
downconverted beams diverges, as a consequence of the infinite energy of a plane-wave pump. This artificial divergence
can be formally eliminated with the trick used in ﬂE, m}, where a finite size pupil was inserted at the output face
of the crystal. The spatial Dirac-delta functions in Eqs.@3B) are substituted by a finite version, and a typical
resolution area, proportional to the diffraction spot of the pupil in the far field plane, is introduced in the scheme. For
a pupil of transverse area Sp, this is given by D = (Af)?/Sp. The typical scale of variation of the gain functions
ED) in the far field plane is

Xo = qo\f/(27); (52)

when X is much larger than the resolution area (or, equivalently, when the pupil size is much larger than the amplifier
coherence length), the mean photon number distribution in the far field plane is given by

(N;(Z)) = /D<~> df’/TdtMI(:E’,t)/L(:E’,t» =

T/ ds2 2
N o— df'/—Vif',Q ) 53
g P =] (53)



When the finite size of the pump is taken into account in a numerical model [L1], it is easily seen that the resolution
area is rather given in terms of the spot size of the pump as it is imaged in the far field plane. For a Gaussian pump
of waist wy,, Dr ~ (Af)?/(mw3).

In this limit of small resolution area, the mean value of Stokes operators is given by:

(So(@) = D% Lo @ [ 5 vt P+ wa o] (54)
@) = 5 /D o 5 [ 52 [t o - ' oF] (55)
(Sa2()) = (S5(2)) (56)

C. Correlation in Stokes operators Si, So

The first and second Stokes operators represent the sum and the difference, respectively, between the number of
ordinary and extraordinary photons (say horizontally and vertically polarized photons) measured from a detection
pixel in the far field plane.

‘S:VO(:E) = ]?o(f)‘i’]?e(f) (57)
Sl(f) = No(f)_Ne(f) (58)

The plane wave pump model predicts that the number of ordinary and extraordinary photons collected from any
two symmetric portions of the far field plane are perfectly correlated observables |11, [19]. This result is a direct
consequence of pairwise emission of photons with horizontal (ordinary) and vertical (extraordinary) polarizations,
propagating in symmetric directions, as required by transverse light momentum conservation. Hence, this model
predicts an ideally perfect correlation, both between So(Z), So(—Z), and between S;(Z), —S1(—Z) for any choice of
the position Z in the far field (notice that So(Z) commutes with Sy (7).

In a more sofisticated numerical model [L1], it is readily seen that the finite width of the pump profile introduces
an uncertainty in the directions of propagation of the down-converted photons. As described by the propagation
equation (), when a o photon is emitted in direction ¢, its twin e photon is emitted in the direction —¢ within an
uncertainty dg x 2/w,, which is the bandwidth of the pump spatial Fourier transform. A photon number correlation
well beyond the shot noise level is recovered when photons are collected from regions larger than a resolution area

Dp~n (@%)2 = ()2 ().

In the limit of a small resolution area, long but straigthforward calculations [21] show that:

1

Gool#,7'39) = 7 8(F = F')FL(,9) + 0(0 + F) Fa(F, V) (59)
R
G (#,7:9) = DL 6(7 — F)FL(7,9) — 6(F + ') Fo (&, Q)] (60)
R
with
- dw - - 2 - - 2
BE0) = [ 52 V@@ + QF + @ wlh @0+ D) (o)

d;
Fa7,0) = [ 52 QUolalhy (3,0 = DVe(-F, ~w)Vi (-7, -+ )
T UE WU (T, — DVl )V (T, —w + D)} (62)

The correlation functions have two peaks; the first one, located at ' = &, accounts for the noise in the measurement
of Stokes parameter from a single pixel. The second one is located at ' = —Z and accounts for correlation (anti-
correlation) between measurements performed over symmetric pixels. By taking into account the unitarity relations
([3MH), it can be immediately noticed that when Q = 0 (corresponding to long detection times) Fi(Z,0) = F»(&,0),
and the two corelation function peaks have the same size. This represents the maximum amount of correlation allo
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In our case, assuming two symmetric detection pixels D(Z) and D(—Z), we have e.g.

