Microscopic observations on a kinetic Ising model®
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We comment on the practical realization and physical relevance of a kinetic Ising model which
has played an important role during the last decade as a guide for real experiments and for the
development of theory. We stress the possibility of performing microscopic observations during
the computer evolution of the model system. This is illustrated by discussing the observed
behavior of some general concepts of physics such as energy, specific heat, and metastable states.

L INTRODUCTION

The simulation of thie behavior of a model system on a
computer has become a widely used tool when analyzing
physical processes. This is particularly true within the
realm of phase transitions and other cooperative phenome-
na where a model with relative mathematical simplicity
may capture the details (dimensionality, symmetries, etc.)
which are essential to the behavior of a real system. The
model can thus provide a simple and economical test of
theory: any theory claiming to describe a given process in
real physical systems should also be able to describe in a
quantitative way what happens in a well-constructed mod-
el system. It then follows that the computer simulation of
the behavior of a model system may represent in some cases
an actual alternative to real experiments with the extra ad-
vantage that one may suppress any competitive effects
which would obscure the process of interest in a real sys-
tem. Even more important, the model, because of its flexi-
bility, can be used very often to identify the important
physical steps in the process which need to be built into a
good theory.

There is a large number of examples in the recent litera-
ture about the efficient use of computer simulations as an
aid or as an alternative to real experiments.' The computer
analysis of Ising-like models,™ for instance, has proved
very useful to our understanding of a great variety of phe-
nomena, in part because it allows the neglect when neces-
sary of gravity or hydrodynamic effects, lattice strains, gra-
dients and many other difficulties (like a precise control of
temperature or other external parameters). which fre-
quently beset experimentalists. This results in a drastic
simplification of the observed phenomena, and sometimes
it leads to the development of theory.

One of the most exciting facts about computer simula-
tions, intimately related with the above features, is the pos-
sibility of performing direct microscopic observations on
the behavior of a model system. These, which are impossi-
ble or very difficult in practice when dealing with a real
system, may generally allow an easier understanding of the
meaning and properties of familiar physical concepts. This
paper tries to illustrate that fact with special reference to
the concepts of energy, specific heat and metastable states.
To this end we performed a series of Monte Carlo (MC)
simulations of the kinetics of the simplest “ferromagnetic”
Ising model with a conserved order parameter, a situation
which is physically relevant to the study of binary alloys
segregrating into two phases after quenching, to the con-
demnsation phenomena in a sudderily cooled vapor, etc. Our
simulations here refer to quenches into states at the coexis-
tence curve or very close to it in the two-phase region of the
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phase diagram so that it was possible to follow the evolu-
tion until the system had practically reached equilibrium
or a quasistationary state. This is a rare situation in practice
for a “large” Ising model with conserved order parameter
because the evolution is drastically slowed down when
phase separation sets in due to the necessary diffusion of
the order-parameter magnitude throughout the lattice. In
this way, we are able to analyze with detail the nature and
properties of the equilibrium state as compared to that of
other stationary or quasistationary conditions. The equi-
librium energy is computed and compared with series ex-
pansions. We also study the fluctuations of the energy with
time which, in the equilibrium state, are simply related to
the specific heat. This allows one to determine whether the
model has reached the actual equilibrium state. It aiso al-
lows orie to reveal the existence of metastable states in the
Ising model with short-ranged interactions and to describe
their nature from a microscopic point of view.

We also discuss the practical realization of the simula-
tions reported here (so that they can be reproduced in a
classroom experiment showing explicitly the meaning of
some general physical concepts) and would be willing to
supply any interested reader with a sample FORTRAN code
producing energy values and actual configurations during
the temporal evolution of a two-dimensional Ising model
using a personal computer. The code refers to the two-
dimeénsional model because it is simpler and needs less
computational time for a given size (due to periodic bound-
ary conditions, etc.) and also because the exact solution is
known in that case* so that one may compare and evaluate
the validity of the Monte Carlo result, study the influence
of finite size effects, etc.

