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Macroscopic quantum fluctuations in noise-sustained optical patterns
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We investigate quantum effects in pattern formation for a degenerate optical parametric oscillator with
walk-off. This device has a convective regime in which macroscopic patterns are both initiated and sustained
by quantum noise. Familiar methods based on linearization about a pseudoclassical field fail in this regime and
new approaches are required. We employ a method in which the pump field is treated as ac-number variable
but is driven by thec-number representation of the quantum subharmonic signal field. This allows us to include
the effects of the fluctuations in the signal on the pump, which in turn act back on the signal. We find that the
nonclassical effects, in the form of squeezing, survive just above the threshold of the convective regime.
Further, above threshold, the macroscopic quantum noise suppresses these effects.
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I. INTRODUCTION

Nonlinear optics has provided an ideal testing ground
ideas in both nonlinear dynamics and quantum optics. It p
vides fast nonlinearities and a degree of control that al
fundamental dynamical systems to be realized and nonlin
phenomena, such as pattern formation to be demonstr
@1#. It also provides systems with very low levels of noise
that fluctuations can be limited by quantum effects. The co
bination of these features has led to the study of quan
phenomena in optical pattern formation@2,3# and of noisy
precursors of the patterns, which have been termedquantum
images@4–6#. The accurate modeling of such quantum no
linear systems presents a significant challenge. Pattern
mation and dynamics are usually associated with excita
of a large number of transverse modes and a fully quan
description of each of these is required in order to prope
treat the quantum fluctuations. The Heisenberg picture p
duces a hierarchy of coupled nonlinear operator equat
that usually defies analysis. The preferred method to date
been to linearize the quantum fluctuations about a class
field amplitude that usually takes a constant value be
threshold@6,7#, but may be associated with a stable patte
above threshold@8#.

A more difficult situation arises if the system displa
macroscopic features driven by noise. In such cases we
not expect linearization of the quantum fluctuations to g
reliable results and a new approach is needed. A simple
vice demonstrating macroscopic, noise-driven patterns is
degenerate optical parametric oscillator in the presenc
walk-off. The semiclassical analysis of this device reveal
region of convective instability, above the threshold for o
cillation, in which noise sustained structures are seen in
transverse field distribution@9,10#. The aim of this paper is to
develop a suitable approximation scheme with which
model quantum effects in the parametric oscillator in t
regime of operation.

The convectively unstable regime is characterized by
amplification and flow of fluctuations@11#. In systems in
which the spatial reflection invariance is broken by the pr
ence of a group-velocity term, local perturbations of t
1050-2947/2002/65~2!/023813~12!/$20.00 65 0238
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steady state can be advected more rapidly than their gro
rate. If the system is deterministic then at any fixed point a
initial localized perturbation decays and the system
proaches the undisturbed steady state. In this case ma
scopic patterns can arise and be observed only if nois
continuously applied, the structure now being regenerate
any time, hence the name noise-sustained patterns. T
structures are the result of noise self-organization, with m
nification factors of several orders of magnitude. They
thus interesting candidates for the study of quantum corr
tions in spatially structured systems.

Any system with an advection~or drift or walk-off! term
that is also not translationally invariant will, in general, b
convectively unstable when operating sufficiently close
and above the onset of the instability of the steady st
Hence, this type of instability has been predicted in a num
of optical systems including Kerr media with a tilted pum
@9,12# and optical parametric oscillators~OPO! with walk-off
@12–14#.

Modeling quantum effects in the regime of convecti
instability for a nonlinear optical device presents a dou
challenge. First, the system has a broad spectrum both in
frequency~at a fixed point! and in wave vectors~far field at
a fixed time!, thus it cannot be studied within a few-mod
approximation. Second, we should be able to follow the e
lution of the fluctuations from the microscopic level throug
the amplification into the macroscopic pattern. In order to
this we introduce, in Sec. IV, a suitablenonlinear approxi-
mation with which to treat the convective regime of a dege
erate optical parametric oscillator. In order to fix the terms
reference for this approximation we begin, in Sec. II, with
review of the semiclassical features of the device and
convective instability. This is followed, in Sec. III, by
quantum description of the device. Once we have introdu
our method we discuss quantum features of the device in
various regimes of operation~Sec. V!, paying particular at-
tention to the demanding convective regime~Sec. VI!.

II. SEMICLASSICAL DESCRIPTION
AND CONVECTIVE REGIME

We consider a degenerate optical parametric oscilla
~DOPO!, a device consisting of a cavity filled with ax (2)
©2002 The American Physical Society13-1
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nonlinear medium, which converts a pump at frequencyv
into a subharmonic signal at frequencyv. The possibility of
phase matching the down-conversion process depends o
birefringence of the crystal that provides a difference of
refractive index for differently polarized fields. We can e
ploit this difference in order to avoid the effects of dispersi
by selecting the same index of the refraction for the pu
and signaln2v5nv . In this paper we consider type-I phas
matching for which ordinary polarized pump photons a
down-converted to produce pairs of extraordinary polariz
photons that are degenerate both in the frequency an
polarization.

In anisotropic media rays do not necessarily travel in
direction perpendicular to their wavefronts@15#. As a conse-
quence the extraordinarily polarized signal generated in
DOPO will walk off, that is it will propagate in the trans
verse direction relative to the ordinarily polarized pum
This transverse walk-off effect is described in the dynami
equations by a term that accounts for a velocity relative
the frame of reference fixed by a pump of finite transve
width.

The quantum effects we wish to study are associated w
the convective regime and it is important to define this ca
fully. The different regimes of operation of a DOPO can
understood within a semiclassical theory and this sec
provides a brief~semiclassical! analysis of the convective
and other regimes. A more complete discussion can be fo
in Ref. @13#. The intracavity field is described by two slowl
varying complex field amplitudesA0(xW ,t) and A1(xW ,t) for
the pump and the signal, respectively. These depend on
transverse spatial coordinatesxW5(x,y) and the time t.
Within the paraxial approximation~for propagation in thez
direction!, the mean-field limit and for single longitudina
mode operation the dynamical equations become@13,16,17#

] tA0~xW ,t !52g0@11 iD02 ia0¹2#A0~xW ,t !2
g

2
A1

2~xW ,t !

