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Stochastic E4ects in Intercellular Calcium Spiking in Hepatocytes

M. E. GRACHEVA*?, R. TORAL- AND J. D. GUNTON*

*Department of Physics, ¸ehigh ;niversity, Bethlehem, PA 18015 and -Instituto Mediterraneo de
Estudios Avanzados, CSIC-;IB, E-07071 Palma de Mallorca, Spain

(Received on 21 January 2001, Accepted in revised form on 25 May 2001)

We carry out a Monte Carlo simulation of stochastic e!ects for two models of intercellular
calcium wave propagation in rat hepatocytes. Both models involve gap junction di!usion by
a second messenger. We "nd that, in general, the stochastic e!ects improve agreement with
experiment, for a reasonable choice of model parameters. Both stochastic models exhibit
baseline #uctuations and variations in the peak heights of Ca2̀ . In addition, we "nd for one
model that there is a distribution of latency times, rather than a single latency time, with
a distribution width which is comparable to the experimental observation of spike widths. We
also "nd for the other model with low gap junction di!usion that it is possible for cell
multiplets to oscillate independently initially, but to subsequently become synchronized.
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1. Introduction
Cell-to-cell signals control the development of
multicellular organisms as well as most of their
functions (Goldbeter, 1996). Calcium signaling
plays a particularly important role in cell com-
munication. Single hepatocytes respond to
hormonal stimulation with repetitive spikes in
intracellular Ca2` concentration (Thomas et al.,
1991, 1995, 1996). Multiplets of hepatocytes can
exhibit well-coordinated spiking, known as inter-
cellular Ca2` waves. Such intercellular commun-
ication can take di!erent forms, including gap
junction coupling, paracrine signaling and the
recently discovered extracellular calcium signal-
ing (HoK fer et al., 2000). In particular, the di!usion
of second messengers through gap junctions ap-
pears to be responsible for intercellular calcium
waves in tracheal ciliated cells (Sneyd et al., 1995;
Sanderson et al., 1990), glial cells (Charles et al.,
1992), pancreatic acinar cells (Loessberg-Stau!er
?Author to whom correspondence should be addressed.
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et al., 1993; Yule et al., 1996) and other types
(Sanderson et al., 1994).

There exist two di!erent types of experimental
studies of such waves. In one class, a single cell of
a cultured monolayer is stimulated mechanically,
inducing the propagation of Ca2̀ waves in the
adjacent cells. Such studies have been carried out
on tracheal epithelial cells (Hansen et al., 1993)
and endothelial cells. Sneyd et al. (1995, 1998)
have proposed a model for these intercellular
waves, which assumes gap junctional di!usion of
IP

3
between adjacent cells. Mechanical stimula-

tion of a single cell produces IP
3

within the cell,
which in turn causes the release of Ca2̀ from
internal stores in the form of an intracellular
Ca2̀ wave. Di!usion of IP

3
between cells then

initiates calcium waves in adjacent cells. This
process continues as long as the amount of IP

3
entering a given cell is su$cient to induce a Ca2̀
wave. In another class of experiments, studies
are carried out on freshly isolated systems
of connected cells that are globally stimulated
( 2001 Academic Press
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by hormones (Loessberg-Stau!er et al., 1993;
Nathanson et al., 1992; Combettes et al., 1994;
Nathanson et al., 1995; Robb-Gaspers &
Thomas, 1995). An interesting feature of these
studies for liver cells (which are tightly coupled
by gap junctions) is the sequential pattern of
Ca2̀ spiking in the di!erent connected cells,
which creates the appearance of Ca2̀ waves
(Nicholson et al., 1987).

Some recent papers have studied the mecha-
nisms that control the coordination and intercel-
lular propagation of calcium waves induced in
rat hepatocytes (studying propagation of such
intercellular Ca2̀ waves in doublet and triplet
cells). A "rst paper by Tordjmann et al. (1997)
studied calcium waves induced by noradrenaline
and showed that gap junction coupling is neces-
sary for the coordination of the oscillations
between the di!erent cells. The authors also dem-
onstrated that it is necessary to have hormone
stimulation at each hepatocyte in order to have
cell}cell calcium signal propagation. Further-
more, they also found that there were functional
di!erences between adjacent hepatocytes. A sub-
sequent paper by the same authors (Tordjmann
et al., 1998) continued these studies, combining
single-cell studies with experiments on cell popu-
lations isolated from the peripheral (periportal)
and central (perivenous) zones of the liver cell
plate. They found strong evidence that the
sequential pattern of calcium responses to vaso-
pressin in these multicellular rat hepatocyte sys-
tems was due to a gradient of cell sensitivity (from
cell to cell) for the hormone. The "rst cell to
respond had the greatest sensitivity to the global
stimulus, while the last cell to respond had the
least sensitivity. This is an important result, since
such gradients may impose an orientation on
calcium waves in liver cells and provide a
pacemaker-like mechanism for regulating intercel-
lular communication in the liver. Based upon these
experimental studies, two models have been put
forward in order to explain the observed results.