(690(2)691(@)) = (381(=F) 651 (=) = D% /D L AERE) (64)
NP p— 7' Fy(3',0) = —(651(%) 651 (&
(051(2) 051 (-%)) = Dr /D(i)d Fy(2,0) = —(051(F) 651(2)) (65)

Finally, the existence of such a perfect correlation implies that both Sy (&) 4+ 51 (—&) and So(Z) — So(—Z) are noiseless
observables. For example:

([680(7) + 081 (— )}2> = 2[(85(7) 6%1 (D)) + (681(7) 851 (~2))] =0 (66)

D. Correlation in Stokes operators 53, S3

Quite different is the situation for the other two Stokes operators Ss, S3, which involve measurements of the photon
number in a polarization basis different from the ordinary and extraordinary ones of the crystal, namely in the oblique
and circular polarization basis.

Calculations along the same lines of those performed for the first two Stokes operators show that also in this case the
correlation functions display two peaks, one representing the noise associated to the measurement over a single pixel,
the other the correlation between symmetric pixels.

GQQ(SE,IZ"/;Q) = égg(f,fl;Q) (67)
- Di[a(f FVHL(F,9Q) + 6(F + ) Ha (7, Q)] (68)
R
with
. dw R 2 R R 2
m(70) = [ 52 {ValE oo+ F + M@0tk w+ D) (69)

Hy(7,0) = / U (7, e (7,00 QY (7, —0)Vol T, 0~ )
+ U(Z, w)Up(Z,w + QVI (T, —w)Ve (&, —w — Q) } (70)

However, at difference with the previous case, the two peaks in general do not have the same size, even for a long
measurement time. Letting Q = 0 in Eqs. (B3 [[0) and using the definition (), which is a consequence of unitarity,
we have

(7,0 = [ 52 {V@E Uz o) + V-7 -ouE ) (71)
Hy(7,0) = / W o Re (U (&, wU(—TF, —w)V* (&, 0)V(—TF, —w)} | (72)
Hi(%,0) — Hy(Z,0) = / %W*(f,w)u(ff, —w) = V=T, —w)U(Z,w)|? (73)

where U,V appearing in these equations are the functions defined by Eqs.[[@E0), calculated at ¢ = Z27/(Af).
Moreover,

([ -5-2]) = (5@ - 5%2]) (74)
_ 12)_7; /D |, 47 U (E,0) = Haf@,0) (75)

The noise in the difference between Stokes operators measured from symmetric pixels in general does not vanish, due
to the lack of symmetry &, 2 — —&, —Q) in the gain functions. In turns, this reflects the effect of spatial walk-off
between the ordinary/extraordinary beams (described by the term proportional to g, in the phase mismatch function
B24)) and the group velocity mismatch beteween the two waves (described by the term proportional to Q in 24)).
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Similar results are obtained in any gain regime. In the small gain limit, the noise statistics associated to a measure-
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FIG. 5: Degree of polarization of the light downconverted by a BBO crystal. Far field distribution of (Si(Z))/(So(&)). Same
parameters as in Figfl
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FIG. 6: Noise in the measurement of Stokes parameters of the downconverted light by a BBO crystal. Far field distribution of
([682(2)]%)/(S0(2)) = ([6S3(Z)]*)/(So(Z)). Same parameters as in FigHl

ment over a single pixel becomes essentially Poissonian, but the correlation between Stokes parameters measured from
symmetric pixels is basically the same as in the high gain regime. Fig. [l compares the noise in the difference between
Stokes parameters measured from symmetric pixels in the small and high gain regimes, plotted as a function of the
vertical coordinate along the circle of maximum gain for the degenerate frequency. The dashed lines were obtained
with o = 0.01, corresponding to a mean photon number per mode = 10~4, the solid lines with ¢ = 2, corresponding to

O
(-
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o=2 step filter
________ 0=0.01 step filter
0=2 Gaussian filter
P e 0=0.01 Gaussian filter

= PP
o N b
T

Noise/Shot Noise
o o o
A OO @

o
[N

o
o

I}
N

1.0 -0.5 0.0 05 1.0

FIG. 7: Noise in the difference between 5'2 (5'3) measured from symmetric portions of the beam cross-section, scaled to the
shot-noise level, as a function of the vertical coordinate y along the maximum gain circle for the degenerate frequency. Dashed
lines: o = 0.01, solid lines o = 2 Light lines: Gaussian frequency filter, of FWHM = 5nm. Dark lines: step function filter 5nm
wide.

of walk-off is reversed. At difference from the single photon pair regime, the correlation is optimized when the length
of this second crystal is chosen as

tanh o
. =1,
20

(77)

(&

where o is the linear gain parameter, proportional to the pump amplitude and to the first crystal length (see Appendix
A). The fact that the optimal length of the compensation crystal decreases with increasing gain can be understood
as following [23, 24]: in the regime of single photon pair production (limit o — 0), the photon pair can be produced
at any point along the crystal length with uniform probability, so that the average temporal delay of the two photons
due to the group velocity mismatch are those corresponding to half of the crystal length, and best compensation is
achieved for I/, = % In the large gain regime, more and more photon pairs are produced towards the end of the crystal
(the number of down-converted photons increases exponentially with the crystal length), so that walk-off effects are
best compensated by a shorter crystal, whose length is given by formula ().