1E0~xW !1e0j0~xW ,t !, ~1!

] tA1~xW ,t !52g1@11 iD12 ia1¹22v]y#A1~xW ,t !

1gA0~xW ,t !A1* ~xW ,t !1e1j1~xW ,t !. ~2!

Here j i ( i 50,1) are additive Gaussian white sources
noise, with nonvanishing correlations of the form

^j i~xW ,t !j j* ~xW8,t8!&5d i j d~xW2xW8!d~ t2t8!. ~3!

The level of noise introduced is fixed by the parameterse0
and e1 . Our fully quantum analysis will produce equation
of similar form in which these parameters are fixed.E0 is the
amplitude of the driving field, which we take to be real. T
remaining parameters in these equations are the cavity d
rates g i , the cavity detuningsD i , the diffraction ai , the
walk-off v, and the nonlinear coefficientg. It is convenient
to introduce scaled variables

t85gt, xW85
xW

Aa
, v85

v

Aa
, ~4!
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where we have restricted the cavity decay rates and diff
tion coefficients such thatg5g05g1 anda5a05a1/2. Our
equations are valid either for one or two transverse spa
dimensions (D51,2). On omitting the primes, our amplitud
Eqs.~1! and ~2! become

] tA0~xW ,t !52@11 iD02 i¹2#A0~xW ,t !2 1
2 A1

2~xW ,t !1E0~xW !

1e0j0~xW ,t !, ~5!

] tA1~xW ,t !52@11 iD122i¹22v]y#A1~xW ,t !

1A0~xW ,t !A1* ~xW ,t !1e1j1~xW ,t !. ~6!

For a uniform driving fieldE0 , Eqs. ~5! and ~6! admit the
homogeneous stationary solution

A0
s5

E0

11 iD0
, A1

s50. ~7!

The threshold for parametric oscillation can be determin
by a linear stability analysis of this solution. The lineariz
equations for the signal and pump fluctuationsdA1(xW ,t)
5Ai(xW ,t)2Ai

s( i 50,1) are decoupled, and the fluctuations
the pump are always damped. For the signal, we cons
perturbations of the form exp@kW•xW1l(kW)t# and find the disper-
sion relation

l6~kW !5211 ivky6AF22~D112ukW u2!2, ~8!

where we have introduced a scaled pump

F5
E0

A11D0
2

. ~9!

We find that there is an instability atF51. For F,1,
Re(l),0 and the solution~7! is absolutely stable. ForF
.1, there is a positive growth rate of fluctuations@Re(l1)
.0# that takes a maximum value forukW cu5A2D1/2 if the
signal detuning is negative (D1,0), and for k50 if D1
.0. In this paper we are interested in the case of patt
formation and we restrict our analysis to the caseD1,0. The
instability at F51 when v50 is a Turing instability, in
which a stationary pattern appears@16#. If vÞ0 then the
eigenvalue becomes complex and we find a Hopf bifurcat
in which a traveling pattern emerges@13#.

The direction of instability is determined by the eige
functions V6(kW ,2kW ) of the linear problem] tV6(kW ,2kW )
5l6(kW )V6(kW ,2kW ). Solving this gives

V6~kW ,2kW !5eiF6dA1~kW !6dA1* ~2kW !,

eiF6~kW !56
iD112i ukW u27AuA0

su22~D112ukW u2!2

A0
s . ~10!
3-2
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MACROSCOPIC QUANTUM FLUCTUATIONS IN NOISE- . . . PHYSICAL REVIEW A 65 023813
The solutionV1(kW ,2kW ) gives the direction of amplification
of fluctuations, while fluctuations are damped forV2(kW ,
2kW ). In particular, for the critical wave vectorukW cu and for a
real pump E0 and D050, we obtain V6(kW c ,2kW c)
5dA1(kW c)6dA1* (2kW c). Therefore, in this case, the diffe
ence of real parts and the sum of imaginary parts of the fi
in kW c and2kW c will show damped fluctuations at the thres
old. We also note that the instability direction is independ
of the walk-off term.

Above the instability threshold (F51) the steady state~7!
is convectively unstable: any perturbation grows while tra
eling in the direction fixed by the walk-off term and event
ally leaves the system@13#. In this regime a continuous pe
turbation, such as a source of noise, gives rise to a no
sustained pattern consisting in disordered traveling stripe
the signal. On increasing the pump a second threshol
reached atF5Fc . Beyond this threshold the pattern is su
tained by the nonlinear dynamics, being also present in
absence of perturbations, once it is formed. The state~7! is
absolutely unstable in this regime@13#. In Fig. 1 we plot the
result of the calculation of the absolute instability thresh
as a function of the signal detuningD1 , for different values
of the walk-off parameterv.

Walk-off has three main effects in this process of patt
formation@12,13#. The first is the existence of the convectiv
regime in which patterns are sustained by the noise. Sec
is that it breaks the rotational symmetry, favoring the form
tion of stripes orthogonal to the walk-off direction and tra
eling in this direction. Third, the selected wave vector, tha
the most intense modekW M of the pattern, depends on th
walk-off parameter. An approximate expression forkW M can
be obtained in the context of front propagation into an u
stable state@10,18#.