II. THE MODEL SYSTEM
A. Ising Hamiltonian

The familiar Ising problem? considers a regular lattice
with spin variables n; capable of two values, + 1 (“spin
up”) and — 1 (“spin down”), attached to the vertices r;
(i = 1,2, -+ ,N) of the lattice. This gives 2" possible config-
urations {n;} which are assumed to have configurational
(interaction) energies

H{n;}= —Jz’n,.nj —hyn, J>0. )]
i i

The first sum here is over nearest-neighbor sites, J repre-
sents the strength of the corresponding interaction and 4 is
an external field coupled to the variables. The model is then
appropriate for simulating the equilibrium properties of
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some hypothetical, oversimplified ferromagnetic- materi-
als.

According to standard statistical mechanics,* one may
obtain the equilibrium properties of the system by calculat-
ing the partition function:

Z = Tr exp( — BH), (2)

where B = 1/k T is the usual inverse temperature. Ther-
mal averages of any quantity b({n;}) are then given by

(b) =-;—Tr[b({n,-})eXP( —BH)]. 3)

Most equilibrium properties are nowadays very well
known from exact computations or approximate meth-
ods.*

The Hamiltonian (1) may also constitute a model for a
gas, e.g., to describe condensation phenomena.? To this end
n; = + 1 is interpreted as the lattice site i being occupied
or unoccupied by a particle, respectively, (2 = 0). It can
also model the equilibrium properties of some binary (48)
alloys such as Al-Zn which present equilibrium states of
phase segregration.®’ In this case the N lattice sites are
assumed to be occupied by either an 4 particle (n;, = + 1)
or a B particle (n, = —1).

B. Kinetics of the model

A model based on the Hamiltonian (1) has proved very
useful® when studying the processes of phase segregation
(nucleation, spinodal decomposition, coarsening, etc.)
which occur in many alloys following an instantaneous
cooling from the melt into the miscibility gap. Since there is
no time during the quench for any process of spatial segre-
gation to take place the system finds itself, immediately
after the quench, in a homogeneous nonequilibrium state.
The system then evolves toward the equilibrium state at the
final temperature. This is characterized by the coexistence
of two phases with different compositions: an A-rich phase
which may present itself as a collection of clusters or drop-
lets made of the minority 4-particles with some “impuri-
ties” (B-particles) and a B-rich (or 4-poor) background.

The model as defined in Sec. II A, however, does not
have any dynamics of its own. Of course, one may think of
kinetic energy terms to be added to the Hamiltonian (1).
These would also depend on {#; } and thus provide a time
evolution of the configuration, but they are mostly un-
known or too complicated to be considered explicitly.

Instead one may realize that an alloy system after the
quench is usually in a solid phase which makes atomic mi-
gration difficult. The thermal vibrations of the lattice or
phonons, nevertheless, can supply the energy necessary for
an evolution of the configurational part of the system.
Since the {n, } evolve on a much slower time scale than the
lattice vibrations do, one may treat the latter as a heat bath.
This, in equilibrium at the temperature 7" to which the sys-
tem was quenched, induces random exchanges between
neighboring atoms which drive {n; } toward equilibrium at
the temperature 7.

The isomorphism suggested in Sec. II A between mag-
nets, lattice gases and binary alloys* cannot be maintained

in principle when considering kinetic models. One should
notice for instance that the existence of a phonon heat bath,
which is distinct to lowest order from the spatial composi-
tion of the system, makes the binary alloy problem in some
ways conceptually simpler than the condensation of liquid
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droplets in a supersaturated vapor where the thermal mo-
tion of the atoms cannot be separated from changes in the
spatial density.

In order to include the above facts explicitly into a kinet-
ic model, one considers a Gibbs ensemble of the systems so
far described and denotes P(x) the fraction of systems with
the configuration x={n,}. Then, when the ensemble is in
equilibrium at temperature 7 one has

P (x)=Z 'exp[ —BH(x)], h=0. (4)

Since memory effects are only important on the time scale
of the lattice vibrations, one may ignore them as far as the
evolution of the {#; } is concerned. This is then described®
in terms of a Markovian master equation (or rate equa-

tion),
iP_((;,_t) = — P(x,t)EW(x—»x’) + EW(x'—»x)P(x’,t).

(3)

Here W(x-x') gives the probability that the system
makes a transition from a (microscopic) state x to a new
state x'. The transitions considered in practice permit only
the interchange of some n; with a neighboring #,. This en-
sures that the “magnetization” 7 and the density p (frac-

tion of the minority 4 particles), where
R=N"! 3] = o1 (6)

stay constant during the evolution (note that this condition
would not be appropriate for a magnet).