When this kind of optimization is not possible, our calculations show that similar results can be obtained by a

------ AN=1nm
401 ——— A\=0.5nm
35k —— with compensation crystal AA=1 nm
------ with compensation crystal AA=8 nm

Noise/Shot Noise

-1.0 -05 0.0 05 1.0
yIX,

FIG. 8: Effect of the compensation crystal. Noise in the difference between Sz measured from symmetric pixels, scaled to the
shot-noise level. y is the far-field vertical position along the maximum gain circle. Gray lines: without compensation crystal,
dashed gray line AX = 1nm, solid gray line AX = 0.5nm. Black lines: with optimal compensation crystal, solid black line
AN = Inm, dashed black line AX = 8nm.
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narrow-band temporal and spatial filtering, and/or by using crystals that exhibit a smaller amount of walk-off. Figure
details the role of the compensation crystal. It plots the noise in the difference between Stokes parameters measured
from symmetric pixels as a function of the vertical coordinate y along the circle corresponding to the maximum gain
at the degenerate frequency.

2. Broad-band frequency filtering results

a)

b)



O

O
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where the notation |n;q, Q) /e indicates the Fock state with n photons in mode (,92) of the ordinary/extraordinary
polarized beam. Here the functions U,, V. are the coeflicients of the operator transformation (), and functions r
and ¢ are defined by Equations (IR toghether with (9 20).

The state (&) is clearly entangled (non factorizable) with respect to the ordinary and extraordinary polarized beam
components.

Let us focus on two conjugate modes ¢, and —¢, —(2 for both the ordinary and extraordinary field components.
These can be for example observed by using a narrow filter around the degenerate frequency 2 = 0 and collecting
light from two diaphragms placed around two symmetric regions in the far field zone. For brevity of notation, let us
label these modes with the 3D vectors 5 = (qu, Gy, V), —5: (—qu, —qy, —). When restricted to these modes, the

state takes the form

) = {ch nié) |ni- >e} {;cw(—a n'i-€) \n';€>e} (52)
Z 65 (83)
9% = Zwm &) N =mig)

where the last two lines have been obtained by changing the dummy summation variables n,n’ intom = n, N = n+n’.
The state can be represented as a superposition of states with a fixed total number of photons N. In each N-photon
state described by Eq. (&)

o) o

—

(&) = em(Een—m(—E)
_ [tanhr(¢ N [tanhr(ff)]N*meziw(f@emm[w(aw(ff“)] (85)

= =

coshr(&) coshr(—¢)

represents the probability amplitude of finding m ordinary photons, N-m extraordinary photons in mode E, and N-m
ordinary photons, m extraordinary photons in the conjugate mode —{. The description of the state given by Eqs.([®2
B2 is a generalization of that derived in e.g.[10]. The main improvement is that our description includes the effects
of spatial and temporal walk-off, and allows the quantitative evaluation of all the quantities of interest by using the
parameters of a real crystal. Remarkably, when the spatial and temporal walk-off are not taken into account, it holds
the symmetry (7,Q) — (=, —€2). In this case, in Eq.®8) we would have r(—&) = r(£) and ¢(—&) = 1(£), and all the
coefficients 'yNym(g) would be identical for a given N, so that all the terms in the expansion(®4) would have the same
weight, thus leading to a “mazimally entangled state for polarization” [10].
Coming to Stokes parameter correlation we notice the following property of the state:

N

A5 Ao@) — ALOADN D)5 = D cnl@en-m(=€)2m = N) m:)

m=0

— ~ —» A —

= AN Ay(—E) — AL(-O)A(-E)] |0)S (87)

By recalling the definition of the Stokes operator densities given by Eqs.@RET) 61 (E) = Al (&) A, (€) — AL(£)AL(E),
Ay(€) and 63(&) = —i[Al(€) A (€) — AT(€)A,(€)], we can hence conclude that the state is

62(&) = ANE)Ac(€) + AL(€) Ao
an eigenstate of 1 (& ) 61(—&) with zero eigenvalue. On the other side, we have