The "rst model is due to Dupont et al. (2000)
who studied a model based on junctional coup-
ling of multiple hepatocytes which di!er in their
sensitivity to the hormonal stimulus. As a conse-
quence of this di!erence, the intrinsic frequency
of intracellular calcium oscillations also varies
from cell to cell. These oscillators are coupled by
an intercellular messenger, which could be either
Ca2̀ or inositol 1,4,5-trisphosphate IP

3
. The

model yielded intercellular waves that were
con"rmed experimentally (Dupont et al., 2000).
The authors also presented experimental evid-
ence that the degree of synchronization is greater
for the "rst few spikes, in agreement with the
prediction of their model. They also presented
evidence that suggested, within the context of their
model, that IP

3
di!usion through gap junctions

(rather than Ca2̀ di!usion) plays the dominant
role in the synchronization of intercellular spiking.

An alternative model has also been proposed
by HoK fer (1999) to explain the experimental re-
sults obtained in the "rst paper by Tordjmann
et al. (1997). HoK fer noted that this experiment
revealed a rather large variability in oscillator
frequency between adjacent cells, which he
argued is likely to be of random nature. As a con-
sequence he studied the possibility that this orig-
inates from random variations in the structural
properties of cells (cell size, cell shape, or ER
content). In addition, Ca2̀ was assumed to be
the second messenger (HoK fer, 1999). His results
were in reasonable agreement with those of
Tordjmann et al. (1997).

Although we are not in a position to judge the
relative merits of the two models, both are rela-
tively successful and quite interesting. However,
they both have limitations. For example, the cal-
cium spikes in the Dupont et al. (2000) model are
extremely sharp, whereas the experimental spikes
are broader. HoK fer's model predicts more reason-
able spike widths, but predicts an intercellular
synchronization at low stimulus that seems
inconsistent with experiment (cf. Section 2). In
addition, both models are deterministic, de-
scribed by di!erential equations with boundary
conditions for the cell multiplets and with di!u-
sion between cells. Such models, however, do not
produce stochastic e!ects such as #uctuations in
the baseline values of calcium and variations in
the amplitudes and widths of the spikes that
have been seen experimentally (Tordjmann et al.,
1997, 1998). Indeed, since the number densities of
intracellular signaling molecules are typically low
of order 1}102 lm~3, one would expect stochas-
tic e!ects to be important (Stundzia & Lumsden,
1996; Kraus et al., 1996). To obtain a better
explanation of the experimental results, we have
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therefore studied stochastic versions of the above
two models. Our simulation is based on a Monte
Carlo method due to Gillespie (1976, 1977).
Stochastic models of intracellular Ca2̀ spiking
for a variety of cell types have been studied pre-
viously (Kraus et al., 1996; Prank et al., 1998;
Keizer & Smith, 1998; Keizer et al., 1998; Falcke
et al., 2000).

The outline of our paper is as follows. In Sec-
tion 2 we de"ne and study a stochastic version of
HoK fer's model. In Section 3 we study a stochastic
version of the Dupont et al. model. In both sec-
tions, we compare our results with those of the
experiment. Finally, in Section 4, we present
a brief conclusion.

2. Calcium Synchronization of Heterogeneous
Cells

We "rst study a stochastic version of the deter-
ministic model proposed by HoK fer (1999) to ex-
plain the synchronization of calcium oscillations
in heterogeneous hepatocyte cells found by Tor-
djmann et al. (1997). His model of intracellular
dynamics is similar to earlier models (Somogyi
& Stucki, 1991; Dupont & Goldbeter, 1993),
but includes calcium inhibition of receptors
(Bezprozvanny & Ehrlich, 1995; DeYoung &
Keizer, 1991). As noted above, he assumed that
the rather large variability in intrinsic oscillator
frequencies observed by Tordjmann et al. is due
to random heterogeneities of structural proper-
ties (such as cell size, cell shape and ER content).
He also argued that since there seems to be no
feedback of calcium on PLC in hepatocytes (Bird
et al., 1997) and since non-metabolizable ana-
logues of IP

3
can also produce calcium oscilla-

tions (Thomas et al., 1991), IP
3
#uctuations are

not needed to produce calcium oscillations. He
thus assumed that the concentration of IP

3
rap-

idly reaches a steady-state value (which can di!er
for di!erent cells) that is treated as a parameter of
the model. In addition, he argued that since cal-
cium oscillations may cause continuously chang-
ing junctional #uxes of calcium, the intercellular
synchronization might be due to a Ca2̀ #ux
across cellular gap junctions. The HoK fer model
(1999) considers a series of j"1, 2, 2 , N linearly
connected cells. We will be considering in this
study single cells, N"1, doublets, N"2 and
triplets, N"3. Let x
j
and y

j
be, respectively, the

average cytosolic calcium concentration and the
average free calcium concentration in the ER in
cell j, and de"ne z

j
"x

j
#(Cj

ER
/Cj

C
) y

j
, where z

j
is a measure of the free calcium content in the
cell. Here Cj

C
"<j

C
(1#B

0
/K

B
) and Cj

ER
"<j

ER
(1#B

0
/K

B
) are e!ective volumes of the cytosol

and endoplasmic reticulum of cell j, respectively.
(These arise in the model from a quasi-steady-
state approximation for calcium bu!ering).
<j

C
and <j

ER
are the real volumes of the cytosol

and ER, and K
B

and B
0

are a dissociation
constant and the total concentration of calcium
binding sites, respectively. HoK fer estimates
that this cytosolic calcium bu!ering factor
(1#B

0
/K

B
) ranges from 20 to 100 or so de-

pending on cell type and chooses it as 75 in his
calculation.

