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Abstract: Boundaries for the primary saddle-node bifurcations related to the main resonances in 
pump-modulated laser diodes are obtained via numerical simulation. The model explicitly 
contains the gain saturation and spontaneous emission terms and the authors focus on the 
effect that these terms have on the large signal modulation regime. It is found that the spontaneous 
emission term strongly modifies the qualitative behaviour of the instability boundaries, while the 
gain saturation factor manifests itself in the damping of relaxation oscillations and leads to a 
simple quantitative shift of boundaries. 

1. Introduction 

High-speed modulation of laser diodes is of interest for 
developing large capacity information transmission and 
ultrafast optical processing systems [ 1-41. Recently, a 
great deal of interest has been generated by the potential 
use of lasers running in a chaotic regime as the carriers of 
information in secure chaotic communication schemes 
[5-71. In addition to the optical feedback and saturable 
absorption effects, chaos in laser diodes induced by pump 
current modulation or gain switching is another option for 
building transmitters for encoded optical communications. 
Although there has been some controversy in earlier 
theoretical [8-101 and experimental [l] results, it is now 
widely accepted that a single-mode laser diode with rela- 
tively small gain saturation and spontaneous emission 
factors might undergo a period doubling route to chaos 
under current modulation. 

We have undertaken numerical calculations in the frame- 
work of the single mode rate equation model with the aim 
of determining the parameter domains of the basic instabil- 
ities involved. The influence of gain saturation factor [9] 
and of the spontaneous emission terms [lo] have already 
been considered, but little attention has been given to main 
resonances. We understand the main resonance to be the 
maximum response of the system to external perturbation, 
quantified by the maximum intensity in the optical-power 
peak. Although main resonances have been considered for 
conventional class B lasers theoretically and numerically 
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[8, 13-16] and also experimentally [17-191, the impact of 
large gain saturation and spontaneous emission terms is not 
yet fully understood and the aim of our work is to give 
more insight within this context. 

2. Model and results 

The dynamics of a single-mode semiconductor laser, a 
typical class B laser, can be described in terms of two 
evolution equations, one for the slowly varying complex 
amplitude of the electric field inside the laser cavity E and 
the other for the carrier number N (or number of electron- 
hole pairs). We consider the electric field E normalised in 
such a way that its modulus square I= IEI2 is equal to the 
number of photons inside the cavity. The equation for the 
electric field can be written in terms of this optical intensity 
I and the phase 4 by defining E = 2/(I>eib. For simplicity, 
we neglect the explicit random fluctuations terms of these 
equations and retain, as usual [20], the mean power of the 
spontaneous emission. As the evolution equations for Z and 
Ndo not depend on the phase 4, we can concentrate only on 
the evolution of the former variables. The equations read 

(1) 

(2) 

dI 
- = [G(N, I )  - 711 + 4pN 
dt 

dt 
- dN = C - y,N - G(N, 1)Z 

where G(N, I )  is the material gain given by 

(3) 

While the first term of the right-hand side of eqn. 1 
accounts for the stimulated emission and losses, the last 
term, 4pN, accounts for the mean value of the spontaneous 
emission in the lasing mode. Eqns. 1 and 2 are written in 
the reference frame in which the frequency is zero at 
threshold when spontaneous emission noise is neglected. 
In these equations C accounts for the number of carriers 
injected per unit time, y is the cavity decay rate, y N  is the 
carrier decay rate, No is the number of carriers at transpar- 
ency, gN is the differential gain parameter, t the gain 
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saturation parameter and p is the spontaneous emission 
rate. Typical values of these parameters are: C > threshold, 

x ps-l, E =  10-8-10-7 and px lop8 ps-'. The 
threshold value for c(cth) is defined as the minimum 
number of carriers injected per unit time needed to fully 
compensate the losses and it is given by cth=yNNth 
(neglecting spontaneous emission), where Nth =No + y l  
gN. The dynamics of these equations for constant 
C > Cth is such that both I and N relax to their steady 
states by performing damped oscillations [20, 211. 

The purpose of this work is to study the dynamics of 
eqns. 1 and 2 when C=C(t),  i.e. it becomes a time- 
dependent and controllable function, modelling the high- 
speed modulation of the laser at a given frequency w,. 
More explicitly, we consider C(t) = cb[ l  + C, sin(w,t)], 
where cb is a fixed value of the current such that cb > c,, . 
In our simulations we choose c b  = 1.2Cth and values for 
the relative amplitude of the modulation C,, < 1, such that 
C(t) > 0 for all times. When C becomes time dependent, 
the dynamics are more complex than in the case of 
constant C, and a very rich dynamical structure can 
appear depending on the values of C, and w,. 