BEAD 195 = 3 en@enm(-OVT TN —m) T|m+1:8)

-9),

(88)
m—1; —5(%9)
14 -9,

A(-OA(-E o)y = i en(@en—m(=OVmN —m+1)|[mi&) |N=mif) |[N=m+1;-E)

IZS

= Y Oenmim (VA F DN ‘l+1f> ’N—l—1§>
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where the last line has been obtained by introducing the summation index [ = m — 1. This implies that the equation

— — — —

AN A(E) — AL (~HA (-] [p)S, =0 (91)

is verified if and only if

— — —

cm(§)eN—m(—=€) = cme1(§)en—m-1(=&) (92)

for all N = 0,400 and m =0, N — 1.
Similar considerations for the hermitian conjugate operator Af(£)A,(€) — Al(—¢£)A,(—€) lead to the equivalent con-
dition

— —

cm(€)eN—m(—E) = cm-1(§)eN—m+1(— _’) (93)

for all N = 0,400 and m =1, N.

Hence, the state is also an eigenstate of both 65 (&) — 62(—£) and 63(€) — 63(—E), with zero eingevalue, if and only if
the conditions (@23 ) are satisfied. These conditions amount to requiring that all the coefficients in the expansion of
the N-photon state (B2l are identical, and that the N photon state is a superposition with equal probability amplitude
of all the possibile partitions in m ordinary and N-m extraordinary photons (m=0,N) in mode E, with N-m ordinary
and m extraordinary photons in the conjugate mode 75_'. This is the mathematical equivalent of the commonly used
statement “ordinary and extraordinary photons in mode { are not distinguishable, but each time we have m ordinary
and N-m extraordinary photon in mode 5, there are N-m ordinary and m extraordinary photons in mode —f_;’. For
modes having a non vanishing parametric gain the conditions ([@2M3) amount to requiring

tanhr({)emw(g) = tanhr(fg)ew(_g) , (94)

a condition that is satisfied only in the presence of the symmetry A(7,Q) = A(—¢, —). This in turns implies the
absence of spatial walk-off between the two waves(i.e. the two modes correspond to the intersection of the down-
conversion cones) and the absence of temporal walk-off (use of a narrow frequency filter and/or compensation by
means of a second crystal).

Formula (@) can be also written as:

— — —

UEWV* (=€) = U(=V*(E) . (95)

By comparing with equation ([73)), we notice that this is the condition that ensures that the correlation between
Stokes parameter measured from symmetric pixels calculated in Section reaches its maximum value. Hence, in
the framework of the quantum state formalism, we start to recover the same results of Section [[IT D}, as it obviously
must be. One could proceed further on, and derive quantitative results for the correlation, as those showed by Figs AHA,
but at this point it should be rather clear (and for sure we are not the first ones to notice this) how the quantum state
formalism, although instructive, is cumbersome and not transparent in comparison with the quantum field formalism.

V. CONCLUSIONS

In conclusion, we have shown that the polarization entanglement of photon pairs emitted in parametric down-
conversion survives in high gain regimes, where the number of converted photons can be rather large. In this case, it
takes the form of non-classical spatial correlations of all light Stokes operators associated to polarization degrees of
freedom. We have shown that in the regions where the two rings intersect (in a ring-shaped region around the pump
direction when a broad frequency filter is employed) all the Stokes operators are highly correlated at a quantum level,
realizing in this way a macroscopic polarization entanglement. Although Stokes parameters are extremely noisy and
the state is unpolarized, measurement of a Stokes parameter in any polarization basis in one far-field region determines
the Stokes parameter collected from the symmetric region, within an uncertainty much below the standard quantum
limit.

We call this situation “polarization entanglement” because, on the one side, the quantum state derived in Section [[Vlis
entangled with respect to polarization degrees of freedom, and, on the other, because in our description there is no gap
in the passage from the single photon pair regime, where the polarization entanglement is a widely accepted concept,
to the multiple photon pair regime. However, we want to remark that for spontaneous parametric down-conversion
there is no way, to our knowledge, to derive a sufficient criterium for inseparability based on the degree of correlation
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of the Stokes operators, as this derived in [26] and generalized by [3]. This depends on the fact that the average
values of commutators (and anticommutators) of Stokes operators are in this system intrinsically state dependent,
at difference to what happens in the experiment performed in [3], where bright entangled beams were used. Further
discussion about this important point is postponed to a future publication.