After some simpli"cation HoK fer (1999) ob-
tained the following deterministic model for the
time evolution of the x

j
and z

j
variables in the

case of a doublet, N"2:
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The last term, proportional to c, denotes di!u-
sion between cells. c is a junctional coupling
coe$cient and is proportional to the gap-junc-
tional permeability, but we will refer to it as to
the gap-junctional permeability coe$cient. The
index pairs (i, j)"(1, 2) and (2, 1). The system can
be easily generated to the case of more than two
cells. In these equations P

j
is the IP

3
concentra-

tion in cell j. The IP
3
R release function k

r
(x

j
, P

j
)

describes the gating kinetics of the IP
3

receptor



TABLE 1
¹ypical simulation constants for model with inter-
cellular di+usion of Ca2`: P is IP

3
concentration,

l
0

is a background Ca2` leakage, l
c
is max rate of

IP
3

induced Ca2` in-ux, l
3

is max rate of ER
uptake of Ca2`, l

4
is max rate of calcium e/ux,

other parameters see (HoK fer, 1999)

Parameter Value

P 2.0 lM
l
0

0.2 lM/s
l
c

4.0 lM/s
l
3

9.0 lM/s
l
4

3.6 lM/s
K

0
4.0 lM

K
3

0.12 lM
K

4
0.12 lM

d
1

0.3 lM
d
2

0.4 lM
d
3

0.2 lM
d
p

0.2 lM
d
a

0.4 lM
k
1

40.0 s~1
k
2

0.02 s~1
o 0.02 lm~1
a 2.0
b 0.1
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R and is given by
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an expression based on earlier theoretical work
(DeYoung & Keizer, 1991; Li & Rinzel, 1994).
The parameters o

j
"Aj

PM
/Cj

C
, a

j
"Aj

ER
/Aj

PM
and

b
j
"Cj

ER
/Cj

C
de"ne various structural character-

istics of the j-th cell and account for the hetero-
geneous behavior of di!erent cells. The variables
Aj

ER
and Aj

PM
are the areas of the ER and plasma

membrane of cell j, respectively. The parameter
l
0

describes a calcium leakage from the back-
ground, l

c
is the maximum rate of IP

3
-induced

calcium formation (in#ux), l
3

is the maximum
rate of ER uptake of calcium from the cytosol
and l

4
is the maximum rate of calcium extrusion

through the plasma membrane.The de"nitions of
the other parameters as well as their values are
given in HoK fer (1999). Table 1 summarizes the
values we adopt for these parameters in the pre-
sent paper. Note that the parameters A

PM
, C

C
,

A
ER

, B
0
and K

B
are not given, as they only appear

in ratios in the model.
The above set of HoK fer's equations is determin-

istic and completely ignores the #uctuations that
appear from the fact that the chemical reactions
do not occur uniformly and continuously in time.
Gillespie's method (Gillespie, 1976) considers
speci"cally that (a) the concentration of molecu-
lar species can only vary by a discrete amount
and (b) the chemical reaction itself is a stochastic
process that occurs with a certain rate. Therefore,
it is not possible to determine which reaction will
occur next, but rather what is the probability that
a given reaction will take place.

In accordance with Gillespie's method, we in-
troduce the number of calcium ions in the cytosol
of cell j as X

j
(the calcium ion &&population num-

ber'') and correspondingly the population
number Z

j
of calcium ions, such that the concen-

trations of the reactants are obtained as

x
j
"

X
j

X
, z

j
"

Z
j

X
. (4)
In this model X is the volume of the cytosolic
compartment of the cell, with #uctuation e!ects
being most notable for small X. The population
numbers X

j
and Z

j
can vary by discrete, integer,

amounts according to some probability that re-
#ects the possible reactions taking place in the
system. The possible events and their reaction
constants are de"ned in Table 2. Given eqns
(1)}(3) we choose the following expressions for
the rates:
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TABLE 2
Stochastic formulation of model with intercellular

di+usion of Ca2`

Reaction constant Stochastic process
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FIG. 1. Calcium oscillations in the stochastic version of
HoK fer's model for a single cell, eqn (1) with N"1 and c"0,
for di!erent values of the cytosolic volume X"300 lm3,
105 lm3. We observe that a smooth behavior, correspond-
ing to the deterministic limit, is already achieved for
X"105. Parameter values are as listed in Table 1, with
b"0.1, P"2.0 lM and o"0.02. We have taken as initial
condition for the cell the resting state without agonist,
P"0 lM. ( ) Omega"300; ( ) Omega"100000.
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and the convention that, whenever they appear,
we de"ne X

0
"Z

0
"0, X

N`1
"Z

N`1
"0 as the

boundary condition for di!usion. Equations
(5)}(8) describe the intracellular calcium dynam-
ics while eqns (9)}(12) describe gap junction
di!usion. The stochastic simulation proceeds
(Gillespie, 1977) by choosing randomly one of the
8]N events with a probability proportional
to the reaction rate, where N is the number of
connected cells. Once the event is selected, the
number populations change accordingly and
time increases by a given amount.