The determination of the transition probabilities
W(x—-x") from basic principles is in general a difficult
matter. It is clear that the condition of detailed balance,

W(x—x")exp[ — BH(x)] = (Wx'—>x)exp[ — FH(x')]
(7

is sufficient, although not necessary, to ensure that the
equilibrium distribution (4) is a stationary solution of the
master equation (5). Of course, condition (7) does not
specify W(x—x') uniquely but, assuming that this should
only depend on 8H, the increase of energy brought about
by the proposed interchange, (7) leads to

W(x-x') =aexp(—F5H /2)/(5H), (8a)

where f is an even function. We shall consider here the
choice

J(SH) = [2cosh(BSH /2)] . (8b)

The coefficient @ ~ !, assumed to be independent of x and x’,
is taken to determine the unit of time and treated as a tem-
perature-independent quantity. In comparisons with ex-
periments on real materials, & will certainly need to be tak-
en material and temperature dependent since the strength
of the phonon heat bath decreases with temperature.’

ITL. DETAILS OF THE SIMULATION

To carry out the computer simulation one chooses a giv-
en lattice and a system size N and, using Monte Carlo
methods,' explicitly performs the Markov process de-
scribed by Egs. (5) and (8).

The size N is dictated by a competition between the de-
sire to make the system as large as possible, so that it imi-
tates a macroscopic system, and practical computational
considerations. The actual computer experiments we refer
to in this paper correspond to a simple cubic lattice with
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N =27 000 or 125 000 sites. In addition, periodic (toroi-
dal) boundary conditions are used in order to avoid edge
effects due to free surfaces. Nevertheless, one has to worry
about possible finite size effects.’>!3

When dealing with one-phase equilibrium states, finite
size effects become important if the linear dimension of the
system has the same order of magnitude as the correlation
length for fluctuations. This, however, is not so dramatic in
computer simulations because one has to avoid then in
practice a temperature region of a few per cent around the
critical point 7, where “critical slowing down” effects
would make necessary very large amounts of computing
time. When studying the kinetics of phase separation, finite
size problems may occur even far from 7, due to the inter-
face between the two phases. The relative magnitude of this
contribution to the energy of the final state is of the same
order as the inverse linear dimension d, N~ /¢, of the sys-
tem. Although the coefficient of the N~/ term can be
quite large, one may correct the results from these interface
effects; see Refs. 1 and 9 for more details.

A further effect related to the finite size of the system is
the statistical inaccuracy; e.g., one expects statistical fluc-
tuations in the energy of the system whose relative order of
magnitude is N ~!/2, so that very small values of N should
be avoided.

A series of Monte Carlo computations on the present
model system™”-' seem to indicate that one obtains in prac-
tice reasonably accurate estimates of the thermal equilibri-
um properties of infinite systems with the sizes we are con-
sidering here; e.g., the relative accuracy is known to be
better than 1% in the case of the energy. We shall come
again to this point later on.

The first step in the simulation is to generate a starting
configuration x, of the system. If the initial temperature is
very high (7; - o), as in the cases considered here, one
selects a specified number pN of randomly chosen sites to
be occupied by A particles and the rest by B particles. This
will approximately simulate a state with uniform composi-
tion and no correlation between particles at different posi-
tions. To consider a finite initial temperature T;, one would
have to let the system evolve from the random starting
configuration until “thermal equilibrium” is reached at the
temperature 7. This previous evolution can be performed
using the ordinary, faster Glauber dynamics® where the dy-
namical process is a succession of spin flips (instead of spin
interchanges).

The configuration at T; is then used as a starting config-
uration for the Kawasaki dynamics described in Sec. II B.
This starts selecting at random a pair of nearest-neighbor
particles to be considered for an interchange. The energy
change (i.e., number of unlike nearest-neighbor pairs)
which would cause that interchange is calculated. This
change depends only on the configuration of the ten sites
surrounding the selected pair. Then one computes the tran-
sition probability W from Eq. (8) witha~! = 1, and Wis
compared to a random fraction R (“pseudorandom num-
ber””) that is chosen each time with uniform probability
over the interval (0,1). If W>R the interchange is per-
formed, otherwise the old configuration is retained and the
process (try) is repeated by selecting a new pair of nearest
neighbor particles. In this way a stochastic evolution is
simulated in which the number of tries per lattice site is the
natural unit of time.