We have developed a multi-mode model for spontaneous parametric down-conversion, both within the framework
of quantum field formalism and quantum state formalism. They are valid in any gain regime, from the single photon
pair production to the high gain regime where the number of downconverted photons can be rather large. The model
allows quantitative estimations of all the quantities of interest, by using empirical parameters of real crystals. We
hope that this description can be a useful tool for experimentalists working in this field.

Quite interesting, and to our knowledge completely novel, are the results concerning the correlation of Stokes
parameters observed by using a broad frequency filter, described in Section They basically show how by
increasing the number of temporal degrees of freedom in play , the number of spatial degrees of freedom which are
simultaneously entangled increases, so that the two isolated correlated spots in Figure Bl become the ring shaped
region of Figure @ where many symmetric spots are correlated in pairs.

We believe that this form of entanglement, with its increased complexity in terms of degrees of freedom (photon
number, polarization, temporal and spatial degrees of freedom)can be quite promising for new quantum information
schemes.

Appendix A

In this Appendix we calculate the phase shift induced by the propagation of the down-converted fields through a
compensation crystal, and we evaluate the length of this second crystal necessary for optimal walk-off compensation.
As shown by the scheme of FigBl we assume that after producing down-conversion in a first crystal (BBO1), the
pump beam is eliminated. The polarisations of the downconverted beams is then rotated by 90 degrees, and they
pass through a second crystal(BBO2) of length I/, identical to the first one.

In the region between the second crystal and the lens L the ordinary/extraordinary field operators can be written as:

Ao(3,9,2) = AZU(F, Q) exp [ikoz (7, QL] exp [iuac(z — 11)] (96)
A, 2) = A%, Q) exp [ike (T, Q)] exp [ippac(z — I1)] - (97)
The first phase shift accounts for propagation inside the compensation crystal. Here k,,(q,), ke.(q,2) are the

projections along z-axis of the ordinary/extraordinary wave-vectors inside the crystal, whose explicit expressions
depend on the linear properties of the crystal as described by Eq.(23]). The second phase shift accounts for paraxial

propagation in vacuum @,q.(z) = (k — %)z sk =2m/\
In the far field plane, all the results described in Sections [T’} MTDI remain unchanged provided that one makes the
following substitutions:

U5, Q) — UG D exp ks @ O] (98)
=2z

Vo(T, Q) — Ve(q, Q) exp [iko (7, Q)] =z 2E (99)
_z)\—f

U(Z,Q) — Uy(q, Q) exp [ike~ (7, Q)] — (100)
=2z

Ve(#, Q) — Vo(q, ) exp [ike: (7, QL] sz (101)
_z)\—f

where global phase factors have been omitted, since they do not affect the results.

This transformation leaves unchanged all the results described in Sec. [ITT (noise and correlation for measurements
of Stokes operators 0 and 1). For the second and third Stokes parameters (Sec. [IIDJ) , while the transformation
does not affect the amount of noise of the measurement, given by Eqs. BAITT, it does affect the correlation between
measurements from symmetric pixels (Eqs. [IZ2)

d s
Hy(7,0) — / S29Re (U (—, ~w)U(,w)V* (7, —w)V( w)eED (102)

d)c(fﬂ Q) - [kez ((Tv Q) + koz(i(j‘v *Q) - koz ((Tv Q) - kez(i(jv *Q)] l/c (103)

(104)
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arg {U™ (=7, —w)U(Z,w)V" (=T, —w)V(Z,w)} = 20(7.2) — 2¢(—q, —Q) _— (105)

with
2)(7,Q) = tan~" {A((j, Q)%} (106)
~ A7 )R (107)

20

The last line has been obtained by taking the limit A(q,) < 1; this is meaningful since the most important
contribution to the correlation function is given by phase matched modes. The phase factor [IIQ) can be partially
compensated by the phase shift induced by propagation in the second crystal ([[04]). Best compensation is achieved
for

tanho

l/
T (108

In this conditions the value of the correlation between measurements from symmetric pixel (the value of the function
H,) is maximized by the presence of a compensation crystal.

Appendix B

Equation (1)) defines a linear transformation acting on field operators, that maps field operators at the entrance
face of the crystal into those at the output face. The aim of this appendix is to find is an equivalent transformation
acting on the quantum state of the signal/idler fields at the crystal input and mapping it into the state at the crystal
output.