Following (HoK fer, 1999) we consider a spheri-
cal cell with a radius of 6 lm, with a cell volume
of about 900 lm3, one third of which is a
cytosolic volume of about 300 lm3. We have
considered X to be essentially a parameter con-
trolling the size of the #uctuations. We display
our results for X"300 lm3, i.e. the cytosolic cell
volume. Fig. 1 shows the calcium oscillations
for one isolated cell in our stochastic model
for X"300 and 105, respectively. Note that
the result for large X"105 agrees with the
deterministic limit (HoK fer, 1999).

We have not found a value in the literature for
the cell}cell permeability c that enters in the gap
junction coupling. Therefore, we will follow
(HoK fer, 1999) and study the calcium oscillations
for a range of permeability values. To determine
the maximum value of c that we should use in the
stochastic model, we simulated the experimental
study (Tordjmann et al., 1997) of the doublet of
hepatocytes. In the experiment (Tordjmann et al.,
1997), the authors "rst stimulated only one of the
cells in the doublet with a hormonal input (local
perfusion). They then stimulated both cells simul-
taneously (global perfusion). From these studies
they found that local perfusion does not produce
spiking in the second (unstimulated) cell. Global
perfusion of both cells, on the other hand, pro-
duces well-synchronized Ca2̀ oscillations in the
two cells. We thus use this to "x our gap junction
permeability coe$cient, such that stimulation of
only one cell in the doublet does not produce
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oscillations in the second (unstimulated) cell for
a given permeability coe$cient between cells. In
Fig. 2a}c we show our results of stimulating only
one cell in the doublet. We increase the cell}cell
permeability to "nd the largest value that will not
produce Ca2̀ spiking in the second cell. We see
that the two cells respond di!erently, with di!er-
ent periods of oscillations; in neither case does
the unstimulated cell show Ca2̀ oscillations.
However, if we stimulate both hepatocytes they
respond with well-coordinated Ca2̀ oscillations.
This yields the value of c

max
"0.07 s~1, which is

in the range of values used by HoK fer (1999).
Next we study the behavior of two connected

hepatocytes which are globally stimulated. To
simulate the experimental situation of two slight-
ly di!erent cells, we choose di!erent structural
parameters, with b

1
"0.15, b

2
"0.2. We do not

follow HoK fer in our choice of structural para-
meters since for his choice of parameters
(b

1
"0.1, b

2
"0.2) for a given volume X"300

we could not obtain a well-synchronized re-
sponse from two coupled cells. We also choose
slightly di!erent values of o (than HoK fer) to have
better synchronized oscillation patterns. The re-
sults of the simulation are shown in Figs. 3a}c for
c"0.0 and 0.07 s~1. The calcium oscillations in
the two cells are totally uncoordinated if the
membrane permeability is set to zero, as should
be the case Fig. 3(a). For a value of the permeabil-
ity c"0.07 s~1 we "nd 1 : 1 locking (Fig. 3b).
Fig. 3c shows the result for c"0.07 s~1 in the
deterministic limit of large X, which is in
agreement with HoK fer's results for this choice of
parameters.

We have also simulated the experimental
situation in which, after a few coordinated
oscillations , the membrane permeability between
cells is blocked in the interval between 200 and
500 s in such a way as to prevent Ca2̀ from
passing through the membrane (c is set to zero in
b&&&&&&&&&&&&&&&&&&&&&&&&&

FIG. 2. Calcium spiking in the stochastic version of
HoK fer's model including di!usion of Ca2` through gap
junctions for N"2 connected cells. Solid symbols corres-
pond to variable x

1
and empty symbols to x

2
(the lines are

a guide to the eye). Values of the parameters are as in Table
1 with b

1
"0.2, b

2
"0.12, o

1
"o

2
"0.015, c"0.07 s~1,

X"300 lm3. In (a) only the "rst cell is stimulated with
agonist: P

1
"2 lM, P

2
"0 lM, while in (b) only the second

cell is stimulated with agonist: P
1
"0 lM, P

2
"2 lM. In (c)

both cells are globally stimulated with agonist:
P
1
"P

2
"2 lM. The initial condition for both cells is the

resting state without agonist (P
1
"P

2
"0 lM). The "gure

shows that, for permeability constant less than c"0.07 s~1,
unstimulated cells in doublet do not produce calcium oscil-
lations, but when both cells are stimulated they produce
well-coordinated spikes.
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the model). In this case the cells lose synchroniza-
tion, but after washing the chemical responsible
for the blocking at t"500 s, the cells regain
synchronization. This behavior is clearly seen in
Fig. 4a. The stochastic model yields a variation
in the amplitude of oscillations and #uctuations
in the baseline value of Ca2̀ , in agreement with
the experimental results (Tordjmann et al., 1998).
These e!ects are absent in the deterministic limit
of the model, shown in Fig. 4b.

