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Abstract

We compute the internal energy of di-erent Ising-type models, both long and short range,
under Tsallis statistics using the microcanonical and the canonical ensemble and we discuss
under which conditions both ensembles give equivalent results. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

In this paper, we study di-erent Ising-type systems in the microcanonical and the
canonical ensemble under the generalized statistics introduced by Tsallis [1]. 1 This is
based upon the following alternative expression for the entropy:

Sq =
1−∑i p

q
i

q− 1
(1)

depending on a parameter q. A probability pi is assigned to each of the i = 1; : : : ; W
microscopic con=gurations. The set of probabilities {pi} must be obtained maximizing
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1 An updated bibliography on Tsallis statistics is available at http://tsallis.cat.cbpf.br/biblio.htm.
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Sq under the appropriate constraints. The physical observables associated with a micro-
scopic dynamical function O are computed as statistical averages 〈O〉 obtained using
the rule [2]: 〈O〉=∑i OiPi with Pi = p

q
i =
∑

j p
q
j and Oi is the value of O at the con-

=guration i whose probability is pi. Di-erent statistical ensembles give rise to di-erent
probabilities pi and we address in this paper the question of equivalence between the
microcanonical (=xed energy) and the canonical (=xed average energy) ensemble. To
be more speci=c, we consider Ising-type systems with Hamiltonian:

H=
∑
(n; m)

1− snsm
r�nm

; (2)

where sn=±1, and the indexes n; m=1; : : : ; N=Ld run over the distinct pairs of sites of
a regular d-dimensional lattice of lattice spacing equal to 1 and with periodic boundary
conditions; rnm is the distance between the spins n and m, and the parameter � sets
the interaction range. The energy of con=guration i is �i (notice that the ground state
has zero energy). The usual short-range Ising model is recovered in the limit �→ ∞,
where 1=r�nm → 0 unless n and m are nearest neighbors with rnm = 1. For �6d, the
average energy per particle diverges in the thermodynamic limit and the system is said
to be non-extensive. More precisely, a convenient scale for the average energy per spin
in a =nite system of size N is given by [3] E=N ∼ Ñ = (N 1−�=d − �=d)=(1− �=d). We
see that for �¿d, the average energy per spin scales as a constant in the limit of
large N , whereas for �6d, it grows with the system size, a non-extensive behavior.
Throughout this paper we will be considering the following cases:
(a) �=∞; d= 1, the short-range one-dimensional Ising model,
(b) �=∞; d= 2, the short-range two-dimensional Ising model,
(c) �= 0:8; d= 1, a non-extensive, long-range one-dimensional Ising model,
(d) �= 0, the non-extensive in=nite-range Ising model, whose properties are basically

independent of the spatial dimension d.
For each of these cases, we will compute the internal energy E(T; N ) (the average
value of the Hamiltonian 〈H〉) as a function of the temperature T and the number of
particles N , in the microcanonical and the canonical ensemble. We will compare the
results obtained in both ensembles using the standard de=nition of temperature as well
as a recent proposal for a physical temperature [4].

2. The microcanonical ensemble

The microcanonical ensemble is de=ned by =xing the energy E and setting pi = 0
to those con=gurations whose energy is not equal to E. The maximization problem for
the original entropic form Sq given by Eq. (1) with the constraint of given energy E,
and the normalization condition

∑
i pi = 1, has the solution of equiprobability:

pi =

{
�(E; N )−1; �i = E ;

0 otherwise ;
(3)
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where �(E; N ) is the number of con=gurations with energy E for a system with N
particles. Using this solution, the entropy as a function of the energy is given by
Sq(E; N ) = (�(E; N )1−q − 1)=(1 − q). Finally, the temperature is de=ned by the ther-
modynamic relation 1=T = 9Sq=9E=�(E; N )−q9�(E; N )=9E. This relation allows us to
plot the energy as a function of the temperature, E(T; N ).
We see that an essential ingredient in the microcanonical ensemble is �(E; N ), the

number of con=gurations having energy E for a system with N particles. The exact
form of this function depends on the interaction range parameter � and on the spa-
tial dimension d, although the total number of con=gurations is

∑
E �(E; N ) = 2N

independent of � and d. We now specify this function in each of the four cases of
interest:
(a) �=∞; d= 1: The possible energy levels are Ek = 4k; k = 0; : : : ; N=2 (assuming

that N is an even number) and their degeneracy is easily computed as �(Ek; N )=2( N2k ).
(b) �=∞; d= 2: The possible energy values are Ek = 4k; k = 0; : : : ; N . No closed

exact expression is known for the function �(E; N ). However, the exact solution for
the partition function of the L ×M Ising model [5] has allowed Beale [6] to write a
Mathematica program that can actually compute �(E; N ) for moderate values of N .
Using this program, we have generated the exact values of �(E; N ) for N = 322 or
smaller.
(c) �=0:8; d=1: This is the more complicated case, because no analytical expression

or exact numerical values is available. For small values of N , up to N = 34, we have
made a complete enumeration of W=2N con=gurations and their energies �i. For larger
sizes, up to N =3000, the values of �(E; N ) have been obtained by using a numerical
sampling method known as histogram by overlapping windows (HOW) [7]. Details of
the implementation of the method for this particular problem can be found in Ref. [8].
(d) �=0: This case is equivalent to considering the Bragg–Williams approximation

to the solution of the Ising model (see for instance Ref. [9]). The energy levels are
Ek = 2k(N − k); k = 0; : : : ; N=2 (assuming again that N is an even number) and the
number of states is �(Ek; N ) = 2(Nk ) for k =0; 1; : : : ; N=2− 1 and �(Ek; N ) = ( NN=2 ) for
k = N=2.