Note that a very large sequence of random numbers R is
needed here, namely to generate the initial configuration

1116 Am. J. Phys., Vol. 54, No. 12, December 1986

X, to pick the atoms to be considered in each time step and
to decide whether or not they have to be interchanged.
Typically, the period of the required (pseudo-)random
number generator is larger than 108, a condition which is
not fulfilled by some standard algorithms in most comput-
ers. This point should be carefully checked before perform-
ing a simulation and, when necessary, an appropriate ran-
dom number generator has to be incorporated into the
main program; see, for instance, Refs. 1 and 21 for more
specific details.

As the system approaches the equilibrium state, it be-
comes more unlikely that a pair of nearest neighbors select-
ed at random will be different, that is, more tries are neces-
sary in order to perform an interchange. Thus, after a
relatively rapid early evolution it is necessary to use a large
amount of computer time, especially at low temperatures,
to proceed further in the simulation. This problem can be
largely avoided when studying long time effects by select-
ing only neighboring sites with different particles and by
making an a priori classification of the particles according
to their probability of interchange; the time variable is then
computed in a stochastic way."°

1V. ENERGY

The configurational energy of the system, Eq. (1) with
h = 0, can also be written as

H= _J(NAA +NBB _NAB)! (9)

U(xt)
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Fig. 1. Time evolution of a “microscopic” measure of the configurational
energy of the system, #(x, ) as defined in Sec. IV, in the case of the system
relaxation at (a) P, (p =0.015, T=0.6 T,) and (b) P, (p=0.125,
T=0.9 T,) both on the coexistence line. The approximate time #, at
which u(x, ) shows Gaussian fluctuations around the stationary value #
increases with temperature (note, however, a different time scale in the
graphs). Moreover, the fluctuations are not yet stabilized during the ex-
periment at P,; see Fig. 2.
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where N,,, Npg, and N,; represent, respectively, the
number of nearest-neighbor pairs 4A-4, B-B, and A-B in
the system. These satisfy

Ny + Ngg + Nyp =%N, (10)

where ¢ is the lattice coordination number; ¢ = 6 in the
case considered here. It then follows from Eq. (9):

H=JNQ2u—3), (11)

so that u=N /N, the number of 4-B bonds per lattice
site, is a natural measure of the system energy and will
hereafter be called energy.

For a random starting configuration (7; = « ) one has
approximately in our finite system

(N =u (T; = 0 )=q(1 —p)p. (12)

Here p is the density of the minority species, say 4 [see Eq.
(6)].

The change of u, (T') with time during the system evolu-
tion gives some idea about the rate of the phase segregra-
tion processes in the system. We thus recorded u#(x, ), the
number of A-B bonds in the configuration x, obtained by
the procedure in Sec. I1I at the time step . This presents the
typical relaxation shown by Fig. 1. That is, the microscopic
measure of the energy u(x, ), shows up a fluctuating behav-
ior rarely observed in a real experiment. These fluctuations
are not a consequence of “experimental errors” but the
expected canonical fluctuations in a system where the tem-
perature is fixed by means of an efficient contact with a heat
bath, the phonon heat bath described in Sec. II B which is
incorporated into the model system through the use of the
transition probabilities (8).

The temporal evolution of the energy can be compared
directly with some theoretical predictions.” To this end,
however, u(x,) is not in principle the relevant quantity
because it represents the value of the energy in only one
member of the hypothetical ensemble. Instead one is inter-
ested in the expected value of the energy at time # as defined
by

u, =2P(x,t)u(x). (13)

This is obtained in practice by taking the average over the
ensemble with the initial state x, distributed according to
the probability P(x,,0). That is, one has to take the average
of u(x,) over “many” independent evolutions of the model
system. One expects, however, that for functions which are
extensive, like the energy, the number of independent runs
needed should decrease with increasing system size be-
cause it then decreases the probability that a starting con-
figuration not be a “typical” one: for a macroscopic size
system almost every run should produce the same results.
We have confirmed a posteriori that eight runs when
N = 27000 or one run when N = 125 000 are a good ap-
proximation to “many runs” in the above sense.