Finally, we model the experimental study of
a triplet of hepatocytes, in which one can see
synchronized intercellular signaling. However, if
a heparin treatment is applied to the intermediate
cell the calcium oscillations of the middle cell are
altered. In addition, the synchronized spiking be-
tween the "rst and third cells is destroyed. Fig. 5a
show the results of our simulation. It can be seen
that after the heparin application at t"200 s
[parameters k

1
"0.0 in eqn (3) and l

c
"0.0 in

eqn (1)] there are no calcium oscillations in the
second cell, and the "rst and third cells in the
triplet spike asynchronously. These results are in
good agreement with the experimental results
(Tordjmann et al., 1998). We also show the results
of going to the deterministic limit of large cell
volume in Fig. 5b, which are in agreement with
the original study, as expected.

The result of simulation of a cell triplet with
the membrane permeability between cells set to
zero is presented in Fig. 6. It can be clearly seen
that cells that are not connected by gap junctions
exhibit uncoordinated calcium signaling.

Experiments also show the absence of coord-
ination among the calcium signals in connected
hepatocytes at low concentrations of stimuli.
The cells respond in an asynchronous fashion
because the relative di!erences in the levels of IP

3
are important. To simulate this situation we have
conducted the following numerical experiment.
First we applied a low stimulation level
P"1 lM to all three cells in the triplet, taking
b&&&&&&&&&&&&&&&&&&&&&&&&&

FIG. 3. Calcium oscillations in the stochastic version of
HoK fer's model for a doublet N"2 in eqn (1), of globally
stimulated cells. Values of parameters are as in Table 1 with
o
1
"o

2
"0.02, b

1
"0.15, b

2
"0.2, P

1
"P

2
"2.0 and the

cell volume is X"300 lm3. Solid symbols correspond to
variable x

1
and empty symbols to x

2
(the lines are a guide to

the eye). In (a) the membrane permeability is c"0 s~1 and
the calcium oscillations in the cells are completely uncor-
related. In (b) we use a value of the permeability c"0.07 s~1
for which there is a 1 : 1 locking in the oscillations of the two
cells. Finally, in (c) we show the equivalent locking in the
calcium oscillations of the two cells in the deterministic limit
obtained for X"105 and c"0.07 s~1.



FIG. 4. E!ect of the temporal blocking of gap junction
between two globally stimulated connected cells in the
stochastic version of HoK fer's model. Values of the para-
meters as in Table 1 with o

1
"0.015, o

2
"0.02,

b
1
"b

2
"0.1, and P

1
"P

2
"2.0. The membrane permeab-

ility is c"0.06 s~1 but it is set to c"0 s~1 in the time
interval t3 (200}500) s. Solid symbols correspond to vari-
able x

1
and empty symbols to x

2
(the lines are a guide to the

eye). In (a) we take X"300 lm3, while in (b) we consider the
deterministic limit achieved with X"105 (this is the analog
of Fig. 6(a) from (HoK fer, 1999)). In both cases (a) and (b) one
can see that the cells are initially synchronized from time
0}200 s, but become unsynchronized from 200 to 500 s when
there is no coupling between the two cells. They regain
synchronization for times greater than 500 s. In the stochas-
tic case (a) there are #uctuations in the baseline value of
Ca2` concentration and in the amplitude of the oscillations,
in accordance with the experimental results of Tordjmann
et al. (1998). These #uctuations are absent in the determinis-
tic model (b).
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into account the fact that cells can vary in struc-
tural properties (with o

1
"0.025, o

2
"0.015, and

o
3
"0.02). Note that the three cells become syn-

chronized for times greater than 600 s (Fig. 7a).
This continues to be the case even for membrane
permeability constants as small as c"0.03 (re-
sult not shown). This behavior has not been seen
experimentally. Next, we introduce a gradient in
the IP

3
concentration, with P

1
"1.2, P

2
"1.1

and P
3
"1.0, for three structurally identical cells

with o
1
"o

2
"o

3
"0.02. Fig. 7b shows that cal-

cium oscillations that are initially synchronous
become asynchronous with time due to noise,
and then again become synchronous. Although
this e!ect has not been seen experimentally, it
would be very interesting to have experimental
observations of calcium oscillations over long
time intervals for medium stimulation levels,
since it is possible that even cells that are initially
unsynchronized may become synchronized
later on.