There are two important characteristics of the noise s
tained patterns that exist in the convective regime. The
is a broad spectrum, both in the frequency and in wave v
tors @19#. Second is the presence ofmacroscopicamplified
signal fluctuations around the unstable reference state~7!.
These characteristics imply that the convective regime c

FIG. 1. Stability diagram as a function of the signal detuni
D1 . The different lines correspond to the threshold of absolute
stability Fc for different values of the walk-off parameter:v50.2
~dotted line!, v50.42 ~continuous line!, andv50.6 ~dashed line!.
When F,1 the solution~7! is absolutely stable, while for 1,F
,Fc the solution is convectively unstable.
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not be studied within a few-mode approximation, becau
many modes contribute significantly to the spectral prop
ties. The presence of macroscopic fluctuations also inv
dates approximations based on linearization schemes. T
facts make a quantum formulation of the convective regi
especially difficult. We face a situation in which nonlinea
ties determine the dynamics of fluctuations around the re
ence state, with fundamental quantum noise being ampli
by several orders of magnitude to produce a macrosco
pattern in the signal.

III. QUANTUM FORMULATION

In the quantum formulation of the DOPO the intracav
pump and signal fields are given by operatorsÂ0(xW ,t) and
Â1(xW ,t) that satisfy standard equal-time commutation re
tions @6#

@Âi~xW ,t !,Âj
†~xW8,t !#5d i j d~xW2xW8!, ~11!

where the indicesi, j stand for 0, 1. Following the technique
described in@6#, we can introduce a model Hamiltonian fo
the device. This will include the effects of diffraction to
gether with the driving by a real, classical external fie
nonlinear interaction between the fields and cavity dampi
Our model, however, also requires that we take accoun
the effects of the walk-off. The resulting Hamiltonian give
on making the usual Markov approximation, the coupl
Heisenberg equations

] tÂ0~xW ,t !52@g0~11 iD0!2 ia0¹2#Â0~xW ,t !

2
g

2
Â1

2~xW ,t !1E0~xW !1F̂0 , ~12!

] tÂ1~xW ,t !52@g1~11 iD1!2 ia1¹22v]y#Â1~xW ,t !

1gÂ0~xW ,t !Â1
†~xW ,t !1F̂1 . ~13!

Note that these are very similar in form to the semiclass
Eqs. ~5! and ~6!. The Langevin operatorsF̂ i describe the
quantum noise added as a consequence of the intera
with the bath of external modes. These have the nonvan
ing second moments

^Ḟ1~xW ,t !F̂ j
†~xW8,t8!&52g id i j d~xW2xW8!d~ t2t8!. ~14!

A direct solution of these nonlinear Langevin equations
operators is impractical, requiring the solution of an infin
hierarchy of equations for the evolution of all the products
operators that are coupled by the dynamics. A standard a
native approach to this Heisenberg picture is to consider
evolution equation of the reduced density operatorr̂ of the
system in the Schro¨dinger picture and to use quasiprobabili
functionals. In this approach to the quantum dynamics
open problems, the intracavity dynamics is described b
master equation@20#

-

3-3
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]r̃

]t
5

1

i\
@Ĥ,ṙ #1Lr̂, ~15!

whereĤ is the Hamiltonian

Ĥ5\E d2xW (
j 50,1

@g j Â j
†~xW !~D j2aj¹

2!Âj~xW !#

1 ivÂ1
†~xW !]yÂ1~xW !1 iE0~xW !~Â0

†~xW !2Â0~xW !!

1 i
g

2
~Â0~xW !Â1

†2~xW !2H.c.!.

The Liouvillian L accounts for dissipation through the pa
tially reflecting mirrors of the cavity and is given by@6#

Lr̂5 (
j 50,1

E d2xWg j$@Âj~xW !,r̂Âj
†~xW !#1@Âj~xW !rW ,Âj

†~xW !#%.

The master equation~15! can be mapped onto an equation
motion for one of a number of quasiprobability distributio
in the phase space of the system@20–22#. These distributions
are functionals of thec-number fieldsa i(xW ) associated with
the operatorsÂi(xW ). This evolution equation is obtained b
substituting products of field operators and the density
erator, depending on the ordering, by suitable operations
the distribution functionals@6,8#.

The evolution equations obtained in this way for the d
tributions are functional partial-differential equations. The
are not in general of the Fokker-Planck type and do not l
to well-behaved stochastic representations in terms of Lan
vin equations driven by Gaussian white noise. In particu
the Hamiltonian term describing thex2 interaction gives a
contribution

@Â0~xW !Â1
†2~xW !2H.c.,r̂ #

⇔S sa0

d2

da1
2

1
12s2

4

d3

da1
2da0*

1
d

da0
a1

222a0a1*
d

da18
1c.c.D Ws ,

where the parameters depends on the ordering. This ter
does not fulfill the requirements that guarantee a posi
definite solution forWs : in the Wigner representation (s
50) we find third-order derivatives, while it is known@23#
that positiveness requires a Fokker-Planck form of the ma
equation~only first- and second-order derivatives! or to in-
clude derivatives to all orders. For theP(s51) andQ(s5
21) representation third-order derivatives disappear, but
diffusion matrix is not positive definite so that positive sol
tions are again not guaranteed, although theQ retains posi-
tivity through having a minimum allowed width@21#. Gen-
erally these problems have been avoided by us
linearization schemes@22#. Such linearization approxima
tions, however, are valid only for small damped fluctuatio
They cannot be used in a convective regime as the refer
state is unstable and the fluctuations, far from being sm
02381
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are amplified. The alternative of theP positive representation
@24# is not suitable for the same reason and the unsta
reference state results in diverging trajectories.