For small values of C, the system behaves almost as a 
linear oscillator with damping terms; the system oscillates 
periodically with the same frequency w, of the input 
current. To characterise the response of the system we 
look at the maximum value of I (Imax) when we modulate 
the laser. It is well known that, under small signal modula- 
tion, the modulation response has a maximum at the 
relaxation oscillation frequency [20, 221 (resonance 
phenomenon). In what follows we take w ,  = mw,, being 
w, the relaxation oscillation frequency of the system for 
C =  C, and m a real number. The value of w, is, for the 
simplest case E = p = 0, w, M Zl(gN(cb - c,)) = 23.5 ns-' 
for our parameter values. 

y = 0.5 PS-', Y N  = 1 nS-', No = 1.5 X IO8, gN= 1.5 

IOj 9 2ot \ 
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Fig. 1 
m = w,lw, in the case C, = 1.2C,* I E = 0, 
a dotted line: C, =0.01, solid line: C,, =0.033 
b C,=O.l 

d C,,, = 0.3 
The 2k responses correspond to further period doubling bifurcations 
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Responses, I,,, , against the normalised external j?equency 
= 0 

c c,, =0.2 

In contrast to the small signal response just described, 
large amplitude modulation, i.e. large values of C,, give 
rise to strong nonlinear behaviours, since the nonlinear 
terms become relevant in the dynamics of the system. The 
maximum response (maximum value of ImaJ is not located 
any more at the relaxation oscillation frequency w, but is 
shifted to a smaller frequency. This fact can be seen in 
Fig. 1 where the response of the system, for different 
values of C,, is shown. In this case we have taken t = 0 
and /3 = O  in eqns. 1-3. Additionally, in this nonlinear 
regime, the response of the system to the external modula- 
tion can be such that other frequencies are excited besides 
the main frequency w,. This fact gives rise to a more 
complex diagram for the response of the system, even 
allowing the phenomenon of multistability. The different 
possible responses of the system can be classified as nln, 
where n and n l  are integer numbers with no common 
factors, such that the response frequency w also bears the 
same relationship with respect to the modulation frequency 
w,, i.e. w = w,nlln [22].  

We will be mainly interested in primary resonances of 
the type nll . Our interest in these responses is based on the 
fact that they usually yield the maximum output power. 
These nll resonances are also called nT responses because 
the period of the resulting signal is n times where 
T=2rclw,. Different types of stable nT responses are 
shown in Fig. 1 for different values of the amplitude of 
the modulation, C, , while in Fig. 2, the time evolution for 
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Fig. 2 
corresponding to the points marked as dots in Fig. I C  
(a) m = 0.43 
(b)  l l ~  = 0.97 
(c) m = 2.08 

(e)  m=2.12 
Same parameters as in Fig. 1 

Intensity against time for different values of m for C,, = 0.2 

(4 m=2.11 
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the intensity is plotted for different values of the frequency 
w, and the common value C, = 0.2. 

The qualitative picture described above can now be more 
explicitly detailed. For small modulation amplitude, see 
Fig. l a  (C, = 0.01, dotted line), the linear approximation 
applies and there are only single main resonances whose 
maximum lies approximately at the relaxation frequency. 
For larger modulation amplitudes, Fig. la (C,n = 0.033, 
solid line), the stable 1 T resonances destabilise themselves, 
via a saddle-node type instability, for sufficiently small 
values of the external frequency iv, giving rise to a series 
of responses which are stable for some frequency ranges. 
This saddle-node instability is interesting since we have 
observed that the maximum response appears just before 
the solution becomes unstable. (We will come back to this 
point later). The same behaviour can also be observed in 
Fig. l b  for a large modulation amplitude, C, = 0.1. When 
multistability is possible, and for those moderate levels of 
the amplitude of the modulation, the larger output intensity 
I,,, always corresponds to the 1T response. For larger 
values of C, there appear nT responses with n > 1. When 
these responses exist, their related output intensity exceeds 
that of the l T  response. For example, in Fig. I C  (corre- 
sponding to C, = 0.2), we see that the 1 T response, solid 
line, gives a smaller output than the 2T response for the 
whole frequency range of existence of the 2T response, 
namely for m E [0.968,2.118]. Moreover, notice that the 1 T 
response does not exist (is unstable) in the frequency 
interval [ 1.76 1 ,  2.1 181. 

For even larger values of C,, the phase diagram of 
stable solutions becomes more complex, see Fig. Id 
(corresponding to C, = 0.3). Besides obtaining 3T reso- 
nances as the ones giving the maximum output intensity 
for some ranges of parameters, we can find period doubling 
bifurcations, period four etc., or even chaos, following the 
Feigenbaum route to chaos [22] or the route period 
doubling followed by period four, eight, period 
tripling,. . . , as in [9, lo]. These are indicated by thin 
lines and are denoted as 2k responses, with being k an 
indication of the number of period doubling bifurcations 
that the orbit has suffered. The same meaning applies for 
the 3k responses. 