3. IP3 Synchronization via Hormonal Sensitivity
Gradient

The second model we study is due to Dupont
et al. (2000) and considers IP

3
as the second

messenger responsible for coordination of Ca2̀
signaling in connected hepatocytes. This model is
based on the experimental observation that the
number of external receptors on a hepatocyte
membrane depends on its location in the liver cell
plate (Tordjmann et al., 1998). Thus the authors
consider a model of a multiplet of gap junction
connected cells, with a small variation in the
individual cell frequencies. The dynamics of each
cell j is described by a set of three dynamical
variables Rdes

j
, x

j
and y

j
. These are the fraction

of inactive IP
3

receptors, the concentration
of cytosolic Ca2̀ and the concentration of IP

3
,

respectively. The equations of motion are taken
to be

LRdes
j

Lt
"k

`
x4
j

1!Rdes
j

1#(x
j
/K

act
)3
!k

~
R

des
, (13)

Lx
j

Lt
"k

1
(b#IR

a
) [Ca

tot
!x

j
(a#1)]

!<
MP

x
j
2

x2
j
#K2

P

#DCa

L2x
j

Ls2
, (14)



FIG. 5. Simulation of heparin treatment in the stochastic
version of HoK fer's model for a triplet, N"3 in eqn (1) and
(2), of globally stimulated cells. The treatment acts on the
middle cell and starts at time t"200 s. It has been simulated
by setting k

1
"0 in eqn (3) and l

c
"0 in eqn (1) for the

second cell, j"2, after t"200 s. We have used the following
parameters: P

1
"P

2
"P

3
"2 lM, o

1
"0.025, o

2
"0.018,

o
3
"0.02, b

1
"b

2
"b

3
"0.1, c"0.07 s~1. We plot the

time series of the variables x
1
, x

2
and x

3
in the cases (a)

X"300 lm3 where stochastic e!ects are important, and (b)
in the deterministic limit with X"105, analog of Fig. 6(b)
from (HoK fer, 1999), where treatment starts at time t"300 s.
In both cases, after starting the treatment, there are no
oscillations in the second cell and those of the "rst and the
third cell are uncorrelated: ( ) 1; ( ) 2; ( ) 3.

FIG. 6. Evolution of calcium concentrations according to
the stochastic version of HoK fer's model for three globally
stimulated cells, N"3 in eqn (1), in the case of blocked gap
junctions: c"0 s~1. Parameters are as in Table 1 with
P
1
"P

2
"P

3
"1 lM, b

1
"b

2
"b

3
"0.1. We have con-

sidered that the three cells have di!erent structural para-
meters: o

1
"0.025, o

2
"0.015, o

3
"0.02. The cell volume is

X"300 lm3. Notice that the three cells exhibit uncor-
related calcium spikes.
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Ly
j
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!<
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where

IR
a
"

1!Rdes
j

1#(K
act

/x
j
)3

y3
j

K3
IP
#y3

j
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and s is the spatial coordinate.
Note that there is intracellular di!usion of cal-

cium and IP
3

as well as intercellular di!usion of
IP

3
, with the latter providing the coupling be-

tween adjacent cells. Although there is no direct
experimental evidence for intercellular IP

3
di!u-

sion, Dupont et al. (2000) argue that this is the
primary coupling mechanism. The IP

3
di!usion

is modeled by assuming that at each boundary



FIG. 7. Results for the low stimulus calcium oscillations
in the stochastic version of HoK fer's model for three connec-
ted cells and X"300 lm3. The parameters are as in Table 1.
In (a) we take o

1
"0.025, o

2
"0.015, o

3
"0.02, c"0.07~1,

and apply the same low stimulus to the three cells:
P
1
"P

2
"P

3
"1 lM, in (b) we consider structural identi-

cal cells o
1
"o

2
"o

3
"0.027, c"0.03~1 and consider

a gradient in the IP
3

concentration with P
1
"1.2 lM,

P
2
"1.1 lM, P

3
"1.0 lM. Note that while in (a) the

three cells become synchronized for times greater than
600 s, in (b) the three cells synchronize only in some time
intervals.

FIG. 8. A study of the dependence of calcium oscillations
in one cell on cell volume for the stochastic version of the
Dupont et al. model, volume values X"400, 2000, 50 000.
Notice that, as expected, #uctuations decrease with increas-
ing X and that the deterministic limit is already well repro-
duced by X"50 000. Initial conditions are resting states
corresponding to <

PLC
"6.5]10~4 lM/s. The rest of para-

meters are in Table 3 ( ) Omega"400; ( )
Omega"2000; ( ) Omega"50 000.

120 M. E. GRACHEVA E¹ A¸.
between two cells:

D
IP

Ly~

Ls
"D

IP

Ly`

Ls
"F

IP
(y`!y~), (17)

where the superscripts &&#'' and &&!'' indicate
the IP

3
concentration at the right and left limits

of the border, respectively. We consider one-di-
mensional cells 20 lm long, each containing 20
grid points.

We study, using Gillespie's method (Gillespie,
1976), a stochastic version of this model for di!er-
ent cell volumes and for a range of values of the
cell}cell permeability. We consider a cell
20 lm]20 lm]1 lm in size (which gives us
X"400 for our stochastic simulations), as as-
sumed by Dupont et al. (2000). Figure 8 presents
the results of our simulation for a single cell for
some values of X, with the deterministic limit
corresponding to large X"50 000. This shows
the dependence of calcium oscillations on the cell
volume X. The results of our stochastic simula-
tion in this deterministic limit are consistent with
that of Dupont et al. (2000), as expected. In
contrast to the deterministic model where the



FIG. 9. Distribution of induction times coming from the
stochastic version of the Dupont et al. model for a single cell
with X"400, <PLC"2]10~3 lM/s. Other parameters as
in Table 3. The dashed line is a Gaussian "t of mean 95 s and
rms 6.9 s.