3. The canonical ensemble

In the canonical ensemble we =x a value for the average energy E = 〈H〉. Maxi-
mization of the entropy, Eq. (1), under this constraint and the normalization condition∑

i pi = 1, leads to the following solution for the probabilities Pi [2]:

Pi =




[1−(1−q)�i=T ′]q=(1−q)∑
j [1−(1−q)�j=T ′]q=(1−q) ; 1− (1− q)�i=T ′¿ 0 ;

0 otherwise ;
(4)

where we have de=ned

T ′ = (1− q)
∑
j

�jPj + T

(∑
j

P1=q
j

)−q
(5)
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and T is the (inverse of the) Lagrange multiplier used to enforce the condition of
=xed average energy in the maximization procedure. Finally, it is possible to show
the validity of the Legendre structure of the resulting thermodynamics formalism by
proving the relation [10,2] 1=T = 9Sq=9E.

Although Eqs. (4) and (5) form a closed set, it is very diJcult to use them in that
form because the number of terms in the sums is the number of microscopic con=g-
urations, or 2N , an extremely large number. It is possible to simplify the calculations
by rewriting those equations in terms of the number of states �(E; N ). More precisely,
one can replace the sum over microscopic con=gurations (with 2N terms) by suming
over energy levels (with a number of terms proportional to NÑ );

∑
j →

∑
k �(Ek; N ).

Using the function �(E; N ), it is then possible to compute numerically the di-erent
sums and hence to compute the internal energy (and other quantities of interest) within
the canonical ensemble formalism [8].

4. Results

In Fig. 1 we plot the internal energy versus the temperature, in the microcanonical
and the canonical ensemble obtained using the appropriate number of states �(E; N )
for each case (a)–(d). It is shown that, within the accuracy displayed in that =gure and

(a) (b)

(c) (d)

Fig. 1. Internal energy E as a function of the temperature T for the Ising model de=ned by (2) in the cases:
(a) �=∞; d=1, (b) �=∞; d=2, (c) �=0:8; d=1 and (d) �=0. The number of spins is N =1000. Solid
lines are the results obtained in the microcanonical ensemble, while symbols correspond to the canonical
ensemble. For the curves, from left to right, the values of q are q = 0:5; 0:9; 1; 1:1; and 1.5.
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(a) (b)

(c) (d)

Fig. 2. Internal energy E as a function of the physical temperature Tphys . Same cases and symbol meanings
as in Fig. 1.

in all the cases, the microcanonical and canonical results agree for q6 1 but disagree
for q¿ 1.
Recently [4], it has been suggested that an appropriate de=nition for a physical

temperature is

Tphys =
(
1 +

1− q
k
Sq

)(
9Sq
9Uq

)−1

: (6)

In Fig. 2, we plot the internal energy as a function of this physical temperature in the
four cases of interest (a)–(d). We can see from this =gure that the results of the micro-
canonical ensemble collapse in a single curve for all values of q, i.e., the dependence on
q disappears when using the physical temperature in the microcanonical ensemble. This
collapse is in agreement with a recent theoretical analysis of the de=nition of physical
temperature [11]. The results of the canonical ensemble show some zig-zags which
should be repaired by using a Maxwell-type construction (although we have not been
able to =nd an unambiguous way of performing such a construction). Those zig-zags
have their origin in the necessary transformation to go from the parameter T ′ to the
temperature T as given by Eq. (5), and a plot of T versus T ′ already shows that behav-
ior. The mathematical origin of the zig-zags lies in the condition 1− (1− q)�i=T ′¿ 0
of Eq. (4) when we sweep along the values of T ′, the number of di-erent energy
levels with a non-zero probability increases in a discrete way, thus producing steps or
zig-zags. The number of these steps is proportional to NÑ , and in the thermodynamic
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limit we will get an almost continuous set of energy levels. These zig-zags are more
pronounced, the larger the interaction range was. Except for this zig-zag behavior, we
see again that the microcanonical and the canonical ensemble results agree for q6 1
and disagree for q¿ 1. The same conclusions are reached when studying the system
magnetization instead of the internal energy. A more detailed study, beyond the scope
of this paper, should consider also other properties such as the heat capacity or the
magnetic susceptibility.
Notice that the ultimate reason for not having equivalence between the two ensem-

bles for q¿ 1 is that Kuctuations of the energy in the canonical ensemble cannot be
neglected. We have checked that this is indeed the case by computing the energy Kuc-
tuations �(H) =

√〈H2〉 − 〈H〉2 as a function of the system size. We have checked
that the Kuctuations, when normalized by the scale of energy, NÑ , do not decay to
zero for increasing N in the range of temperatures for which the microcanonical and
canonical ensembles do not agree. For q6 1, Kuctuations do decay to zero with the
system size in all the temperature range.
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