In Fig. 2 we plot, for a fixed value of the modulation 
amplitude (C, = 0.2, corresponding to Fig. IC), time 
evolutions for the intensity Z(t) for several values of the 
frequency m = w,,/w,. Case (a) corresponds to m = 0.43 
where, according to Fig. IC, the IT type solution with 
maximum intensity appears. Case (b) corresponds to a 
frequency m = 0.97 where the 2T solution begins to exist. 
We note that at this frequency, the 2T signal has a 
maximum spectral component in the first harmonic, 
allowing for a clean time trace of the optical intensity, 
with no additional peaks, as shown in Fig. 2b. As the 
frequency increases, Figs. 2c and 2d, the 2T response 
deteriorates in the sense that the maximum intensity 
decreases and extra peaks develop in the time series. 
Finally, for m =2.12 the l T  response is recovered. 
However, and in accordance with Fig. I C ,  the maximum 
intensity is now much smaller than that of the optimal 1T 
response shown in Fig. 2a. 

In what follows, our main effort will be directed to give 
a whole description of the main resonances in the (w,, C,) 
plane, by defining the lines of maximum response for each 
main resonance of the nT type. This description can be of 
interest to the experimentalists since it allows determina- 
tion of the resonance frequency at which the maximum 
response is obtained for a given external amplitude of the 
injection current. 
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m 
Fig. 3 Maxima of main resonances in the plane (m, C,,J (solid thick 
lines) 
Thin solid line: period doubling bifurcation of the 1Tresonance to 2' (coincides 
with the limit of existence of resonance lr), dashed line: lowest limit for the 
existence of the 2T resonance, dot-dashed line: lowest limit for the existence of 
the 3 T resonance 

With this aim in mind, we have performed intensive 
numerical simulations to obtain the maximum responses of 
the system for different C,, and w,. In principle, for a 
given C, , one should find the value of w ,  that maximises 
the response at each nT resonance. However, this is a very 
lengthy procedure that can be avoided by finding, instead, 
the value of w, where a saddle-node bifurcation is born, 
since, as we have already said, we have observed that the 
maximum response appears just before the solution 
becomes unstable. This allows us to identify the position 
of the maximum response in the (w,, C,) plane with the 
position of the bifurcation. The procedure of finding such 
bifurcations is easier to implement using nonlinear dyna- 
mical tools than to perform whole simulations of the rate 
equations [23]. In Fig. 3 the primary saddle-node bifurca- 
tions are shown (thick solid lines) in the case E = O  and 
/3 = 0 for the 1 T 2T and 3T resonances. We show in some 
cases that the location of the saddle-node bifurcations 
coincides, with great accuracy, with that of the maximum 
Zmax. The latter have been obtained by numerical simula- 
tions of the laser equations and are indicates by symbols in 
the Figure. Notice, however, that the line of the saddle- 
node bifurcations cannot reach the linear limit m = 1 
corresponding to very low amplitude of the modulation. 
We also plot in the same Figure some additional lines that 
correspond to domains of existence of the above- 
mentioned nT resonances. Within these domains, besides 
the 'pure' nT solutions, there exist a rich variety of 
bifurcated solutions (period doubling, period 4 and so 
on, indicating the route to chaos described previously). 
The 1 T solution only exists below the thin solid line of Fig. 
3. The 2T solution is limited by the thick solid line of 2T 
and the dashed line and it only exists within this limit. 
Finally, the 3T solution is limited by the thick solid line of 
3Tand the dot-dashed line of the Figure. In what follows, 
we will restrict ourselves to the thick lines denoting the 
maximum of each resonance. 

We now describe the effect of the gain saturation term. 
We plot in Fig. 4 ,  the changes on the line of main 
resonances (given in Fig. 3 for c = / 3 = 0 )  in the case 
c # O  (but still p=O). It can be seen clearly that the 
saturation term does not change qualitatively, neither 
does the location of the lines nor the overall dynamical 
behaviour of the system. The only difference is that, for a 
fixed frequency, a larger value of C,n is needed to obtain the 
optimal periodic response. This is clearly compatible with 
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dashed line: c = 3 x lo-', p = 0 
Fig. 4 
solid line: 6 = 0, dotted line: c = 6 x 
Other parameters as in Fig. 1 

Maxima of main resonances in the plane (m, C,) 
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Fig. 5 
solid line: p=O, dotted line: p=6.2 x lo-" ps-l, p=2.3 x 

Maxima of main resonances in the plane (m, C,) 
ps-I, c = O  

0- o h  o h  
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Responses, Imas, against the normalised external fyequency m Fig. 6 
C,= 1.2C,h, c = O ,  p=6.2 x lo-" ps-l 
a C, =0.033 

c Cm=0.3 
b c, =0.2 

the fact that the main effect of the saturation term is to 
increase the dissipation. 