These problems of the convective regime can be ill
trated by a comparison with the situation of a DOPO bel
the threshold of signal generation. In this case the sta
solution is a homogeneous pump with an amplitude that
pends on the coherent driving field. The signal field is ze
on average, but its fluctuations show a level of se
organization that increases near the threshold. This is
regime ofquantum images@4–6#, noisy precursors generate
by quantum noise. These images reflect the presenc
eigenmodes of the linearized equations, whose eigenva
are such that their negative real part approaches zer
threshold. The fluctuations of these eigenmodes are the
damped ones and dominate the dynamics of the signal.
important point is that the intensity of such quantum imag
of the signal is of the order of the quantum noise, while t
pump has a macroscopic mean value. It is then possibl
neglect the fluctuations in the pump, approximating it by
classical coherent field@22#. In this approximation the
Hamiltonian is a quadratic function of the quantum ope
tors. The consequence is that a well-defined Fokker-Pla
equation for the Wigner distribution is obtained. Su
Fokker-Planck equations can be represented in terms of
chastic Langevin equations for thec-number fielda1(xW ) @6#.
The same type of approximation, linearizing around a patt
solution @8#, is generally possible in the absolutely unstab
regime above the threshold. A common feature of these
regimes~absolutely stable and unstable! is that the quantum
noise does not change drastically the solution with respec
the stable deterministic solution. This means that in the s
chastic representation, fluctuations only induce the trajec
to visit a small region in the phase space in the neighborh
of the deterministic solution. In the convective regime t
classical deterministic solution is unstable andmacroscopi-
cally different from the stochastic solution. In this regime t
quantum noise in the DOPO is amplified, destroying t
zero-valued homogeneous deterministic solution for
down-converted field and driving the system into nois
sustained states having a macroscopic number of photon

IV. TIME-DEPENDENT PARAMETRIC APPROXIMATION

In this section we propose an approximate description
the quantum dynamics of the DOPO in the convective
gime, based on the main physical features of this regi
Our aim is to be able to treat the macroscopic quantum fl
tuations associated with the signal field in the convect
regime.

In the convective regime there are large signal fluct
tions around the unstable solutionA150. The coupling of the
signal and the pump gives the nonlinear saturation for th
amplified fluctuations. On the other hand, the pump field
always macroscopic and stable, with small damped fluct
tions. This suggests the approximation of neglecting
quantum noise in the pump and approximating it by a cl
sical fieldA0(xW ,t). In this way we obtain a Hamiltonian tha
is quadratic in the operators describing the quantum dyn
ics of the signal field. For such quadratic Hamiltonians,
3-4
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MACROSCOPIC QUANTUM FLUCTUATIONS IN NOISE- . . . PHYSICAL REVIEW A 65 023813
Wigner quasiprobability functional of the complex functio
a1(xW ,t) obeys the following Fokker-Planck equation
which the classical pump fieldA0(xW ,t) appears parametri
cally

]W~a1 ;A0!

]t

5F2S d

da1
g1@~11 iD1!2 ia1¹22v]y#a1~xW ,t !

1gA0~xW ,t !a1* ~xW ,t !1c.c.D1g1

d2

da1da1*
GW~a1 ;A0!.

The associated Langevin equation that represents the
chastic dynamics of the signal fielda1(xW ,t) is

] ta1~xW ,t !52g1@~11 iD1!2 ia1¹22v]y#a1~xW ,t !

1gA0~xW ,t !a1* ~xW ,t !1Ag1j1~xW ,t !, ~16!

wherej1(xW ,t) is a complex Gaussian white noise@see Eq.
~3!#. This noise term accurately represents the effects
vacuum fluctuations associated with cavity losses on the
nal field. We note that treating the pump field classically
this way is a natural extension of the parametric approxim
tion to three-mode interactions, which treats a strong m
classically and has been widely used in quantum optics
many years@25#.

It is important to note thatA0(xW ,t) cannot be replaced
with an expectation value of^Â0& as would be possible in th
regime of absolute stability~quantum images!. Such an an-
satz decorrelates the pump modes from the subharm
ones and eliminates the saturation effect of the pump. In f
with such an ansatz Eq.~16! becomes linear, giving a Gaus
ian probability distribution for the signal modes. This dist
bution would always be centered on zero, but with statist
moments that diverge above the threshold because the s
modes are undamped in the convective regime. Theref
the stochastic differential equation must be solved s
consistently with an equation defining the dynamics of
classical fieldA0 . The equation we propose forA0 is sug-
gested by the Heisenberg equation~12!, with Â0 replaced
with a classical fieldA0 . We first neglect the noise source
Eq. ~12! since quantum fluctuations entering the cavity a
unimportant, as compared with the macroscopic fluctuati
of the signal termÂ1

2. Second, we replace the operatorÂ1
2 by

thec-number functiona1
2 associated with our stochastic re

resentation of the signal. This replacement is independen
operator ordering and hence will be the same should we
a different quasiprobability. This procedure gives a part
differential equation for the ‘‘classical’’ pump field driven b
the c-number representation of thequantumsignal field

] tA0~xW ,t !52g0@~11 iD0!2 ia0¹2#A0~xW ,t !

2
y

2
a1

2~xW ,t !1E0~xW !. ~17!
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A justification for this equation is that its mean value coi
cides with the expectation value forÂ0 obtained from the
operator equation~12!. This procedure is reminiscent of th
time-dependent refinement of the parametric approxima
described in some detail by Kumar and Mehta@26#. This
approach allows for the quantum evolution of the weak fie
to feed back and affect the classical strong field. In the
proach of Kumar and Mehta, this feedback is via quant
expectation values of operators for the weak fields. He
however, we are required to take explicit account of t
noisy properties of the quantum subharmonic field. We
this by using thec-number representation of the quantu
field, associated with our stochastic simulation of it, as
term in Eq.~17!.

In summary, our time-dependent parametric approxim
tion is defined by stochastic classical equations in the Wig
representation for the fieldsA0 anda1 , which, with the scal-
ing ~4!, are

] tA0~xW ,t !52@~11 iD0!2 i¹2#A0~xW ,t !2 1
2 a1

2~xW ,t !1E0~xW !,
~18!

] ta1~xW ,t !52@~11 iD1!22i¹22v]y#a1~xW ,t !

1A0~xW ,t !a1* ~xW ,t !1
1

aD/4

g

g
j1~xW ,t !. ~19!

Stochastic averages of thec-number variablea1(xW ,t) will
provide symmetrically ordered averages of the quantum fl
tuations in the signal field as driven by the ‘‘classical’’ pum
field. The classical pump field is driven by the macrosco
quantum fluctuations in the signal as represented by
c-number representationa1(xW ,t). This time-dependent para
metric approximation appears useful in situations in wh
there are large fluctuations of the signal that cannot be
scribed by approximations based on linearization.

