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1 Fourier series versus Fourier discrete trans-
form

As an introduction, let us describe exactly the relation between the Fourier
series and the Fourier discrete transform. In these notes we will be interested
in (real or complex) functions f(x) defined in a d-dimensional space z € R
The function f(x) is periodic in all the space dimensions, i.e.:

flz+ L&) = f(a) i=1,....d (1)

and ¢; is the unitary vector in space-direction i: é; = (1,0,0,...), & =
(0,1,0,...), etc. We introduce the Fourier transform of periodic functions
as:

. 1 )
fla) = Folf@) = 45 [ do flope )
L [O,L]d
We introduce the following notation:
~ ~ 2m
fr = f(ar), Qe = fk (3)
and k = (ky,...,kq). It is well known that (given some general conditions)

the following Fourier series is an exact representation of f(x):

f@)=F' [f@) = Y fue Tk (4)

k=—00



From the numerical point of view, it is very expensive to compute the f
because their calculation involves a d-dimensional integration. Therefore,
the first approximation is to compute them using only the values of the
function f(z) at selected lattice points z, = nAz, for n = (nq,...,ng) and
n; = 0,...,N — 1. The physical length is L = NAz. We compute the
coefficients of the Fourier series using only f, = f(z,),

fr = %f? k (5)
where we have defined define the discrete Fourier transform as ':
N-1
fk:fD[fn] = anez%ﬂlm (6>
n=0

Although the coefficiens of the discrete Fourier transform, fk are an approx-
imation to the coeflicients of the Fourier series, fi, there is an exact relation
between f;. and fy:

fr=N">" fermn (7)

If f(x) is a real function, we have the additional property:

fo=f (8)
The second approximation is that the infinite sum in (4) is replaced
by a finite one using the discrete coefficients:

ko
Fla) ~ o) = g O fue 9
k=k1
The nice thing of these two approximations (5) and (9) is that we can demand
that they cancel each other and the previous formula becomes then exact for
the lattice points x,, i.e. f(x,) = f(x,). This is achieved by using any set
of values kq, ko such that ko — k; = N — 1. Therefore, we define the discrete
inverse Fourier transform as:
| kEN—1

F o —i2Tkn
i O fe (10)

k=k1

Fo' il

Tn this and other cases, we use a “pseudo” 1-d notation. It should be clear what is
meant for the indexes in the case d > 1



(the value of k; is irrelevant in this definition and the usual definition takes
simply k; = 0). Using the property

i Ze’*”’f = Oro (11)
it is easy to prove that

o' U] = flan) = fa (12)

Of course, the nice thing about the discrete Fourier transforms Fp and
Fp! is that they can be computed numerically very efficiently. There are
several routines to perform the discrete Fourier transforms. One has to make
sure that the factors of N and 7 used in their particular definition agree with
the ones used here.

The question now is which values of k; and ks should we use. Since we
just said that any values such that ks — k; = N — 1 would do as far as the
values f(z,) are concerned, what do we mean by choosing the right values
for ki and k,? The answer is that we mean that the function f(r) is a good
approximation to f(z) also at other values of x.

To choose k1 and ks in order to obtain the best approximation of f(x) to
f(z) we have to understand a little bit more deeply the relation between the
coefficients of the Fourier series and the coefficients of the discrete Fourier
transform. The way we have defined them implies that the fk are an ap-
proximation to the fz. How good an approximation? It turns out that the
approximation is very bad for large values of |k|. And the reason is due to
a property of the fk called “aliasing” which is not present in the coefficients
fi. The property, which is easily derived from Eq.(6), states that the coef-
ficients of the discrete Fourier transform are periodic with a period of N in
the indexes: R R

Jran =[x (13)
(again, we use here a 1-d notation; the formula is valid if we increase any
of the coefficients of the vector of indexes k£ by N). This formula states, for
example, that fy = fo, whereas the coefficients of the Fourier series fj, for a
well behaved function decrease with k for large k. In practise, it means that
the approximation (5) of f; to f, begins to worsen for |k| > N/2 (see figure
(1) later). For |k| > N/2 the fr are given the values of their “alias” modes.
For instance, when N = 8§, f18 = fm = f2 f_ . But we can only affirm
that fo & fQ/N we can not say that fio ~ flo/N
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This result and the fact that the Fourier series involves an infinite sum of
positive and negative terms, leads us to keep in the truncated Fourier series
(9) a symmetric interval for (ki,kg). If N =2M + 1 is an odd number, the
obvious choice is (ki, ko) = (=M, M) and the series is:

M
Fz) ~ % S frete (14)
k=—M

If f(z) is a real function, this choice (and any other satisfying k; = —k3) has
the additional advantage that the imaginary part of (9) is exactly zero for

all values of x. Let us prove that (9) is real for ky = —k:
( k‘Q k2 k’2
~ 27 ~ - 27 ~ - 270
Z fke—szJ:> Z * z—ka} o Z f_keszx _ Z fke—szac
k=—ko k=—ko k=—ko k=—ko

(15)

If N = 2M is an even number (the commonest case in practice due to the
fact that fast Fourier routines are more effective and the only one considered
henceforth), one can not fulfill the requirements k; = —ky and ko—k; = N—1.
In this case there are two equally reasonable choices (k1, k2) = (—M + 1, M)
or (ki, k) = (—M, M —1). In the first option we write the Fourier series as:

f(x) ~ fi zid Z fro ke (16)

—M+1

However, for a real function f(z), this expression has in general a non-zero
imaginary part for arbitrary values of . The best alternative in the case of
N even is to use a truly symmetric choice, namely:

M—-1

— T ]_ ~ 27

F2) ~ folz) = — f_MeZ*Mw + Y fre TR 4 g e M| (17)

k=—M+1
which will be written as
1 M/
r F—i2ky

f(x) = folz) = i Z fre TTE (18)

k=—M

where the prime in the sum indicates that the first and last terms are halved.
This symmetric option is a little bit more messy to implement in practice
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although it has the advantage that the imaginary part is exactly zero. The
only difference between the expressions (16) and (18) is in the imaginary
part. In fact if we substract (16) from (18) we obtain:

ifu . (27
~a Sin (fo) (19)

in the case N = 2M we can prove using (8,13) that f_,; = fu is real and,
therefore, this last expression is purely imaginary (although at the lattice
points z, = nAx this imaginary part vanishes). Therefore, an alternative
expression to (18) somewhat more useful for the numerical programming is
to take the real part of (16):

_ 1 M A2
fQ(x) = R [W Z fke_zfﬂ—kx (20)
k

=—M+1

Following Sanz-Serna, we use as an example the function f(z) = 3/(5 —
4 cosz). This function is periodic of period L = 27. The coefficients of the
Fourier series are given by fk = 27 I¥l. The coefficients of the discrete Fourier
transform, fk, depend on the number of points N used in the discretization
of (0,27). Figure (1) shows the difference between the coefficients fi, and fj,
for different values of N.