One should also notice that #(x, ) was only recorded in
practice at suitable time steps. Typically we let the system
undergo 50 000 or 150 000 actual exchanges (depending
on the value of the system size N) between two successive
measurements because of economic reasons and also in or-
der to avoid correlations.

V. SPECIFIC HEAT

The energy fluctuations in Fig. 1 contain indeed very
useful physical information about the system. We shall give
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two examples of this fact. Namely they can be used as a
criterion to decide whether or not the system has reached
its equilibrium state, and they are very closely related to the
value of the specific heat, an important property of the
equilibrium state.

The observation of the graphs in Fig. 1 seems in principle
to suggest that every system considered here is in equilibri-

[p(u)-Au
(a)
.15 L
A
LO5
L
S a1 N
.0815 L0825 v
,p(u)-AU (b)
. 125 F
.075
. 025
1 1
. 305 . 307 .309 u
pw)A
P Y v {c)
15 F
.1
OS5 F
545 B

Fig. 2. Histograms corresponding to the experimental energy distribution
p(u) obtained from the stationary part of the system evolution at (a) P,
(p=0015T=06T,), (b) P, (p=0061, T=08 T,), and (c) P,
(p=0.125,T= 0.9 T, ). The solid curve is the Gaussian Eq. (15) corre-
sponding to the mean and deviation measured experimentally.
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um during the latest part of the computer experiment, say
for ¢ > ¢, where a first approximation to #, can be obtained
by direct inspection of the data. This is the conclusion when
one realizes that u(x, ) fluctuates for ¢> £, around a con-
stant value u., (7). This, however, is not a sufficient condi-
tion for equilibrium.

The equilibrium energy fluctuations in the canonical en-
semble are characterized by a Gaussian distribution,

p(H) aexp| — (H— (H))*/2k;T?C,],

where p(H)dH represents the probability that the system
energy is within the interval (H,H + dH), and the mean
square fluctuation is related to the specific heat at constant
volume C, by the familiar Einstein’s formula."' Using
again u as a variable it follows that

p(u) aexp[ — 27N> (u — (u))/kyT*Cy ] (15)
and
Cy = 4N 2({u?) — (u)?)/kp T2, (16)

where (u) = U (1), in the case of our model system.

In Fig. 2 we present histograms where p (1) Au is plotted
versus « in the case of three quenches to the final tempera-
tures T'~0.6 T, (P,),0.8 T, (P,) and 0.9 T, (P;) along the
coexistence line (i.e., for zero magnetic field in the lan-
guage appropriate to the magnet). When making those
graphs only values of u(x, ) for ¢ > ¢, were included; 7, was
then adjusted in order to obtain the best fit of the data to the
expected Gaussian. In addition we tried to include only
noncorrelated u(x,) values; that is, values of u(x,) well
separated in time. Fig. 2(a) shows up indeed a very reason-
able Gaussian distribution at 7=0.6 T, thus indicating
that the model system is in equilibrium for ¢ > ¢, in this case.
The histograms in Figs. 2(b) and 2(c), however, clearly
depart from a Gaussian distribution. This fact should
be interpreted as a strong evidence that the system at
T>0.6 T, during the evolution ¢ > #,, presents an “untypi-
cal” flexibility to modify its energy as a response to small
changes in temperature. That is, the model system has not
yet completely reached its real equilibrium state. This situ-
ation is more evident in the case 7'=0.9 T, [Fig. 2(c)]
than at 7'=0.8 T, [Fig. 2(b)]. This seems to indicate that
the evolution is slower in terms of “real” time, the higher
the temperature for T< T,. It also supports the overall
conclusion that, while the energy stabilizes relatively early
during the relaxation, the fluctuations take a much longer
time to reach typical equilibrium values. That is, the mean
value of the energy has a shorter relaxation time than its
fluctuations. This fact may be observed (indirectly) some-
times when trying to measure quantities such as the specific
heat in real materials.

Other pieces of information can be obtained from the
energy distributions in Fig. 2, namely the mean values
u = ., (T). These can be compared with the results from
series expansions. The comparison is made in Fig. 3 where
we present the equilibrium values of the energy (computed
by the above method) at P,, P,, P;, and also at P, (T'=1.1
T,,p=05)and Ps(T=1.5,p = 0.5) (i.e., both are also at
“zero magnetic field””) together with the energy-tempera-
ture profile for different system sizes N.'? There is very
good agreement with the results from series expansions and
also our results for the equilibrium value of the energy
when N = 27 000 or 125 000 do not differ appreciably from
the corresponding ones for the infinite system.