V. STOCHASTIC TRAJECTORIES AND WIGNER
DISTRIBUTION FUNCTION

Numerical simulation of the stochastic trajectories asso
ated with the Langevin equations~18! and~19! gives a good
intuitive understanding of the dynamical properties of t
regime below the threshold, the convective regime and
absolutely unstable regime. In this section we present s
numerical simulations working with a single transverse
mension (D51) @27#.

Figure 2 is a space-time plot of the near field for t
signal in the below-threshold, convective and absolutely
stable regimes. Figure 3 gives the far fields associated w
the same simulations. In the following we discuss the diff
ent properties of these trajectories and how they are refle
in the associated Wigner distribution. In particular, we co
sider the phase-space dynamics of the most intense mod
the signal pattern. The Wigner probability distribution ass
ciated with these modes displays distinctly non-Gauss
features in the convective regime. These are a result of
interplay of nonlinear and walk-off effects. It is clear th
they cannot be described within a linearization scheme
3-5



al

ZAMBRINI, BARNETT, COLET, AND SAN MIGUEL PHYSICAL REVIEW A 65 023813
FIG. 2. Evolution of the near field of the real part of the signal Re@a1(x,t)# for ~a! F50.999,~b!F51.025, and~c! F51.1, in 2500 time
units. Parameters areD050, D1520.25,v50.42, system size51.76783512 pixels.900 space units. Only the regions in which the sign
is excited are shown, that is, the region of the plateau of the super-Gaussian pump@28#.
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does not take account of this interplay between the sig
and pump fields.

A. Below threshold

Below but close to the threshold we find weakly damp
fluctuations that are a precursor to the traveling pattern
appears at the threshold. The fluctuations impose a degre
spatial self-organization in those regions in which the pu
is sufficiently strong to bring the OPO close to the thresho
In Fig. 2~a! we plot the real part of the stochastic variab
a1(x,t) for a single trajectory. This is a realization of the
fluctuations for a pump with a super-Gaussian profile@28#.
Noisy patterns of this form have been predicted for
below-threshold OPO without the walk-off and have be
termed quantum images@4–6#. Not too close to threshold
the damped fluctuations can be analyzed with lineariza
procedures@6# in the limit of small fluctuations. Our nonlin
ear quantum equations enable us to study also the reg
closer to the threshold, where large critical fluctuations
expected to occur. Note, in particular, that the results in F
2~a! were obtained forF50.999.
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The selection of a preferred wave number in the stoch
tic pattern of Fig. 2~a! becomes more evident in the far fie
shown in Fig. 3~a!. It is clear that there are preferred valu
of the wave number but that a broad distribution of wea
damped modes around these preferredkc and2kc modes is
apparent.

An interesting characterization of the stochastic dynam
in the far field, Fig. 3~a!, is obtained by looking at the time
evolution of the stochastic amplitudes for the most inten
modes a1(kc ,t). We first recall that the linear stability
analysis of Sec. II identifies the existence of a nonvanish
frequency@v(k)5vk# at the threshold caused by the wal
off. This implies that a traveling pattern will emerge abo
the threshold and that the corresponding Fourier modes
oscillate at this frequency. We can remove this time dep
dence by working in a frame rotating at this frequency. T
corresponds to factoring out a time factor« iv(k)t to obtain the
slowly varying amplitudesa18(k,t)5a1(k,t)e2 iv(k)t. A
phase-space trajectory for the slowly varying amplitude
the dominating Fourier componenta18(kc ,t) is shown in
Fig. 4~a!.
FIG. 3. Evolution of the far fieldua1(k,t)u for ~a! F50.999, ~b! F51.025,~c! F51.1. Same parameters as in Fig. 2.
3-6
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MACROSCOPIC QUANTUM FLUCTUATIONS IN NOISE- . . . PHYSICAL REVIEW A 65 023813
The linear stability analysis of Sec. II also identified t
direction of instabilityV1 . In particular, in the case of a rea
pump, and for the critical modekc , this direction is given by
@a1(1kc)1a1* (2kc)#. As a consequence the superpositi
of modes@a1(1kc)1a1(2kc)# can be decomposed in tw
quadratures, one corresponding to the direction of instab
that becomes undamped at the threshold„Re@a1(1kc)1a1

(2kc)#…, and the orthogonal quadrature„Im@a1(1kc)1a1

(2kc)#… that remains damped. We observe that the supe
sition of slowly varying modesa18(6kc ,t) can be decom-
posed into damped and undamped quadrature in the s
way. In fact due to the symmetryv(k)52v(2k) we have

V6(kW ,2kW )5eiv(k)t@eiF6dA18(kW )6dA18* (2kW )#, so that the
relative phaseeiF' between the slowly varying modes is th
same as that in the Eq.~10!. Hence, we can also identify th
real and imaginary quadratures of the superposition of mo
@a18(1kc)1a18(2kc)# as damped and undamped at thre
old. The corresponding time trajectory of this superposit
of modes displays very clearly the expected reduction
fluctuations in the damped imaginary quadrature@see
Fig. 4~b!#.