Figure (2) shows the function and its different approximants, while figure
(3) shows the imaginary part of the approximants. We have also included
the approximant that uses the exact Fourier coefficients, namely:

L
ik
N 2 S (21)
k=—N/2
and the one that makes a big alias error (although is the one that comes
naturally from the inverse discrete Fourier transform):

(22)

The message is that, in the case of even N = 2M one has to use either
approximant (16), (18). The second one is better because the imaginary part
of this approximant, for real functions, is always equal to zero. Alternatively
one culd use the approximant (21) which uses the exact coefficients, but it
is very rare in practice to know the exact coefficients.
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Figure 1: Comparison between the coefficients of the Fourier series, f; (sym-
bols), and those of the discrete Fourier series, N i (lines), for the function
f(z) =3/(5b —4cosz). The dotted line corresponds to N = 8 and the solid
line to N = 16. Notice that, due to aliasing, the discrete coefficients are a
good approximation to the coefficients of the (infinite) Fourier series only for
|k| < N/2. We have used the program raul/ALGORITHM/dif.f to produce
the data for these plots.

Figure 2: Comparison between the function f(x) = 3/(5 —4cosx), solid line
2, and its differents Fourier approximants in the case N = 8. Line 3 is for
(21); line 4 is for (16); line 5 is for (22) and line 6 is for (18).



Figure 3: Imaginary part of the Fourier approximants to the f(z) =3/(5 —
4 cosx) in the case N = 8. Same line meanings than in figure (2).

2 Algorithms for partial differential equations

The algorithms we propose are valid for the class of equations which contain
linear and non linear terms:

Ou(x,t)
ot

Although the results are quite general, we will consider the specific case of
the 1-d Nikolaevskii equation:

g (i) () e

or, written in terms of the variable

= L[u] + Nu] (23)

ou(z,t)

oxr (25)

v(x,t) =

the equation becomes:

d(a,t) [e_ <1+0_2>2] y O (26)

ot Ox? Ox? - Or

We impose that the field u(z, t) satisfies periodic boundary conditions in the
interval z € [0, L] and we assume that the Fourier transform of u(z,t), as
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defined in the previous section, does exist.
1 .
i0,t) = Flule, 0] = 75 [ doulz, e @7)

The inverse transform is given by:

(e, t) = Fplla(g, 1) = Y dp(t)e  TF (28)

k=—o0

with the notation . (t) = t(qk,t), q¢ = 2wk/L. We apply now this Fourier
operator Fp to the differential equation. Under this transformation the linear
term of the equation usually assumes a non-differential form. For example,
integration per parts yields:

Fp {8];(;)1 = —iqfx (29)
and therefore: 3
") e @) (30)

Proceeding this way, we obtain that the linear operator of the Nikolaevskii
equation in Fourier space as:

ro [ (10 2) o)

where wy, = w(qx) and

= wkﬂk (t) (31)

9=4qk

w(q) = e —(1—¢%)? (32)

The non-linear terms might be transformed in a slightly more complicated
form. For instance, for the non-linear term of the first version of the Niko-
laevskii equation, we use:

(%f))? — <]:El[iQf(Q)]>2 (33)

Applying the Fourier transform to the equation (24) we obtain:

Ot (t)
ot

= wlly,(t) + ak(t) (34)



where the non-linear term is:

a(t) = —Fp [(f;l[iqﬂ(q, t)])Z]

(35)

q9=qk

For reasons that will be clear later, this expression is better that the mathe-
matically equivalent one:

ax(t) = Fp [(f;l[qﬂ(q,t)])Q}

(36)

q9=qk

We approximate the coefficients fk of the Fourier series by the corre-
sponding ones f; of the discrete Fourier series using Eq.(5). The result is a
set of N coupled (complex) equations for the discrete Fourier variables:

dig(t) . . N N
C’;t — Wity (t) + an(t), h=—g+1 5 (37)

where
ag(t) = Fplu(z,t)] (38)
ap(t) = FpNu(,t)]] (39)

The equations for other values of k are not needed since, due to aliasing, they
simply reproduce this basic set of equations. The pseudospectral methods
we will develop, use (37) as the basic set of equations to integrate. The
integration is done in the discrete Fourier space. Whenever the value of
the field in real space u(z,t) is needed we have to use Eq.(18). For a given
equation, wy and ay(t) will have different expressions, but the algorithms will
apply independently of their specific form. A feature of the pseudospectral
methods is that, usually, the nonlinear term is computed much more easily in
the real space. If this is the case, we use Eq.(18). Let us give some examples
of the expression of ax(t) in terms of the Fourier coefficient ().

e A nonlinear term of the form: Nu] = u(x,¢)?. In this case it is irrele-
vant whether we use Eq.(18) or Eq.(22) since both give the same values
for f,. The ax(t) will be computed as:

ax = Fpl(Fp'lin(t)])’] (40)



e First version of the Nikolaevskii equation (24): In this case, we have to
be very careful because Eq.(18) and Eq.(22) give different results after
differentiation. We use, of course, Eq.(18) which yields:

8f N ~27T P .

SR D (—sz) fue % (41)
k=—M

Since fa; = f_as the first and last terms (the halved ones) cancel and

we can write:

of 21\ 2 _emp
RPN —i— VLR 42
o > ( i k:) fre % (42)
k=—M+1
or
0 — N .9
% ~ (—qu)fke L (43)
k=0
with the convention that:
2m N
g = —Fk k=0,——1 44
k I ’ 9 ( )
q% = 0 (45)
2 N
G = %(k—zv) k=S 4L N1  (46)
(47)
The final recipe to compute the nonlinear term for Eq.(24) is:
~ “1r-=— A 2
ar(t) = ~Fp | (F5' liain ()] (48)

e Second version of the Nikolaevskii equation (26): The final expression
1s:

axlt) = iaFp [ (Fp ()’ (49)

We are ready now to implement a numerical algorith. Before, some important
points are in order:

1. For the case of real fields u(z,t) it is possible to store its discrete
Fourier transform using only N real variables. This is because of the
symmetry relation f; = f_j. Different routines use different storage

10



rules and we are using here the ones used in the Numerical Recipes
book. Namely, we need to store only the following complex numbers
fo, fioooo, fN 15 fN Moreover, fo and f12v are real numbers. Therefore,
we store the Fourler transform in a real vector with N components. For
instance, for N = 8, the real field is stored in an 8-component real vec-
tor as (fo, f1, f2, f3, f1, [5, f6, f7). The Fourier transform fi = gu+ihy is
stored in an 8-component real vector as (go, g4, g1, P11, ga, b2, g3, h3). Us-
ing this notation, the (real) amplifying function which satisfies w(q) =
w(—q) is stored as (wo, wy, w1, w1, wa, Wa, w3, ws). The wavevectors g, are
stored as (0,0, q1, q1, 42, G2, g3, g3)- The second zero is due to equation
(45) above.

In summary, one only integrates the equations for uy, for k = 0,1,..., N/2
and uses that uy and ﬁ% are real numbers. If 4, is needed for £ =

—% +1,...,—1 one must use u_; = uj.