In order to avoid formal difficulties coming from a continuum of modes, we introduce a quantisation box of side b in
the transverse plane, with periodic boundary conditions. In this way the continuum of wave-vectors ¢ is replaced by a
set of discrete wave vectors gy = (It + 1,1y ) QT“ lg,ly =0,£1,%2.... In the same way, we introduce a quantization box
in the time domain of length 7', with periodic boundaries, so that we need to consider only a discrete set of temporal
frequencies 2, = pQT“ p = 0,%1... The free field commutation relation ([[A) are thus replaced by their discrete version

|:Az ((ffa Qp)v A; (‘7771; Qs>i| = (Si,j(slgc,mgc 5ly,my 5n,s ’ 17] = 07 €.
For brevity of notation, in the following we shall indicate the spatio-temporal mode g7, €2, with the three dimensional

vector «E_; and we shall not write explicitly the modal indices.
The input/output transformation [[Il) can be written in a equivalent way as:

Ai(§) = RTAT(OR, (109)
with
R=RoR\ R, , (110)
and
Ry = exp i3 [0(6) + o(&)] AUEAE) + [0(6) — w()] AL(-EAc(-) (111)
3
Ry = exp Y (@) [ANEAL(-E) - A4 b . (112)
3

Ry = exp i D 0(E) [ALEVALE) + Al (- Ac(~5)) (113)
3
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with functions (&), o(€), r(€), 6(E) defined by Egs. ([CAMR), toghether with (AT ETI).
In order to demonstrate the ansatz ([[0J), we first notice that the action of operators Ry and Rs on field operators
corresponds to phase rotations. For any operator ¢, for which [c, cT] =1, we have

f T

e—isc cceisc c _ eisc . (114)

As a consequence,
RiA(&)Ro = Ayl @+ (115)
B ARy = A (@elv-0-e-6], (116)

Operator Ry is the product of an infinity of two mode squeezing operators, each of them acting on the couple of

modes (5) in the signal beam and (—5) in the idler beam. For any couple of independent boson operators ci, co, and
for r real, it holds the identity
+r[c1c;7c1¢:2]

= coshr+c£ sinhr . (117)

— —

Hence, letting ¢; — /10( ), c2 — fle(— ), we have

) (118)
(=€) - (119)

R;RIRSAO(E) RoR1 Ry = v ©+e(©)] {A (€) coshr(€)e! i0(6) + Al (- _’)smhr(ﬁ)e*w(q)} (120)
= O A,@UE) + Al(-EV ()} (121)

where in passing from the first to the second line we used the relation ([IJ), which is a consequence of the unitarity of
the transformation (). Moreover, we have

RIRIRIA @ Roftufs = @V-0908] {4, (§) coshir(~€)e-9
+ Af(=&) sinhr(~E)e -9} (122)
= O LA QU + A=V (-§)} . (123)
Finally, taking into account the relation (), which is again a consequence of the unitarity of the transformation ([[II),
we recover the input/output transformation (ITJ).
Any quantum mechanical expectation value of the output operators (mean values, correlation functions etc.) taken

on the input state, is equivalent to the quantum mechanical expectation value of the input operators taken on the
transformed state:

) gt = B [¥)1, (124)

In the following we shall derive the form of the output state, when at the input of the parametric crystal there is the
vacuum state for both signal and idler fields.

[¥),,, = |vac) = ‘0 «§>

(125)

where the notation

n;{> ) indicates the Fock state with n photons in mode (_') of the ordinary/extraordinary
o/e

polarized beam. R
First of all we notice that the operator Rs has no effect on the vacuum state, corresponding to a phase rotation of



21

the vacuum. For what concern operator Ry, by using proper operator ordering techniques (see e.g. [27]) pag. 75), it
can be recasted in the following form (disentangling theorem)

R, = H{QGCML(*)AZ.(—SQ— g(E[ANOAE)+AL (=) Ae<—“>+1]e—G<5>Ao(E>Ae(—ﬁ} (126)
3

G(€) = tanh[r(£)] (127)

9(€) = log{cosh[r(¢)]} (128)

By letting this operator acting on the vacuum state

Ry |vac) = H ) i [tanhr )}

n; E> ’n f§> (129)

where the usual expansion of the exponential operator, expM P 0 1\741‘ , has been used , toghether with the

cosh[r

standard action of boson creation operators on Fock states. Finally, by adding the action of operator RO,

RoRy |vac) = H cosh? (_.>] Z {tanhr(&)} 2V (€) |y E> ‘n 75‘> (130)
3

the output state can be written in the form

) gt = H{Zcm

) w} o

(@) = — 1 [tanh (8] (132)
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