A stringent test of the above conclusions may be ob-

(14)
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K1/

Fig. 3. The experimental equilibrium energy H /H(T = 0 K) computed
by averaging u(x, ) fort > t, (seeFig. 1) at P, P,, P, P, (p =0.5, T = 1.1
T.),and P (p =0.5, T= 1.5 T,) is compared here with the expected
value for different system sizes N.'>'* The agreement between the values
for N = 27 000 or 125 000 with the curve for N = oo is excellent.

tained from the analysis of the specific heat at constant
volume, The values obtained during the simulation of Eq.
(16) are compared in Fig. 4 with the results from series
expansions and with results for “small” systems.'? It fol-
lows again from Fig. 4 that only the simulation at
P,(T==0.6 T, ) has reached the real equilibrium state of the
system. Notice that the departure of Cy from the results
for the infinite system in Fig. 4 cannot be interpreted as a
consequence of the finite size of our model because this
would produce the opposite effect to the one shown by Fig.
4.

VI. METASTABLE STATES

Metastable states are often observed in nature as super-
cooled or supersaturated states. They naturally emerge

C/Nk

r

15 > Te/T

Fig. 4. The experimental value for the specific heat at P, — Ps, computed
from energy fluctuations as shown by Eq. (16), is compared here with the
expected value for N = co. The discrepancies are interpreted as due to the
fact that the system at P, — P is not yet in equilibrium in spite of the
evidence shown in Fig. 3. Some curves for small N (Ref. 12) are also
included to show that the discrepancies cannot be a consequence of small
size effects.
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Fig. 5. Samie as Fig, 1 in the case of the phase point P¢ (p = 0.035, T=6
T, ) which is a candidate for metastability.

within the context of mean field theory.* Real experiments
and such a thermodynamic (and usually unrealistic) de-
scription gives, however, rather poor information about
their microscopic or dynamical properties.

Penrose and Lebowitz'* have listed three properties
characterizing metastable states: (i) only one thermody-
namic phase is present, and usual thermodynamics applies
toit; (ii) an isolated system that starts in this state is likely
to take a very long time (say years) to get out; and (iii)
escape from the metastable state is an irreversible process.
Computer experiments may in principle provide a micro-
scopic view of these and other properties of metastable
states,

Following the description by Penrose and Lebowitz,'
metastable states can arise when some thermodynamic pa-
rameter of the system (such as T or /) is changed from a
value for which the stable equilibrium state has a single
thermodynamic phase, to one for which it would consist of
more than one phase or, as in hysteresis, a single but differ-
ent phase. Thus we have quenched our system to T'= 0.6
T. and p = 0.035(Ps). The saturation density at that tem-
perature is p; ~0.015 (corresponding to P,) so that Py is
inside but very close to the coexistence line for the model

F,D(U)‘AU
}.

15 Pe

1

.05
L

1B 178

Fig. 6. Same as Fig. 2 in the case of P,.

- A —

.18 7]
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and thus a candidate for metastability. As a matter of fact,
it seems that the (gradual) separation between metastable
and unstable states at that temperature is around
p = 0.045'>'¢ (a sharp distinction only seems to occur for
long range interactions'”). The behavior at P can also be
compared with that at P, (T=0.6 T,, p = 0.05) where a
clear phase transition was observed before 3000 (in a
run which lasted up to ¢~ 14 000).”

We observed at P that the system had not made indeed
the appropriate phase transition up to # = 16 300. Instead
it went over continuously into a one-phase state which
clearly appears to be stationary in time, during the time
range 5000-16 300, in the same manner as a stable equilib-
rium state such as the one at P,. That is, only small, 4-rich
clusters (vapor phase in the lattice gas language) are pres-
ent in our final state at P, while much larger (by a factor of
10) clusters (liquid droplets) were observed at P,.