One has to make sure, though, that all the direct Fourier transforms
are applied to real fields and that all the inverse Fourier transforms
are applied to complex fields which are the Fourier transform of a real
field. This is why it is better to use expression (35) than (36) because
iqt is the Fourier transform of —0,u (a real field) whereas there is no
real function whose Fourier transform is qu.

An extra bonus of using only half of the Fourier components explicitely
in the numerical calculation and, therefore, using the Fourier transform
of a real field is that the imaginary part of the field is never computed.
This turns out to be important when there is a numerical instability
in the imaginary part. In those cases, the imaginary part of the field,
that must be zero always, starts growing after some time hence leading
to the collapse of the algorithm. This numerical instability is avoided
by our algorithm that never computes the imaginary part.

. It is very convenient to make a change of variables based upon the
exact solution of the linear part. The new variable, z;(t) is defined by:

ék(t) =€ wktﬂk@) (50)

The equation for the new variable is:

ar(t) (51)



It is to this equation that we apply any of the existing algorithms.
In particular we have considered Runge-Kutta and predictor corrector
methods.

2.1 Predictor-Corrector

A basic integration algorithm (not yet a predictor-corrector) is:

h
Zr(t+ h) = Z(t) + 5[32,;@) — Z.(t — h)] (52)
The evolution equation for the original variable becomes then:
h
g (t+ ) = e Ly (t) + 5 [Bax(t) — e ag(t — b)) (53)

I have programmed this using fortran 90. For the Fourier transform I use
the realft routine from Numerical Recipes (with extra factors of 2 and N in
order to account for the definitions above). The algorithm is very stable.
I have tested for the Nikolaevskii equation using different time steps. For
h = 0.05 the algorithm does not crash and gives results very close to those
using half the time step h = 0.025. In the semi-implicit method, the results
for h = 0.05 and h = 0.025 are very different already at initial times. Since
this is a chaotic equation, results never agree with different time steps for
arbitrarily large integration time.

Using the fast fourier routines of the Silicon Graphics machine, the algo-
rithm performs as follows:

For N = 8192, 0x = 0.31, h = 0.05, ¢ = 0.01 it takes around 140 min
to reach ¢t = 50,000. This yields et = 500. If we were to use ¢ = 0.0001
and et = 1000 (assuming that we could still use A = 0.05) that would take
around 20 days in the Silicon Graphics (as compared to around one year we
estimated with other algorithms).

We have used in our simulations a 4-th order predictor-corrector method
(see any book on numerical methods). The predictor is the Adams—Bashforth
four-step method, which for the equation y = f(x,y) reads:

h
Yir1 = Ui + ﬂ[55fi —59fi1+37fia — 9fi_3] (54)

The corrector is Adams-Moulton three-step:
h
Yit1 = Yi T ﬂ[gfi—i-l +19fi = 5fic1 + fia) (55)
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For our equation in the variable z these algorithms read, respectively:
Ze(t+h) = Z(t) + (56)

h
% [55e 7 ay,(t) — 59e kMg (t — h) + 37e~+(=2 g, (t — 2h) — 9e™“*(=3Mg, (¢ — 3h)]

and
Ze(t + h) = Z(t) + (57)
2—2 [9e™ RNy (2 + h) + 19e ™My (t) — 5e™F T May(t — h) + e ¥ 2, (¢ — 2h)]
Going back to the original variable u, the integration algorithms read:
G (t 4 h) = e™* [y, (t)+ (58)
% (55ax(t) — 59e™*ay(t — h) + 37e*™*ay(t — 2h) — 9e*™*ay,(t — 3h))
and
G (t + h) = e™*ay(t) + (59)
h

o [9ax(t + h) + 19e™*a,(t) — 5e*™*ay(t — h) + e*™*ay,(t — 2h)]

In the program I have used Fortran90 that simplifies enormly the code. The
basic integration steps are programmed as follows:

call nonlinear(u,u4,uc,uédc,qc,L,coeff)
v=w* (u+dt55*ud-dt59*u3+dt37*u2-dt9*ul)
call nonlinear(v,ul,vc,ulc,qc,L,coeff)
u=dt9*ul+w*x (u+dt19*ud-dt5*+u3d+dti*u2)
ul=u2*w

u2=u3*w

u3d=ud*w

In this code we have used the following notation:

gy (t — 3h)

ul —
u2 — e, (t —2h)
u3 — e*ha(t — h)
ud —  ag(t)
ul — ai(t+h)

W el
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which are updated after every time step using trivial relations. dt55 stands
for 55h /24 and so on. The subroutine nonlinear(u,al,...) returns in al
the nonlinear term. In an earlier version, I did not compute again a(t + h)
after the corrector step but rather used the value after the predictor. I believe
this is correct since the order of the error involved is beyond the order of
the algorithm. However, I have decided to implement the method exactly,
although the price one has to pay is to compute the nonlineal function twice
per time step. If one wants to compute this function only once, modify the
code as follows:

v=w* (u+dt55*ud-dt59*u3+dt37*u2-dt9*ul)
call nonlinear(v,al,uc,alc,qc,L,coeff)
u=dt9*al+wk (u+dt19*ud-dt5*u3d+dt1*u2)
ul=u2*w

u2=ud*w

u3d=uéd*w

ud=al

The nonlinear subroutine for the first version of Nikolaevskii equation,
see Eq.(48) is:

subroutine nonlinear(u,v,uc,vc,qc,L,coeff)

implicit double precision (a-h,o0-z)

dimension u(L),v(L)

double complex uc(L/2),vc(L/2),qc(L/2),coeff(L/2+15)
vc=qc*uc

call realft(v,L,-1,coeff)

V=—V*Vy

call realft(v,L,1,coeff)

return

end

here qc is a complex vector whose components are A?Z’xk fork=0,..., % —1
or, in brief, qc is nothing but ¢7q. For the second version of Nikolaevskii

equation, Eq.(49) the algorithm is:

subroutine nonlinear(u,v,uc,vc,qc,L,coeff)

implicit double precision (a-h,o0-z)

dimension u(L),v(L)

double complex uc(L/2),vc(L/2),qc(L/2),coeff(L/2+15)
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v=u
call realft(v,L,-1,coeff)
V=Vkvy

call realft(v,L,1,coeff)
vc=qc*vc

return

end

2.2 Runge-Kutta

The previous 4th-order predictor-corrector method requires to be warmed
up by generating the 4 first time steps by a method of equivalent accuracy.
We use a 4th-order Runge-Kutta method as folows. We write the equation
(subindex k and hats are not written out for the sake of clarity) as:

i =c“a=c"a(e"2) = f(z,1) (60)
The classic 4-th order Runge-Kutta reads:

ki = hf(z1) (61)

Ky h

k h
ky = hf(z+52,t+§) (63)
ks = hf(z+ ks, t+h) (64)

h h h h

2(t+h) = z(t)+ ki + shko+ Sks + =k (65)

6 3 3 6
In the case that f(z,t) is given by (60), the k;’s are given by:

ki = he “la(e“'z) (66)
ky = he“(H3)g <ew(t+3) <z+%)> (67)
by = he (8 (ew<t+z> (+%)) (69)
ke = he g (e (2 4 y)) (69)