FIG. 10. Calcium oscillations in two connected cells as
obtained from the stochastic version of the Dupont et al.
model. Only the "rst cell is stimulated. We use this model
experiment as a method of adjusting the membrane per-
meability F

IP
since it is known that stimulation of just one

cell does not produce response in the second cell. (a) Genu-
ine stochastic case with X"400, F

IP
"0.35, <PLC

1
"

2.5]10~3 lM/s, <PLC
2

"6.5]10~4 lM/s, other parameters
as in Table 3. (b) Deterministic limit obtained by taking
the large value X"50 000. Following the parameters used
in (Dupont et al., 2000) (Fig. 3c) we set F

IP
"0.88,

<PLC
1

"2.77]10~3 lM/s, <PLC
2

"6.5]10~4 lM/s and the
rest of the parameters as in Table 3 ( ) 1; ( ) 2.
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induction time (latency of cell) depends only on
the stimulus strength, we "nd a distribution of
induction times in the stochastic model, due to
#uctuations in the calcium concentration.
Figure 9 shows the distribution of induction
times for one stimulated cell with <PLC"2]
10~3 lM/s. As there does not appear to be any
systematic experimental study of such a distribu-
tion, we have no data to compare our results
with. The mean latency time found in our simula-
tion is 95 s. Since the latency time varies with
hormonal concentration we cannot make a pre-
cise comparison with experiment. However, our
result is in reasonable agreement with the experi-
mental values of 30}200 s for the latency times in
the literature (Thomas et al., 1991, 1995, 1996). It
is also the case that the calcium spikes in these
experiments have a width of 20}30 s, which
means that it would be di$cult to see #uctu-
ations in the central position of the spikes.

For two connected cells we determine the
cell}cell permeability following reference
(Dupont et al., 2000), such that a doublet of cells,
with only one cell doped with stimulant, exhibits
calcium oscillations only in the stimulated cell (as
has been shown experimentally). Figure 10a pre-
sents these data. The results obtained from
this stochastic model are in agreement with
experiment (Dupont et al., 2000), although the
cell-to-cell permeability F

IP
"0.35 lm/s di!ers

somewhat from that in the deterministic model,
F
IP
"0.88 lm/s (Dupont et al., 2000). We have to



TABLE 3
Simulation constants for model with intercellular

di+usion of IP
3

Parameter Value

k
`

25.0 s~1 lM~4
k
~

2.5 ] 10~3 s~1
K

act
0.34 lM

k
1

42.0 s~1 lM~1
b 10~4
<
MP

8.0 lM/s
K

p
0.4 lM

a 0.1
Ca

tot
60.0 lM

K
IP

1 lM
<
K

7.5]10~3 lM/s
<
PH

7.5]10~2 lM/s
K

K
1 lM

K
PH

10 lM
K

d
0.5 lM

D
Ca

30 lm2/s
D

IP
210 lm2/s

F
IP

0.35 lm/s
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use a smaller value for the permeability because
noise in the baseline produce spikes in the
second, non-stimulated cell if the permeability
is larger then 0.35 lm/s. We use <PLC

1
"2.5]

10~3 lM/s, <PLC
2

"6.5]10~4lM/s. We decreased
the value of <PLC to obtain agreement with the
experimental values of the average induction
time. We also "nd that the stochastic model with
the parameters of reference (Dupont et al., 2000)
reproduces the deterministic model in the limit of
large cell volume. This is to be expected, as in that
limit #uctuation e!ects become negligible. Figure
10b shows the results of the stochastic model in
the deterministic limit for the same parameters as
in Dupont et al. (2000) (permeability F

IP
"

0.88 lm/s, <PLC
1

"2.77]10~3 lM/s, <PLC
2

"6.5]
10~4lM/s). Another distinguishing feature from
the deterministic model is that stochastic e!ects
produce a variation in the spike amplitudes, as
was clearly seen in Fig. 8.
&&&&&&&&&&&&&&&&&&&&&&&&&c
FIG. 11. Calcium oscillations in two connected cells. Both

cells are stimulated. (a) and (b) correspond to the genuine
stochastic case while (c) is the deterministic limit. Para-
meters as in Table 3 and (a) X"400, F

IP
"0.35,

<PLC
1

"2.2]10~3 lM/s, <PLC
2

"2.1]10~3 lM/s; (b) X"

400, F
IP
"0.0, <PLC

1
"2.2]10~3 lM/s, <PLC

2
"2.1

]10~3 lM/s; (c) X"50 000 (deterministic limit) and
F
IP
"0.88, <PLC

1
"2.205]10~3 lM/s, <PLC

2
"2.1

]10~3 lM/s, ( ) 1; ( ) 2; to match those used in
(Dupont et al., 2000) (Fig. 3d).
Figure 11a shows the result of the simulations
for two connected, both stimulated, cells. These
cells do not go out of phase as rapidly as in
the deterministic model (results not shown).