From the stochastic trajectories that randomly visit
different points of phase space it is easy to construct a r
tive histogram giving a probability density in this pha
space. This density is identified with the Wigner distributio
As with all Wigner functions, the marginal distributions, o
tained for one field quadrature by integrating over the
thogonal quadrature, are true probability distributions for
remaining quadrature. At a finite distance from threshold
Wigner distributionW„a1(k)… for the fielda1(k) obtained in
this way has a Gaussian shape consistent with a linear
analysis of fluctuations. Such a Gaussian Wigner distribu
is a solution of the Fokker-Planck equation for the Wign
representation oflinear signal fluctuations. If we conside
the Wigner distribution for the superposition of modes d
cussed aboveW„a1(1kc)1a1(2kc)…, then we obtain a
Gaussian centered on the origin but with a variance that
pends on the orientation in the phase space@29#. There is an
axis with a reduced variance~squeezed! and the orthogona
one with a larger variance~antisqueezed! ~see Fig. 5!. These
features reflect the asymmetry or phase sensitivity of
fluctuations already visualized in the stochastic trajectory

FIG. 4. ~a! Trajectory of the slowly varying amplitudea18
(1kc) during 20 000 time units.~b! Trajectory of @a18(1kc)1a18
(2kc)# during 20 000 time units.F50.999, other parameters are
in Fig. 2, except fordx551lc/512.1.7702, wherelc52p/kc ,
512 is the number of grid points.
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B. Convective regime

Differences between the regime below the threshold
the convective regime are clearly seen both in the near
far signal fields. We observe a macroscopic traveling patt
in the near field@Fig. 2~b!#. This is clearly associated with
wave numbers distributed around the value of the selec
one (kM) in the far field@Fig. 3~b!#. The spectrum of excited
wave numbers is clearly narrower in the convective regi
than below the threshold. This is reflected in the more re
lar pattern appearing in the near field. Our simulations d
play the typical features associated with the convective
gime @13#.

~1! The noise-sustained pattern does not fill the wh
region in which the pump has a value above the thresh
This is because the pattern grows while traveling in
walk-off direction. Note that the space point at which t
pattern reaches a macroscopic observable value changes
domly from time to time. This reflects the origin of the pa
tern in ~quantum! noise.

~2! The far field shows the predominance of differe
wave numbers at different times resulting in a spatial sp
trum that is broader than that found in the absence of
walk-off or in the absolutely unstable regime. There is co
petition between the modes within this broad spectrum
hence it is not possible to define, in this regime, asingle
wave numberkM corresponding to the most excited mode
Modes with different wave numbers compete to form t
pattern, switching on and off as the pattern evolves.

Phase-space trajectories for this regime are shown in
6. We find that there are random changes in the phase
amplitude of the slowly varying signala18(1kc) around a
zero mean value@Fig. 6~a!#. This is similar to the behavior
depicted in Fig. 4~a! below the threshold. The difference
that in the convective regime macroscopic intensities
reached, with the signal amplitude taking values compara
to those reached in the absolutely unstable regime@compare
scales of Figs. 4~a!, 6~a!, and 9#. The continuous changes i
intensity from zero to macroscopic values originate in t
fact that, in the convective regime, a given mode is not c
stantly switched on@see Fig. 3~b!#. The pattern is sustaine
by the noise and is subject to a continuous renovation:
ferent stripe patterns~with different wave numbers! grow,

FIG. 5. Wigner distribution for the superposition of mod
a1(1kc)1a1(2kc). Parameters of Fig. 4. Total time 2 000 00
units. Note the factor of 10 difference in the scale of the two ax
3-7
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ZAMBRINI, BARNETT, COLET, AND SAN MIGUEL PHYSICAL REVIEW A 65 023813
travel in the system starting from the noise and die out. T
has an important consequence in the time scales of the
field dynamics: below the threshold these scales are de
mined by noise, while in the convective regime they a
determined by the time needed for a perturbation to tra
through the system. Another indication of the nonlinear d
namics of fluctuations that occur in this regime is that
quadrature displaying reduced fluctuations is no longer
one determined by the linear analysis. This is seen in
6~b! where the ellipse of fluctuations is tilted with respect
the corresponding one below threshold Fig. 4~b!.

The probability distributions obtained from the traject
ries of Fig. 6 also reflect the nonlinear nature of the fluct
tions in this regime. In Fig. 7 we show theW distribution for
the superposition of modes@a1(1k)1a1(2k)# for one of
the most excited wave numbers, namelyk51.04kc . A most
noticeable feature is the non-Gaussian shape of the dist
tion for large values of the amplitude in the direction
undamped fluctuations. The wings of the distribution ori
nate in the macroscopic fluctuations of the mode under c
sideration when it switches on. Its most probable value
still zero, reflecting the fact that most of the time the mo
remains switched off. We can view these non-Gaussian
tures in the wings of our Wigner functions as precursors
the pair of peaks appearing in the absolutely unstable reg
These wings become more pronounced as we approach
absolutely unstable regime.

FIG. 6. ~a! Trajectory of slowly varying amplitude ofa18
(1kc) during 100 000 time units.~b! Trajectory of @a18(1kc)
1a18(2kc)#. ParametersF51.025, D050, D1520.25, v50.42,
anddx.1.7702.

FIG. 7. W„a1(1k)1a1(2k)…, for an excited modek
51.04kc , obtained from a trajectory during 10 000 000 time uni
Other parameters as in Fig. 6.
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Finally, we note that the modes that become excited
contribute to the dynamics seem to reach a common m
mum amplitude. This is probably fixed by the maximu
value of the energy exchanged with the pump mode in
nonlinear interaction. This is shown in Fig. 8 where the p
sible values of different modes are seen to be cut off
essentially the same amplitude. The non-Gaussian form
these distributions is also clear and this again demonstr
that we are dealing with nonlinear effects associated with
quantum fluctuations.

C. Absolutely unstable regime

In the absolutely unstable regime we observe from
near field plot, Fig. 2~c!, that a macroscopic and stable tra
eling pattern fills the whole of the above-threshold regio
This behavior is reflected in the far field, Fig. 3~c!, which
shows a well-defined and fixed dominant wave number an
narrow spatial spectrum. We should note that the domin
wave numberkM does not coincide with the most unstab
wave number at the thresholdkc . This is a consequence o
the interplay between nonlinearities and the walk-off. Pha
space trajectories for the amplitudes of these two modes
shown in Fig. 9. Even after elimination of the rapid fr
quency there remains a phase-diffusion process, but ma
scopic values of the intensity are maintained. Although th
is essentially only the phase diffusion forkM , the critical
mode, with wave numberkc , displays a second frequenc
superimposed on the phase-diffusion process.

.