The notation can be simplified introducing:

wh

b o= % (u(t)—l—ga(u(t))) (70)
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wy = e (u(z>+ge%”a<u1)> (71)

wh

ult) + he‘Ta(u2)> (72)

Uz = ¢€

€
>
S

And the final algorithm for the u variable is:

h h w h w
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3 Program

c SPT/upc.f

¢ Predictor corrector method for Nikolaevskii’s equation in the u variable
c

implicit double precision (a-h,o0-z)

parameter (L=256)

dimension u(L),ul(L),u2(L),u3(L),ud(L),v(L)

double complex qc(L/2),coeff(L/2+15)

double complex uc(L/2),ulc(L/2),u2c(L/2),u3c(L/2) ,udc(L/2),vc(L/2)
dimension w(L),w2(L)

equivalence (uc(1),u(1))

equivalence (vc(1),v(1))

equivalence (ulc(1),ul(1))

equivalence (u2c(1),u2(1))

equivalence (u3c(1),u3(1))

equivalence (u4c(1),u4(1))

open(55,file=’upc.in’,status=’0ld’)

read(55,%) epsilon,dt,nt,nm,nw,u00,dx,iseed

call dran_ini(iseed)
call zfft1di(L/2,coeff)

pi=4.0d0*datan(1.0d0)
dt2=0.5d0*dt
dt3=dt/3.0d0
dt6=dt/6.0d0
dt24=dt/24.0d0
dt55=55.0d0*dt24
dt59=59.0d0*dt24
dt37=37.0d0*dt24
dt9 = 9.0d0*dt24
dt19=19.0d0*dt24
dt5 = 5.0d0*dt24
dtl = 1.0d0*dt24

do j=1,L/2
qc(j)=(j-1)*2.0d0*pi/ (L*dx)*cmplx (0.0d0,1.0d0)
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enddo

do j=1,L/2

q=(j-1)*2.0d0*pi/ (L*dx)

w(2%j-1)=q**2* (epsilon-(1.0d0-q**2)**2)
w(2%j)=q**2* (epsilon-(1.0d0-g**2) **2)
enddo

j=L/2+1

q=(j-1)*2.0d0*pi/ (L*dx)

w(2)=g**2% (epsilon-(1.0d0-q**2)**2)

w2=dexp (dt2*w)

w=dexp (dt*w)

do j=1,L

u(j)=u00*dran_u()

enddo

call meanvv(u,L,um)

write(6,*) ’initial’,um

write(68,*) 0.0d0,um

call realft(u,L,1,coeff)

write(66,*) nt/nw,L

call nonlinear(u,ul,uc,ulc,qc,L,coeff)
ul=ul*w**3

do ijk=1,3

v=u

call nonlinear(u,u4,uc,uédc,qc,L,coeff)
u=w* (u+dt6*ud)

ud=w2* (v+dt2*ud)

call nonlinear(u4,u4,uédc,uéc,qc,L,coeff)
u=utw2*dt3*ud

ud=w2*xv+dt2*xud

call nonlinear(u4,u4,udc,uéc,qc,L,coeff)
u=u+w2*dt3*ud

ud=w2x* (w2xv+dt*ud)

call nonlinear(u4,u4,uéc,uéc,qc,L,coeff)
u=u+dt6*ud

if (ijk.eq.1) then

call nonlinear(u,u2,uc,u2c,qc,L,coeff)
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uU2=u2*wk*2
else if (ijk.eq.2) then
call nonlinear(u,u3,uc,u3c,qc,L,coeff)
u3=ud*w
endif
enddo
v=u
call realft(v,L,-1,coeff)
call meanvv(v,L,um)
write(6,*) 3*dt,um
do ijk=4,nt
call nonlinear(u,u4,uc,uéc,qc,L,coeff)
v=w* (u+dt55*ud-dt59*u3+dt37*u2-dt9*ul)
call nonlinear(v,ul,vc,ulc,qc,L,coeff)
u=dt9*ul+w*x (u+dt19*ud-dt5*+u3d+dti*u2)
ul=u2*w
u2=u3*w
u3=uédx*w
if (mod(ijk,nm).eq.0) then
write(6,*) ijk
v=u
call realft(v,L,-1,coeff)
call meanvv(v,L,um)
write(68,%) ijk*dt,um
write(6,*) ijk*dt,um
endif
if (mod(ijk,nw).eq.0) then
v=u
call realft(v,L,-1,coeff)
do j=1,L
write(66,*) v(j)
enddo
endif
enddo
end

subroutine nonlinear(u,v,uc,vc,qc,L,coeff)
implicit double precision (a-h,o0-z)
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dimension u(L),v(L)

double complex uc(L/2),vc(L/2),qc(L/2),coeff(L/2+15)
vc=qc*uc

call realft(v,L,-1,coeff)

V=—V*V

call realft(v,L,1,coeff)

return

end

subroutine meanvv(u,L,um)

implicit double precision (a-h,o0-z)
dimension u(L)

um=0.0d0

do j=1,L

um=um-+u (j)

enddo

um=um/L

return

end
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*xxx*x Modified from Numerical Recipes to use routines ZFFT1D skt
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subroutine realft(data,n,isign,coeff)
implicit double precision (a-h,o0-z)
dimension data(n)
double complex coeff(n/2+15)
theta=3.141592653589793d0/dble(n/2)
c1=0.5d0
if (isign.eq.1) then
c2=-0.5d0
call zffti1d(+1,n/2,data,1,coeff)
else
c2=0.5d0
theta=-theta
endif
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wpr=-2.0d0*dsin (0.5d0*theta) **2
wpi=dsin(theta)
wr=1.0d0+wpr
wi=wpi
n2p3=n+3
do 11 i=2,n/4
i1=2%i-1
i2=il+1
i3=n2p3-i2
14=13+1
hir=ci*(data(il)+data(i3))
hli=cix*(data(i2)-data(i4))
h2r=-c2*(data(i2)+data(i4))
h2i=c2*(data(il)-data(i3))
data(il)=hlr+wr*h2r-wi*h2i
data(i2)=hli+wr*h2i+wi*h2r
data(i3)=hlr-wr*h2r+wi*h2i
data(i4)=-hli+wrxh2i+wixh2r
wtemp=wr
Wr=WI*Wwpr-wi*wpi+wr
wi=wik*wpr+wtemp*wpi+wi
11 continue
if (isign.eq.1) then
hir=data(1)
data(1)=hir+data(2)
data(2)=hlr-data(2)
else
hir=data(1)
data(1)=cix(hir+data(2))
data(2)=cilx*(hir-data(2))
call zffti1d(-1,n/2,data,1,coeff)
c I multiply by 2.0d0/N to account for the fact that
c in the inverse tranform realfft you must multiply by 2 (see the
c Numerical Recipes cookbook) .
data=2.0d0*data/n
endif
return
end
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Other modifications implemented so far are the following:

1. - Program GOS/pc4.f integrates the complex Ginzburg-Landau equa-
tion in dimension 2 with the GOS spatial derivative terms:

A(F
0 g; b _ O2A + €A(1 — 3|A]?) (74)
where the GOS operator is:
_iv_ Lty
Oe=k-V -V (75)

Where k = k(cosf,sinf) and one takes usually k& = 1. Since the
variables are complex, the program is slightly simpler. One has to be
careful with the correct use of the values for the vectors in Fourier
space. The amplifying factor for the GOS operator in Fourier space
reads:

1 ’
w(q) = w(qs, Qy) = - (Qz cosf + g, sinf — 5((]3 + qi)) (76)

The program uses a 4th order predictor corrector initialized by a 4th
order Runge-Kutta.