FIG. 12. Study of the e!ect of gap junction permeability
F
IP

on synchronization of three cells using the stochastic
version of the Dupont et al. model. Parameters as in Table
3 and X"400, <PLC

1
"2.3]10~3 lM/s, <PLC

2
"2.2]

10~3 lM/s, <PLC
3

"2.1]10~3 lM/s. (a) F
IP
"0.35, (b)

F
IP
"0.0; ( ) 1; ( ) 2; ( ) 3.

FIG. 13. (a) Numerical experiment using the stochastic
version of the Dupont et al. model for three connected cells
with agonist removal right before third cell spikes at
t"258 s. After restoration of agonist at t"358 s third cell
spikes "rst. Parameters the same as for Fig. 12(a). (b) The
same as in Fig. 13(a), magni"ed around t"358 s: ( ) 1;
( ) 2; ( ) 3.
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Figure 11b shows two cells with IP
3

di!usion
suppressed (F

IP
"0.0 lm/s). Note that Fig. 11c

shows our results in the deterministic limit for
large volume, for the same parameters as in
Dupont et al. (2000).

The experimental results exhibit more
synchronization between cells than in this
stochastic model. However, the stochastic model
yields better agreement with experiment then the
deterministic model in terms of the variation in
amplitudes and period variations (for X"400).
As noted in the introduction, the narrow width of
the calcium peaks is a weakness of this model.
Also note that in this model the cell with smaller
sensitivity can spike "rst depending on random
#uctuations in the second cell (at X"400) than
the deterministic model.

For three connected cells we "nd, in general,
the same results as for two connected cells.
Fig. 12a and b shows the e!ect of gap junction
permeability on the synchronization of calcium
oscillations in three cells. The cells spike in phase
for several times, but then gradually lose syn-
chronization. Finally, in Fig. 13, we simulate
the e!ect of washing of agonist at t"258 s just
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before the third cell spikes. Washing simulated
setting <PLC

1,2,3
"6.5]10~4 lM/s), its basal level.

After restoration of the agonist at t"358 s, the
third cell normally spikes "rst (Fig. 13a) as had
happened during the experiment and determinis-
tic simulation (Dupont et al., 2000), but this is not
always the case and depends on #uctuations for
the stochastic model.

4. Conclusion

We have studied calcium oscillations in con-
nected hepatocytes for two di!erent stochastic
models of calcium dynamics. The "rst model
(HoK fer, 1999) describes calcium dynamics be-
tween the endoplasmic reticulum and cytosol,
with di!usion of calcium between connected cells.
In the second model (Dupont et al., 2000) connec-
ted cells have a gradient in IP

3
sensitivity with

di!usion of IP
3

between neighboring cells. Both
models are described by a system of nonlinear
di!erential equations. We have solved these two
models using a Monte Carlo approach, consider-
ing each term in a model as a speci"c reaction
occurring with a certain reaction rate. Our
stochastic models are in better agreement with
experiment than are the deterministic models.
Both stochastic models exhibit baseline #uctu-
ations and variations in peak heights. The base-
line #uctuations are somewhat smaller in the
second model with di!usion of IP

3
between cells,

due to an averaging of calcium concentration
over the cell volume, as well as to model charac-
teristics. The drawback of the Dupont et al.
model is the very narrow width of the calcium
spikes. This results in a distribution of latency
times with a width of about 15 s which is about
the same order as the spike widths observed in
experiments. This would make it somewhat di$-
cult to see such a distribution. In addition,
the model could be signi"cantly improved by
a modi"cation that would yield broader spikes.
When compared to the deterministic model, one
"nds that a smaller permeability coe$cient is
needed in the stochastic model, since calcium
#uctuations on the baseline level give rise to
calcium oscillations in the non-stimulated cell if
only one cell is stimulated. It would be useful to
have experimental results for calcium oscillations
on a much longer time scale than is normally
presented, since the stochastic model shows that
doublets of cells can lose synchronization of cal-
cium oscillations, but can subsequently regain it.

The model (HoK fer, 1999) with di!usion of Ca2̀
between cells reproduces the experimental results
for two cells with only one of the cells stimulated.
The model reproduces the experimental behavior
in which the unstimulated cell does not show
calcium oscillations. Also, in accordance with
experiments, when the two cells are both globally
stimulated, well-coordinated calcium oscillations
can be seen in both cells. In the stochastic model,
the frequency of "nal oscillations of coupled cells
was slightly smaller than the frequency of the cell
with larger frequency oscillations in the doublet
(when the cells are not connected by gap junction
di!usion). We have found that although this
model works quite well for average stimuli
strength, the model does not reproduce the ob-
served experimental response of cells at low
stimuli with di!erent structural parameters for
three connected cells. This is also true when
the cells have di!erent IP

3
sensitivity. Instead of

a gradual loss of synchronization, cells remain
synchronized with a larger period of spiking.
They also remain synchronized for gap junc-
tional permeabilities as small as c"0.035 s~1.
With a further decrease of gap junction permeab-
ility, the cells initially do not oscillate together,
but can subsequently become synchronized. All
the results of both deterministic models have
been reproduced for their stochastic versions, in
the limit of large volume, as should be the case.
Finally, we conclude that it is important to take
into account stochastic e!ects in modeling
calcium oscillations in connected hepatocytes.
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