FIG. 8. Section of the Wigner distribution along the imagina
axis W„0,Im@a1(k)#… for three excited modes:kc ~dashed line!, k8
51.04kc ~dashed dot line!, andk951.06kc ~continuous line!. Same
parameters as Fig. 6.

FIG. 9. Trajectories of~a! a18(kc) and ~b! a18(kM) during
100 000 time units,F51.05, other parameters as in Fig. 6.
3-8
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MACROSCOPIC QUANTUM FLUCTUATIONS IN NOISE- . . . PHYSICAL REVIEW A 65 023813
The phase-space trajectory for the superposition of mo
@a18(kW M ,t)1a18(2kW M ,t)# is shown in Fig. 10. We observ
that fluctuations are not uniformly distributed around a z
value as they were in the below threshold~Fig. 4! and con-
vective ~Fig. 6! regimes. Instead, they describe a clos
curve around the origin. The associatedW distributions dis-
play peaks at two values. These correspond to the two po
of the maximum curvature of the elliptical ring.

The main characteristics of the trajectories in the ph
space are reflected in the associated Wigner distributions
the less-intense modes contributing to the dynamics we
approximate the associated Wigner functionW„a1(k)… by a
Gaussian, displaced from and orbiting about the origin in
phase space. In Fig. 11~a! we show a cut along the rea
direction of the Wigner distribution for the critical mod
(W„Re@a1(kc)#,0…). By contrast, the most-intense mode~with
wave numberkM! displays some interesting new feature
Figure 11~b! shows an asymmetry in the distribution of flu
tuations around the mean amplitude in each of the pe
with a sharp decay of the distribution at some maxim
amplitude. These facts indicate the existence of nonlin
properties associated with the quantum fluctuations in
absolutely unstable regime. These features would necess
be absent in any analysis based on a linearization abo
deterministic macroscopic state.

VI. NONCLASSICAL PROPERTIES
IN THE CONVECTIVE REGIME

The convective regime is characterized by amplified fl
tuations and macroscopic noisy patterns. It is interesting

FIG. 10. Trajectory of@a18(1kM)1a18(2kM)# over 10 000 000
time units. Other parameters as in Fig. 9.

FIG. 11. W„Re@a1(k)#,0…, for positive values of Re@a1(k)#, for
~a! k5kc , ~b! k5kM , obtained from a trajectory during 10 000 00
time units. Other parameters as in Fig. 9. These figures are sym
ric around zero.
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ask, therefore, if any of the low-noise quantum featu
found below the threshold can survive in this noisy enviro
ment. Quantum effects in the OPO have been observe
subshot noise fluctuations both in the field quadratures
intensity differences associated with the down-conver
light @30#. Examples of the noisy features associated with
real part of the signal field in this regime are plotted in F
12 for three different values of the driving field, all withi
the convective regime. Note the different scales on the v
tical axes in these figures.

It is helpful, in looking for nonclassical effects, to keep
mind the manner in which such effects appear below
threshold. We will also restrict ourselves to the study
quantum correlations in the far field. Conditions for sque
ing and associated nonclassical effects are usually expre
in terms of normally ordered moments of operators~indi-
cated by ::!. These can be obtained from the symmetrica
ordered moments@indicated byS()#, that are associated with
the Wigner function, by use of the commutation relatio
~11!

^:Â~k,t !Â~k8,t !:&5^S„Â~k,t !Â~k8,t !…&,

^:Â~k,t !Â†~k8,t !:&5^S„Â~k,t !Â†~k8,t !…&2 1
2 d~k2k8!.

The d function appearing in the second of these equation
a signature of the shot or vacuum noise. Our approxima
scheme is based in the Wigner representation and gives
sults for correlations of symmetrically ordered operators
the intracavity fields. In order to obtain results for the cor
sponding normally ordered products and to test for the p
ence of nonclassical effects, we need to establish a refer
shot noise level. This level can be obtained for each qua

et-

FIG. 12. Snapshots of the real part signal Re@a1(x)# for different
pump values:~a! F51.001,~b! F51.01, and~c! F51.025. Other
parameters aredx51.7678, 512 grid points,a051, D050, D1

520.25, andv50.42. Note the different vertical scales in th
figures.
3-9
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ZAMBRINI, BARNETT, COLET, AND SAN MIGUEL PHYSICAL REVIEW A 65 023813
ture correlation from the variance of thelinear stochastic
process associated with the empty cavity

] ts~x,t !52@~11 iD1!22i¹2#s~x,t !1
1

a1/4

g

g
j1~x,t !.

Here we have omitted the walk-off term as it does not aff
the shot noise level. Squeezing in our simulations will
associated with a quadrature probability distribution tha
narrower than the Gaussian associated with this linear
cess. In general, we can consider a different quadrature
each wave numberk. It is useful to define a pair of~super-
position mode! quadratures for eachk parametrized by the
angleu. For the critical wave number these take the form

X̂6~0!5 1
2 @Â1~kc ,t !6Â1~2kc ,t !#eiu1H.c. ~20!

We expect, in general, that the most strongly squee
quadrature should depend on the value ofu @7#.

We begin our investigation of the convective regime a
point that is just above the threshold withF51.001 @Fig.
12~a!#. Fluctuations associated with the pattern are in t
case still relatively small and we find that the Wigner dist
bution has a Gaussian shape as shown in Fig. 13. We
that there is quadrature squeezing, with the squeezed qu
ture X̂2(0) exhibiting the same level of squeezing as
found just below the threshold. In particular, forF5F thr
60.001 we find that the intracavity field is squeezed by 5
below the shot noise limit for a flat pump and by 37% for
super-Gaussian pump@31#. This indicates a smooth variatio
across the threshold for the squeezed quadrature varia
For excited modes, other than the critical one, we also
squeezing below the shot noise level for the appropr
quadrature.