2. - Program BH/d=2/gospc4.f integrates the Busse-Heikes equations with
GOS or Laplacian or Directional or NWS derivatives in dimension 2,
for the three complex variables A, Ay, A3. The equations are:

0A (Tt As12 — g5 A

18(:» ) L1A; + A1 |A1|2 1| 2|2 9| 3|2) (77)
0A (7t —

28(;7 : LoAs + As(1 — |AZ|2 91|A3|2 92|A1|2) (78)
0As(7,t A — oA

3(9(Z’ ) = L3A;5+ As(1 —| 3|2 91’141|2 92| 2‘2> (79)

where £; can be any of the spatial derivative terms. The GOS terms
(in Fourier space) are:

2

@ = —(wcosti gt - J@ ) 60)
1 2

@ = = (weosto bt @ d) G
1 2

wy(q) = - (Qr cos 3 + g, sin 03 — §(Q§ + q;)) (82)
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where lgl = k(cos0;,sin6;) and 03 = 0, + 3 = 01 + %”

The NWS terms replace the Laplacian in the above expression by a
directional second derivative.

In this program, the first 3 integration steps are done (incorrectly)
using the Euler method instead of the 4-th order predictor-corrector.
Program BH/d=2/gospc4_equ.f uses a simpler code by using som equiv-
alence statements. Otherwise is completeley equivalent (and gives the
same results) to BH/d=2/gospc4.f.

3. - Program BH/d=2/gospch.f does the same integration by using a 5th
order predictor corrector and an Euler initialization. Finally, program
BH/d=2/gospch_equ.f uses a 5th order predictor corrector and a 4th
order Runge Kutta for initialization.
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4 Stochastic algorithms

4.1 A single variable

Let us start by a simple example: a single variable, u(t), equation with an
additive noise term:

U= wu+ a(u) +£(t) (83)
where () is white noise of zero mean and correlations:
(€(0)E(t)) = 2e(t — 1) (84)

The solution of the linear equation (a(u) = 0):
t
u(t) = e“'u(0) + ew/ dse™%¢(s) (85)
0

suggests the change of variables:
¢
u(t) = e 2(t) + e“’t/ dse™“*¢(s) = e 2(t) + G(t) (86)
0
The variable z(t) satisfies:

2 =e “a(t) (87)

the u dependance of a(u) translates into a time dependance a(t) = a(u(t)).
This differential equation can be solved using any existing method. As a way
of example, consider the explicit method:

z(t+h) = z(t)—l—g [32(t) — 2(t — h)] = z(t)+g [3e7!a(t) — e "Ma(t — h)]
(88)
by replacing z(t) = e (u(t) — G(t)) we arrive at:

u(t+h) = G(t+h)+e" {u(zﬁ) —G(t)+ g (3a(t) — e'a(t — h))]

h
g(t) + e*" [u(t) +3 (3a(t) — e“*a(t — h))} (89)
where we have introduced the Gaussian process:
t+h
g(t) = G(t + h) — e“"G(t) = e tHh) / ds e™“*¢(s) (90)
t
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This can be computed by noticing that for ¢; = ¢h it is:
€ w
(o(t)g(1)) = < (" 1) 3, o1)
The integration code is the following:

al=a(u)
u=eqgs*dran_g()+ewh* (u+h2x(3.0d0*al-a2))
a2=ewh*al

Where we use the notation:

al — af(t)
a2 — e a(t —h)
(92)
and the definitions:
ewvh — "
h2 — h/2
E 2wh _ 1
eqs — /- (e )
(93)

A fourth-order predictor corrector is very simple now. We just give the
algorithm:

z(t+h) = z(t) +

24
and
2(t+h) = z(t) + (95)

h
21 [9e_°’(t+h)a(t + h) +19e “ta(t) — 5e Mt — h) + e g (t — 2h)]

For the original variable , the algorithms read:

u(t +h) = g(t) + ™ [u(t)+ (96)
2—}2 (55a(t) — 59¢™a(t — h) + 37e*"“a(t — 2h) — 9e*™a(t — 3h))
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and

u(t 4+ h) = g(t) + ™ u(t) + (97)
% [9a(t + h) +19e"a(t) — 5e**a(t — h) + e*™a(t — 2h)]

The code is the following:

a4=a(u)

g=eqgs*dran_g()

u0=g+ewh* (u+h24* (55.d0*a4-59.d0*a3+37.d0*a2-9.d0*al))
ul=a(u0)

u=g+h9*ul+ewh* (u+h24+(19.d0*a4-5.d0*a3+a2))

al=ewh*a2

a2=ewh*a3

a3=ewh*a4

where, in this case, we have computed the nonlinear term twice (see comment
in the first section). Program SDE/pc4.f implements this method for the
one-variable stochastic equation:

i=wr—1°+¢ (98)

So far, the method is initialized by using a deterministic 4th order Runge-
Kutta method for the first 3 steps. This is not correct, and it can be consid-
ered as if the initial condition was a different one, and a 4-th order stochastic
Runge-Kutta should be used. This is probably not too important since the
equation is stochastic and one averages over initial conditions anyway (or at
least, check that the results do not depend on initial conditions). The code
is the following:

C SDE/pcé4.f

C Method to integrate SDE integrating out the linear part.
C In this program we apply to the simple case

C dx/dt = w x +a(x) +xi(t)

C using a fourth order predictor-corrector algorithm

implicit double precision (a-h,o0-z)
a(x)=-x**3

open(55,file="pc4.in’,status=’0ld’)
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open(67,file="pc4.out’,status=’0ld’)
read(55,*) x0,w,epsilon,h,n,n0,nw,nc,iseed
do while (.true.)