A distinguishing feature of a metastable state'* is that,

Read data
T/Te, ¥ /

Generate initiol
random configuration Xo

By

Select atom or couple of n.n. atoms.
Compute change $H in the energy.
Evaluate the factor W(X, X")
Compare ¥ to random fraction R,

WOLXD) <R
decides whether or not
he old configuratio
is

kept

changed

Change accordingly
the configuration.

Compute the magnitudes of
interest in the current configuration.

Fig. 7. Flow diagram of the main program. The basic iterative step of the
program generates a new configuration x’ from the previous one x by
choosing randomly an atom and flipping it (Glauber dynamics) or by
choosing a couple of nearest neighbor atoms which are then interchanged
(Kawasaki dynamics) according to a prescribed criterion. This compels
the system to evolve toward the canonical equilibrium state at the tem-
perature of quenching. See Sec. II and III and Refs. 1 and 21 for more
explicit details. When performing the simulation in a personal computer
this basic step, including the random number generator algorithm, should
be written in machine Janguage; see Sec. III and Ref. 20.
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Table I. The experimental equilibrium energy and its fluctuations as mea-
sured by Eq. (16) for three phase points at 7= 0.6 7. P, is on the coexis-
tence line, P, is in the two-phase region; and P (inside coexistence as
well) is a clear candidate for metastability. Note that the values for P do
not follow the trend suggested by P, and P,. We have also included for
comparison the approximate values expected'® for the true two-phase
equilibrium at P, and P;; it is clear that the system at P; is still far from real
equilibrium, i.e., it i§ a metastabie state.

Two-phase equilibrium

P ﬁexp Cexp /NB kB u appr. Cappr. /NB kB
P, 1.456% 0.0821 +0.0001 0.303 4 0.03 o
Py 35% 0.179 + 0.001 247 +0:2 0.14 1.75
P; 5% 0.1565 £ 0.0002 1.56 + 0.2 0.16 1.54

eventually, either through some external disturbance or a
spontaneous fluctuation which nucleates the missing phase
in some small part of the system, the system begins an irre-
versible process which leads it inexorably to the corre-
sponding stable equilibrium state. This ultimate part of the
evolution was never observed during our experiment at Py,
From a simple point of view this is just a consequence of
having such a small number of 4 particles at P that a large
enough fluctuation (nucleus) leading the system out of the
metastable state is highly improbable.- More quantitative
statements are also possible; see, for instance, Ref. 15.

Interestingly enough, a closer inspection of the evolution
at P, shows up some features which are characteristics of a
true equilibrium state and others which are not. We show
i Figs. 5 and 6 the evolution of #(x, ) and the energy distri-
bution p (1) obtained from the stationary part of the evolu-
tion, respectively. This is very similar to the situation de-
picted in Figs. 1 and 2 for P, although the fluctuations and
deviations from a Gaussian distribution are now more im-
portant. Table I compares the values measured by us for
(u) and Cy, as defined in Eq. (16), at P, Pg; and P;. One
realizes there that the values at the metastable state Py are
indeed much highier than the ones corresponding to a true
two-phase equilibrium state at the same temperature and
composition.

VIII. CONCLUSION

The similarity between the results obtained from lattice
models and those observed experimentally led, during the
last few decades, to the now common belief that these mod-
els, in the beginning regarded as mathematical curiosities,
actually capture many of the essential physical features of
equilibrium cooperative phenomena. In fact, the Ising
model is now recognized to have certain relevance for
many phase transitions in nature.

The physical relevance of Ising-like models in the study
of nonequilibrium phenomena is in principle less clear cut.
The necessary assumptions about the transition probabili-
ties make the situation iore artificial.

The model we have described, however, shows an un-
deniable physical relevance in relation to the kinetics of
phase segregation in quenched real materials. As a matter
of fact, a series of computer simulations>”'* based on that
model have played an important role during the last decade
as a guide for real experiments and for the development of
theory. One may mention, for instance, that those compu-
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tations were able to identify and/or reproduce the shape
and dynamical scaling properties of the structure function
as measured by means of small angle scattering of x rays,
light or neutrons in many alloys, liquid and glassy mix-
tures, protein solutions, etc. over a broad range of tempera-
tures and compositions.”'® Those computations also re-
produce cluster or droplet distributions closely related to
the ones observed by using electron or field ion microscopy
in real mixtures.>"