Increasing the value of the pump, so as to move furt
into the convective regime, leads to a rapid increase in
magnitude of the signal field. Indeed, for (F51.01) we ob-

FIG. 13. W„ Re@a1(kc ,t)2a1(2kc ,t)#,0…. Continuous line is ob-
tained forF51.001, and dotted line forF51.01. The dashed line
represents the distribution for the vacuum state, correspondin
the shot noise level. The distributions are relative to trajectorie
2 000 000 time units. Other parameters as in Fig. 12.
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serve, in Fig. 12~b! that the signal field has grown by tw
orders of magnitude. Fluctuations are still extremely ph
sensitive and, as depicted in Fig. 6~a! there is a strong reduc
tion in the fluctuations for some quadratures. This reduct
is insufficient, however, to reach below the shot noise le
and there is no squeezing. In fact, we find residual fluct
tions 127% abovethe shot noise level. This is comparab
with the value associated with the coherent states. These
hanced fluctuations are associated with a much broa
Wigner distribution as shown in Fig. 13. It is remarkab
however, that this enhanced but still small level of fluctu
tion can coexist with the macroscopic fluctuations in o
thogonal quadrature. If we move still further above t
threshold then we find, forF51.025@Fig. 12~c!#, a variance
which is 159 times the shot noise level and both quadratu
display fluctuations that are well above the level usually
sociated with quantum effects. We note that for the param
values used here, the threshold of absolute instability for
infinite system occurs atF;1.035.

A further indication of the nonlinear nature of the fluctu
tions in the convective regime is given by the fact that t
angleu, for which there is the greatest reduction in the flu
tuations, changes with the strength of the pump value. T
has already been discussed in connection with Fig. 6~a!. In
particular, for the critical wave number,X̂2(u) shows stron-
gest squeezing foru50 in the linear regime below the
threshold. In the convective regime, however, the grea
reduction in the quadrature fluctuations occurs for a value
u,0. This is shown in Fig. 14 in which we plot the varianc
Var@X̂2(u)# in normal ordering and normalized to the sh
noise level, forF51.025.

The OPO can also exhibit strong correlations betwe
the far field intensities associated with opposite wave nu
bers. We have calculated the fluctuations in the inten
difference for opposite wave numbers associated with
normally ordered moment ^:@Â1

†(k)Â1(k)2Â1
†(2k)Â1

(2k)#2:&. A negative value for this quantity indicates a no
classical effect, sometimes referred to as twin beams or
tensity difference squeezing@32#. As in our discussion of
quadrature squeezing, we find that this quantity is only ne
tive very near to the threshold (F51.001). Further into the
convective regime we find that the macroscopic noise as
ciated with the formation of a pattern increases the noise
the intensity difference. ForF51.01 we find that the
intensity-difference squeezing has been replaced with fl
tuations in excess of the shot noise level.

to
f

FIG. 14. Var@X̂2(u)# at F51.025 for the critical wave numbe
k5kc . The minimum occurs foru,0.
3-10
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MACROSCOPIC QUANTUM FLUCTUATIONS IN NOISE- . . . PHYSICAL REVIEW A 65 023813
In summary, we have shown that quantum effects
survive above the threshold in the convective regime
only very near to the threshold. On increasing the pump
entering further into the convective regime, we find that no
linear effects associated with the fluctuations tend to dist
ute part of the macroscopic fluctuations into the observa
that are squeezed nearer to the threshold. This identifies
walk-off as an effective mechanism of quantum decohere
in which the macroscopic nonlinear fluctuations presen
the convective regime overwhelm quantum effects associ
with noise reduction.

VII. CONCLUSION

We have introduced a suitable method to describe
quantum properties of macroscopic patterns sustained
quantum fluctuations in a degenerate optical parametric
cillator with walk-off. These patterns appear in the conve
tive regime and are characterized by a broad far field sp
trum with continuous competition between several wa
numbers~thus, few-mode approximations are not adequa!
and by being the result of amplified quantum fluctuatio
around an unstable reference state. Traditional lineariza
techniques cannot be applied in these situations. Instead
use a time-dependent parametric approximation in which
pump field is treated as ac-number variable but driven by th
c-number representation of the quantum subharmonic si
field. The key point is that this includes the effects of t
fluctuations in the signal on the pump, which in turn act ba
on the signal.

Using this method we have described the quantum fl
tuations in type-I OPO with walk-off in three regimes: belo
the threshold of instability, in the convective unstable regi
and in the absolute unstable regime.

Below the threshold we find that the Wigner represen
tion has a Gaussian shape centered at the origin. This is
result previously found in an OPO without walk-off@6# from
a linearized analysis. We also find that the walk-off does
destroy the existence of squeezing in suitable quadratur

In the convective regime the macroscopic character of
fluctuations is reflected in an extremely broad Wigner dis
us

.
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bution where the probability is still centered at the origin b
the nonlinear effects lead to the appearance of the wing
the distribution that is no longer a Gaussian. These wi
are, in fact, precursors of the pair of peaks appearing in
absolutely convective regime. We show that squeezing in
appropriate observables can be also obtained in this reg
but only just above the threshold. The walk-off and the no
linearities act as quantum decoherence mechanism, distr
ing part of the macroscopic fluctuations into the observab
that were squeezed below the threshold. Another nonlin
effect appears in the selection of the quadrature display
reduced fluctuations, that is no longer the one determi
linearly.

In the absolutely unstable regime there are also clear
dications of nonlinear properties associated with quant
fluctuations. The interplay between the walk-off and nonl
earity results in a complex dynamics in which the freque
cies of far field modes are not constant, giving a complica
variation of the phases. Also, the most-intense mode is
the critical mode. We find that while the Wigner distributio
for the less-intense modes can be approximated by a Ga
ian ~displaced from the origin and orbiting about it! this is
not the case for the most-intense modes for which the dis
bution of fluctuations is asymmetric around the mean am
tude with a sharp decay at some maximum amplitude.

Finally, our method can be used in other situations a
systems in which there are large fluctuations of the sig
that cannot be described by approximations based on lin
ization. This includes situations in which the critical fluctu
tions appear at the threshold for pattern generation.
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