read(67,*,end=999)

enddo

999 continue

call dran_ini(iseed)

ewh=dexp (h*w)

h24=h/24.0d0

h9=9.0d0*h24

nt=0

xm=0.0d0

xm2=0.0d0

eqs=dsqrt (epsilon*(dexp(2.0d0*w*h)-1.0d0) /w)

x=x0

al=ewhx**3%a(x)

x=x+h* (wxx+a(x))+dsqrt (2.0d0*epsilon*h)*dran_g()
a2=ewh**2x*a(x)

x=x+h* (wxx+a(x))+dsqrt (2.0d0*epsilon*h)*dran_g()
a3=ewh*a(x)

x=x+h* (wxx+a(x))+dsqrt (2.0d0*epsilon*h)*dran_g()

do i=1,n0

ad=a(x)

g=eqgs*dran_g()

x0=g+ewh* (x+h24* (55.d0*a4-59.d0*a3+37.d0*a2-9.d0*al))
ul=a(x0)

x=g+h9*ul+ewh* (x+h24x(19.d0*a4-5.d0*a3+a2))

al=ewh*a?2

a2=ewh*ad

a3=ewhx*ad

if (mod(i,nw).eq.0) write(66,*) i*h,x,u2

enddo

do i=1,n
ad=a(x)
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g=eqgs*dran_g()

x0=g+ewh* (x+h24* (55.d0*a4-59.d0%*a3+37.d0*a2-9.d0*al))

ul=a(x0)

x=g+h9*ul+ewh* (x+h24*(19.d0*a4-5.d0*a3+a2))
al=ewhx*a?2

a2=ewh*ad

a3=ewhx*ad

if (mod(i,nw).eq.0) write(66,*) i*h,x,u?2
if (mod(i,nc).eq.0) then

nt=nt+1

xm=xm+dabs (x)

Xm2=Xm2+x*X

endif

enddo

xm=xm/nt

xm2=xm2/nt-xm*xm

write(67,*) h,xm,dsqrt(xm2/nt)

end

We consider now a second-order Runge-Kutta method. This is based

upon the classical midpoint Runge-Kutta method.

ky = gf(z7t)

2(t+h) = z2(t)+hf(t+ ﬁ, 2(t) + k)

2

For our case it can be shown to reduce to:

2

w o= e (u(t) + ﬁa(t)) + g1(t)

u(t+h) = g(t) + e Mu(t) + he%ha(ul)

where:

h wh h t+
at) = G+ 5) —e2G(t) = ew(t+2)/
t

g(t) = Glt+h) - eMG(t) = eFgr(t) + gult+ 1)
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Finally, notice that ¢;(t) and g;(t+ %) are independent, zero mean, Gaussian
variables and that (g1 (;)g1(¢;)) = (g1(¢:)*)d;; for t; = ih and

(92(0°) = /S (e = 1) (104)

This is a second-order Runge-Kutta. It is less general than the Heun method
that applies to the multiplicative equation @ = f(u) + g(u)&(¢). It would be
interesting to compare both algorithms.

4.2 Stochastic partial differential equations

We now consider a field u(z,t) that satisfies a stochastic partial differential
equation:

ou(z,t)
ot

with white noise in space and time:

= L[u] + Nu] + &(z,t) (105)

(E(x,0)E(2!, 1)) = 2ed(x — 2")o(t — 1) (106)

We consider again periodic boundary conditions in the space z € [0, L]¢. We
take the Fourier transform to obtain:

aa(ai, D w(q)ite,t) + ala,) + Ea.) (107)

Where the Fourier transform of the noise is defined using the general relation:

g, 1) = % /[0 o e (1, 1) (108)

notice that, being the Fourier transform of a real field, it satisfies 3 (q,t) =
£*(—q,t). It is easy to verify that £(q,t) are complex Gaussian variables of
zero mean, and correlations given by

(€l )E(qw 1)) = %&Wa(t — ') (109)

(remember that g, = 27k/L). As in the case of non-stochastic partial dif-
ferential equations we want to introduce now the discrete Fourier transform.
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However, one has to be very careful when defining the discrete Fourier trans-
form of the white noise. One can not use directly Eq.(6) putting f,, = &(z,,)
because £(z,,) is a Gaussian variable of infinite variance. There are several
ways of getting the proper result. They all use in one way or another the
relation between the Dirac-delta and the Kronecker-delta functions. In real
space of dimension d, this relation is:

5(z,) — (Ax)~95, (110)

(remember that z,, = nAz). This relation can be obtained by demanding
that the integral of a Dirac-delta function coincides with the sum of the
Kronecker-delta:

1= /_OO dr §(z) = (Ax)dZ(Ax)_d(Sn (111)

o0 n

With this relation in mind, we can identify the discrete equivalent of the
white noise in space and time: it is a set of white noises in time with zero
mean and correlations given by 2e(Az)~15(t — t'):

E(xn, t) — &u(t) (112)
with
(Ea(t)) = 0
/ _ 2e /
<£n(t>£n’ (t )> - W5n,n’5(t —1 ) (113>

In this way, we can go from continuum to discrete space as usual. Notice
that, according to the criterion above, the correlations of the £(z,t) and &,(t)
are equal. In effect,

(€(z, )€, 1)) = (Ea()Ew (1)) (114)
implies: )
2e¢6(x —2")o(t —t') = W&m/é(t —t) (115)

which is nothing but Eq.(110).
After taking the Fourier transform of the original equation (105) and
replacing the continuum Fourier transform by the discrete one, we obtain:

P00 — (1) + au(6) + (0 (116)
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where &,(t) is the discrete Fourier transform of £,(t), &x(t) = Fpl&a(t)]. The
correlations of & (t) can be computed using its definition:

3 ZZ ORI (€ (1)E (1)) =

271'7. / 26 2 l\rd
(nk+n'k")

where we have used Eq.(11). We check now that this result corresponds to
the continuum one, Eq.(109), if we make the usual correspondence

Eant) — 326el) (118)

Indeed:

(o DElae 1)) = (N GDNE (D) = Framabeswdlt = 1) (19)

which is the expected result, see Eq.(109).
Before using any numerical algorithm to solve the set of equations (116),
we make a change of variables based upon the solution of the linear equation.

¢
U(t) = e“”“ték(t) + e“kt/ ds e E(s) = ewkt2 k(t) + Gk( ) (120)
0
with the definition:
t
Gi(t) = e‘“’“t/ ds e “ °&(s) (121)
0

Z1(t) satisfies the equation:

D24 (t)
ot

— (1) (122)

to which we apply any of the predictor-corrector or Runge-Kutta algorithms
explained before. For instance, the one given by Eq.(52), which now is:

Su(t+h) = Z(t) + g [3e7ay,(t) — e * M ay (t — h)]] (123)
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Going back to the variable ug(t) using Eq.(120), we obtain:

gt + h) = Gp(t) + e=" [ﬁk(t) + g[?:dk(t) — e¥khg (t — h)]] (124)

where

t+h R
G(t) = Gt + h) — eh Gy (t) = et / ds e+ EL(s) (125)
¢
As in the one-variable case, we can show that (gx(t;)gw(t;)) = 0 for ¢ # j.
For equal times the correlation is:

e?kh — 1 Ne
i (t) g (1)) = ———— —Okyw 126
(9 (t)gw (1)) wn Azt (126)
(we have assumed that wy = w_g). In practise, the variables gx(t) can be
obtained by writing them as:

e2wkh — 1 ¢

gi(t) = w—kA—x@k(t) (127)

where

k(1) = Fplva(t)] (128)

and v,(t) is a set of independent Gaussian random numbers of zero mean
and variance one.