We have also described in this paper new computer ex-
periments on the same model system in order to illustrate
the microscopic nature of the relaxation toward equilibri-
um. Namely we have focused our attention on the behavior
of the energy and its fluctuations, and on the possibility of
measuring the system equilibrium energy and specific heat.
It then becomes clear that the system stabilizes relatively
early with respect to the value of the energy while its fluctu-
ations (specific heat) may yet be far from the correspond-
ing equilibrium value. It also becomes clear that a size
N = 27 000 may mean “large enough” for many purposes.
One of the computer experiments was performed on a
phase point showing metastability. We obtained in this
case anomalous “equilibrium” values, as expected. The
metastability was associated with a very low probability
that the system evolves toward full phase segregation given
that it contains less A particles than necessary for a thermal
fluctuation to produce a nucleus of the new phase.

Finally, we also find interesting to mention that ordinary
personal computers may in principle be used®® to perform
computer simulations such as the ones described in this
paper (Fig. 7); those simulations can thus serve as a con-
venient and economic tool when teaching basic physical
concepts. Following a suggestion from the editor, we are
willing to supply with copies of a program for the two-
dimensional Ising model upon request; this can be used for
a classroom experiment with any IBM PC compatible per-
sonal computer.

* Work supported in part by the US-Spanish Joint Committee for Scien-
tific and Technological Cooperation, Research Grant in Basic Science
CCB-8402025.
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An apparatus is described in which acoustic diffractions are generated. Such diffractions are
recorded in the field when seismic data is collected over a geological area that has many faults and
truncated geological structures. The design of the experiment is considered from the point of view
of theoretical feasibility and practical implementation. A computer-controlled transceiver is
guided on a traverse perpendicular to a model of a rigid half-plane. At each transceiver location an
acoustic pulse is emitted, and the scattered acoustic pulse is recorded. Results of this experiment
are presented and analyzed from the perspective of Keller’s geometric theory of diffraction. The
predicted asymmetry of the diffraction hyperbola is observed in the model data collected.

I. INTRODUCTION

In this paper we describe an experiment which we use to
demonstrate pulsed acoustical diffraction and reflection
from a rigid half-plane. This experiment offers an excellent
demonstration of Young’s' observation that diffracting
edges appear luminous for light sources. Therefore, he in-
ferred that a wave arises from the edge of the diffracting
object. As we will demonstrate below, an analogous phe-
nomenon exists for acoustic waves. Furthermore, this ex-
periment is able to simulate the type of data collection
which is used in the seismological exploration for hydro-
carbons. The type of reflection-diffraction data presented
forthwith is an idealization of seismic field data collection.
(See Appendix.)

For this experiment, we are dealing only with acoustic
rather than elastic waves. In the exploration for oil using
seismic methods, the acoustic model for wave propagation
is normally assumed. The seismic source and réceiver are
replaced by an acoustic transceiver. The truncated geologi-
cal bed is idealized by an aluminum plate, which serves as
the rigid half-plane. The acoustic diffractions generated in
this experiment are often seen in field seismic data. There-
fore, the experiment is extremely useful in developing an
understanding of the basic seismic diffraction phenome-
nori. In addition, it can be directly related to the extension
of geometrical optics, the geometrical theory of diffraction
as proposed by Keller.? Keller’s extersion of geometrical
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optics puts on a firm footing the intuitive observations pro-
posed by Young. Since Keller’s initial development of the
geometrical theory of diffraction, many extensions have
been proposed which again serve to support the theory of
Young. Thus, this experiment offers an excellent opportu-
nity for students to correlate diffraction theory as outlined
in the geometrical theory of diffraction, with the experi-
mental data collected.

II. BASIC THEORY

Before building the experimental appartus, we em-
barked on a feasibility study, which necessitated the analy-
sis of the relative strengths of the reflected and diffracted
pulses. We used as a model the theory of Bowman, Senior,
and Uslenghi, for an acoustical point source situated over
arigid half-plane. (See Fig. 1 for a description of the geom-
etry and algebraic nomenclature.) This proceeds as fol-
lows.

Assume a sinusoidal time dependence e ~ “* for the veloc-
ity potential ¥ of a point source given by:

V, = e /R, (1)
where
R=V(x—x)"+ (0 —3o)" + (z — 2)?

and ¥, represents the incident field.
Then it can be shown that the contour integral represen-
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