The fourth-order predictor corrector is now trivial to obtain. We write it
here just for reference:

g (t+ h) = gr(t) + e [ay,(t)+ (129)
h
o (55ax(t) — 59e™*ay(t — h) + 37e*™*ay(t — 2h) — 9e*™*ay,(t — 3h))
and
Ak (t+ h) = gi(t) + e iy (t) + (130)
h
o [9ak(t + h) + 19e™*a,(t) — 5e*™*ay(t — h) + e*™*ay,(t — 2h)]

This is easy to implement, simply add in the deterministic program the
stochastic terms. The main evolution routine is
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call dran_gv(xi,L)

call realft(xi,L,1,coeff)

xi=wd*xi

call nonlinear(u,u4,uc,u4c,qc,L,coeff,al)
v=xi+w* (u+dt55*ud-dt59*u3+dt37*u2-dt9*ul)
call nonlinear(v,al,vc,alc,qc,L,coeff,al)
u=xi+dt9*al+wx (u+dt19*ud-dt5*u3d+dti*u2)
ul=u2*w

u2=ud*w

u3=ud*w

Here we have defined

[e2wkh — 1 ¢
4 _ 131
ve wr Az (131)

Although the vector ék could be generated directly in Fourier space (see
Ojalvo and Sancho, appendix B), we have generated here as the discrete
Fourier transform of a real random vector. Program SDE/spc4.f has imple-
mented this algorithm for the stochastic one-dimensional KPZ equation:

On(7, 1)
ot

= V2h 4+ NVh|? + £(7,1) (132)

Program SDE/spch.f has implemented this algorithm for the stochastic
one-dimensional Lai-Das Sarma-Villain equation:

On(F, t)
ot

= —V'h + AV2| VA +£(7 1) (133)

Again, the method is initialized by using an Euler method for the first 3
steps. This is not correct, and it can be considered as if the initial condition
was a different one, and a 4-th order stochastic Runge-Kutta should be used.
This is probably not too important since the equation is stochastic and one
averages over initial conditions anyway (or at least, check that the results do
not depend on initial conditions). The code is the following:

c SDE/spcé4.f

¢ Predictor corrector method for Stochastic’s KPZ equation
c

implicit double precision (a-h,o-z)
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parameter (L=256)

dimension u(L),ul(L),u2(L),u3(L),ud(L),v(L)
dimension xi(L)

double complex qc(L/2),coeff(L/2+15)

double complex uc(L/2)

double complex ulc(L/2),u2c(L/2),u3c(L/2),udc(L/2),vc(L/2)
dimension w(L),w2(L) ,w4(L)

equivalence (uc(1),u(1))

equivalence (vc(1),v(1))

equivalence (ulc(1),ul(1))

equivalence (u2c(1),u2(1))

equivalence (u3c(1),u3(1))

equivalence (u4c(1),u4(1))
open(55,file=’"spc4.in’,status=’0ld’)
read(55,%) epsilon,al,dt,nt,nm,nw,u00,dx,iseed

call dran_ini(iseed)
call zfft1di(L/2,coeff)

pi=4.0d0*datan (1.0d0)
dt2=0.5d0xdt
dt3=dt/3.0d0
dt6=dt/6.0d0
dt24=dt/24.0d0
dt55=55.0d0*dt24
dt59=59.0d0*dt24
dt37=37.0d0*dt24
dt9 = 9.0d0xdt24
dt19=19.0d0*dt24
dt5 = 5.0d0xdt24
dtl = 1.0d0*dt24

do j=1,L/2
qc(j)=(j-1)*2.0d0*pi/ (L*dx)*cmplx (0.0d0,1.0d0)
enddo

do j=1,L/2
q=(j-1)*2.0d0*pi/ (L*dx)
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w(2%j-1)=—qg**2
w(2%j)=-q**2

enddo

j=L/2+1
q=(j-1)*2.0d0*pi/ (L*dx)
w(2)=-q**2

w4 (1)=dsqrt(2.0d0*dt*epsilon/dx)

do i=2,L

w4 (1)=dsqrt ((dexp(2.0d0*dt*w(i))-1.0d0)*epsilon/(w(i)* dx))
enddo

w2=dexp (dt2*w)

w=dexp (dt*w)

do j=1,L

u(j)=u00*dran_u()

enddo

call meanvv(u,L,um,um?2)

write(6,*) ’initial’,um,um?

write(68,*) 0.0d0,um,um?

call realft(u,L,1,coeff)

write(66,*) nt/nw,L

call nonlinear(u,ul,uc,ulc,qc,L,coeff,al)
ul=ul*w**3

do ijk=1,3

v=u

call nonlinear(u,u4,uc,ué4c,qc,L,coeff,al)
u=w* (u+dt6*ud)

ud=w2* (v+dt2*ud)

call nonlinear(u4,u4,uédc,udc,qc,L,coeff,al)
u=utw2*dt3*ud

ud=w2*xv+dt2*xud

call nonlinear(u4,u4,uéc,uéc,qc,L,coeff,al)
u=u+w2*dt3*ud

ud=w2x* (w2xv+dt*ud)

call nonlinear(u4,u4,uéc,uéc,qc,L,coeff,al)
u=u+dt6*ud

if (ijk.eq.1) then

call nonlinear(u,u2,uc,u2c,qc,L,coeff,al)
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uU2=u2*wk*2
else if (ijk.eq.2) then
call nonlinear(u,u3,uc,u3c,qc,L,coeff,al)
u3=ud*w
endif
enddo
v=u
call realft(v,L,-1,coeff)
call meanvv(v,L,um,um2)
write(6,*) 3*dt,um
do ijk=4,nt
call dran_gv(xi,L)
call realft(xi,L,1,coeff)
xi=wd*xi
call nonlinear(u,u4,uc,u4c,qc,L,coeff,al)
v=xi+w* (u+dt55*ud-dt59*u3+dt37*u2-dt9*ul)
call nonlinear(v,ul,vc,ulc,qc,L,coeff,al)
u=xi+dt9*ul+w* (u+dt19*ud-dt5*u3+dti1*u2)
ul=u2*w
u2=u3*w
u3d=uéd*w
if (mod(ijk,nm).eq.0) then
write(6,*) ijk
v=u
call realft(v,L,-1,coeff)
call meanvv(v,L,um,um?2)
write(68,*) ijk*dt,um,um?
write(6,*) ijk*dt,um,um?2
endif
if (mod(ijk,nw).eq.0) then
v=u
call realft(v,L,-1,coeff)
do j=1,L
write(66,*) v(j)
enddo
endif
enddo
end
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subroutine nonlinear(u,v,uc,vc,qc,L,coeff,al)
implicit double precision (a-h,o0-z)

dimension u(L),v(L)

double complex uc(L/2),vc(L/2),qc(L/2),coeff(L/2+15)
vc=qc*uc

call realft(v,L,-1,coeff)

v=al*xv*v

call realft(v,L,1,coeff)

return

end

subroutine meanvv(u,L,um,um?2)
implicit double precision (a-h,o0-z)
dimension u(L)

um=0.0d0

um2=0.0d0

do j=1,L

um=um+u (j)

um2=um2+u (j) *u(j)

enddo

um=um/L

um2=um?2/L-um*um

return

end
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5 Errors in the pseudospectral methods

It is important to analyse which are the sources of errors of the pseudo-
spectral methods. Even when the time-integrator (Runge-Kutta, predictor-
corrector or whatever) is stable, there is always the question of whether the
solution of the pseudospectral method should converge towards the (exact)
solution of the problem.

The most important problem is aliasing which has been discussed thor-
oughly in previous sections.

The second largest source of error (also related to aliasing) is that even if
the approximant at ¢ = 0 is a very good one, it might get bad (or very bad!)
as time goes on. This problem can be very well understood since it already
appears in linear equations id d = 1:

ou(z,t)
ot

= L[u] (134)

with initial condition u(x,0) = u"(z) and periodic boundary conditions in
the interval (0, L). This equation, in Fourier space, adopts the form:

o0ulq,t
U0 — gy (139
whose solution is:
(g, t) = a@(q)e' " (136)

The solution in real space is obtained by using the inverse transform in the
series form:

u(z,t) = Z e arrert (137)

k=—o00

(recall the notation F}, = F(q;) for any function F'(q)). @} is obtained as the
Fourier transform of the (periodic) function u°(x):

|

uy = —/ u’(z)e' " dx (138)
L Jo.

This solution can be put in a more compact form using a propagator:
o) = [ dy )G -yt (130)
[0,L]
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where:
o

1 —1iqxztwit
Glzt) = 7 ;_:ooe i zHn (140)
Using
> et = 2rm6(a) (141)
k=—o00
it is easy to prove that
G(z,t=0)=0(2) (142)

So far, everything is exact. The approximation of replacing the sum in
(137) by a finite sum is the method of Galerkin:

N/2
u(z,t) = Z Tife kT gkt (143)

k=—N/2

However, this method requires the knowledge of the exact Fourier coefficients
@) (or a good numerical evaluation of them).

In the pseudospectral methods one replaces the above expressions by the
corresponding ones using the discrete Fourier transform:

N/2 1

1 )
u(z,t) = N E pe Tkt (144)
k=—N/2

(remember that the prime indicates halving of the first and last terms in the
sum). The 49 are obtained as the discrete Fourier transform of the initial
condition @9 = Fplul].

We ask now which is the difference between the exact solution (137) and
the one given by (144). The answer can be obtained by recalling relation (7),
such that the numerical solution can be written as:

N/2/ o0

u(z,t) = Z Z Up e T n! (145)

k=—N/2m=—00

Expanding the sum we obtain:

1 ) | ~ | ] |
Qeww/ﬂ [y e AT Gl e VT Gy e TN
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t ~0 —i ~0 —i ~0 —i
e B TR T L A TR R TR
et [ a0 ye 0T gde 0T 4 gleT 0T 4]
t ~0 i 7,0, —i .0 i
et [ L a_ye T+ Fuge T 4 fuy e T ]+
.............................. (146)
w2t ~0 —iqn/2+1% 4 50 —iqn/2+1% 4 50 —iN/2+1%
N2t [ty gy e IV Uy g g @7 IR Uy g T IR ] 4
1 ) ) )
ZawWnyat ~0 —iqn/2T 4 50 —iqn/2 4 50 —iqN/2%
5¢ 20 g e VT iy e IV g e N
Taking into account that for the lattice points it is:
eiqun — eiqk+mzvacn v'm (147)
we can rewrite the previous formula as:
1 w_n/2t ~0 —i¢_N/2-NZ ~0 —ig_N/2% ~0 —i¢_N/24NT
e +u e +u e +u e + +
5 e —N/2-N —N/2 —~N/2+N e
w_ N t ~0 —iq_N _NZT ~0 —iq_N T ~0 —iq_N NT
e N R PRI PHENT U N @ AT+ U N1 N© ENT 4]+
wot ~0 —iq_NT ~0 . —iqoT ~0 —igN T
e [ ... 4 a e + age + Ty, e +..]+
e [N Qe g e N ]
.............................. (148)
t ~0 —i ~0 —i ~0 —i
eWN/2-1 [ o+ uN/Q—l—Ne YYN/2—-1-NT + uN/2—1e WYN/2—-1% + UN/2—1+Ne YYN/2—1+NT + .. ] +
léwN/Zt [ + 0 e UWN/2-NT + a0 e~ UN/2T + 0 e WN/2+NT + ]
5 e N/2-N N/2 N/24+N e

(valid only for x = x,,). This can be written in a more compact form:

u(zy, t) = Z ape " By () (149)

k=—o00

This is similar to the exact solution (137) with the exception that the Ej’s
are equal to the alias values of e“r!:

B(4) = ewK? if k— K =0mod(N), K € (—N/2,N/2)
K(8) = seonzt 4 ew-net for k— N/2 = 0 mod(N)
(150)
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Which means that the modes with |k| > N/2 evolve not with the factor
wg but with the factor of their aliases. For instance, if N = 8 the modes
k= —17,-9,—1,7,15,23,31,... all evolve using the factor w_;. This is a
source of errors. If the higher order coefficients 4 are very small, then their
contribution to the solution is small. If, on the other hand, the function u°(x)
is not smooth (as, for instance, the case of white noise) then the convergence
towards the exact solution might need a prohibitely large value of N.

In other words, the exact solution, Eq. (137), involves the evolution
of infinite Fourier modes. In the pseudospectral method, indeed infinite
modes do appear in the evolution equation, see (149), but for those modes
with |k| > N/2 their amplifying factors wy, are not the correct ones. In the
Galerkin method, Eq.(143), the modes with |k| > N/2 simply do not appear.

As an example we consider the equation:

Owu(z,t) = u+ Ou (151)
For which the amplifying factor is complex:
w(g) =1—iq (152)
It is easy to check that the solution, for arbitrary initial condition, is:
u(z,t) = e'u’(x + 1) (153)

In the following figures, we compare the exact solution for a given initial con-
dition with the one obtained with the pseudospectral method. The captions
are self contained.

The message is that you need indeed a very good resolution for the Fourier
modes. Even if you think that your resolution is fine enough for the initial
condition, that does not mean that it will continue to be so as time evolves,
since the large modes (which are necessarily incorrect) might increase expo-
nentially with time.
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Figure 4: Numerical solution using the pseudospectral method for the equa-
tion dyu = u + O,u with the initial condition w(z,t = 0) = 3/(5 —
4 cos(10mx/L) — 0.25cos(20mx /L)) in the case L = 14, N = 32 for times
t = 0 (this and next figures have been produced with the program dif2.f).
Line 2 is the exact solution and the symbols are the value of the exact solu-
tion at the lattice points. Line 3 is the solution obtained with the numerical

method.

S

Figure 5: Same as figure (4) but plotting only the lattice points.
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Figure 7: Same as figure (6) but plotting only the lattice points.
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Figure 8: Same as figure (4) with N = 64.
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Figure 11: Same as figure (7) with N = 64.



Same as figure (5) with N = 128.

Figure 12

Same as figure (7) with N = 128.

Figure 13
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