On the contrary, the effect of the spontaneous emission 
term strongly changes the response of the system. In Fig. 5 ,  . the lines of I,,, in the (w,, C,) plane are shown for the 
case /3 # 0 and E = 0. One can observe the dramatic change 
in the behaviour of the response of the system for small 
frequencies with respect to that observed for /3 = 0 (solid 
line). When increasing the modulation amplitude we find a 
steep response that indicates that the frequency w, for the 

optimal response I,,, is less sensitive to the amplitude of 
the external modulation C, . We speculate that this effect 
might be due to the fact that for /3 # 0 there is a background 
of photons preventing the intensity decreasing below a 
certain value, so yielding a frequency-independent 
response. For the case c # O  and P f O  we observe the 
same qualitative results as those shown in Figs. 4 and 5. It 
is important to point out that values of c and different 
from zero yield chaos suppression, a fact that has been 
already pointed out both numerically and experimentally. 
Naively, one could expect that the gain saturation para- 
meter plays a more important part in the dynamics. 
However, we observe that in some situations the main 
resonances can be affected more strongly by the sponta- 
neous emission factor than by the gain saturation factor. 

In the absence of spontaneous emission, p=O, the 
tendency to decrease the main resonance frequency with 
increasing amplitude of modulation can be explained using 
a Toda-like potential function [21,24]. Physically, it means 
that a maximum number of photons in the cavity is 
available for modulation. However, in the presence of 
spontaneous emission terms, this is not true anymore and 
the Toda potential as a function of the intensity changes, 
becoming more symmetric and steeper for very low inten- 
sities. This means that the spontaneous emission back- 
ground is not available for modulation and it is maintained 
essentially unchanged. As soon as the intensity of the laser 
reaches this background level, the dynamics change and at 
low frequencies a nonresonant regime of gain switching 
(with no dependence on frequency in some modulation 
frequency intervals observed) dominates. In Fig. 6, we plot 
the maximum intensity responses I,, against frequency 
w, for different values of C, , in the case /3 # 0. Compared 
with Fig. 1, we notice that at small modulation amplitude 
(C, = 0.033, Fig. 6a) the response for small values of w, 
does not change qualitatively and very little quantitatively 
with respect to that of Fig. l a .  However, for large values of 
C,, the effect of /3 becomes more evident. At C, = 0.2 
(Fig. 6b) the maximum response for the resonance 1T is 
now at a large frequency than in Fig. 1 b and, moreover, the 
corresponding value of I,, is much smaller. Increasing C,, 
even further (C,=O.3 in Fig. 6c), we find that the 
maximum response for the resonance 1T (thick line) is 
much smaller than in the case of Fig. Id, and corresponds 
to a much larger frequency. It has to be mentioned that in 
this case, the value of w, that maximises the 1T response 
presents larger differences in the location of the saddle- 
node than in previous cases. (This difference can be seen in 
Fig. 6c as the difference between the maximum and the end 
of the solid line.) In Fig. 6c we also plot other responses for 
the smallest values of w,. These responses, while having a 
larger output than the IT responses, can either have a 
period larger than IT or, while still being IT, have extra 
peaks in the time series. They include responses of period 
1 T, 2T, . . . , being an example of the structure also reported 
in [25]. We also point out that there exists a flat response 
for some ranges of values of w,. 

Our numerical results can be compared with the experi- 
ments. In particular, a 2T resonance regime has been 
readily identified experimentally in different kinds of 
laser diodes [l, 19, 261. This leads to sharp spikes like 
those presented in Fig. 2. Particularly relevant to our work 
is the paper by Liu and Ngai [l] where the response of a 
single-mode DFB laser subjected to current modulation is 
considered. They observe the following features when 
changing the modulation frequency and amplitude of the 
RF signal: 
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(a )  For small modulation frequency there is only a 1T 
period response for any signal amplitude. This behaviour 
also appears in our system if we modulate with a normal- 
ised frequency m < 0.2 (see Figs. 3 and 4).  
(b) For intermediate modulation frequency there is a 
transition from 1T to 2T responses when increasing the 
modulation amplitude. In our case, this behaviour can be 
inferred from Fig. 1. However, a further transition from 2T 
back to l T  is experimentally, but not numerically, 
observed. 
(e)  3T and 4T solutions appear for large enough modula- 
tion frequency and amplitude. We find these solutions also 
in the case of large enough values of the modulation 
frequency and amplitude. (The range of existence of the 
3T solution is plotted in Fig. Id. while the 4T solution 
would appear for larger values of the amplitude that are not 
plotted in the Figure.) 

3. Conclusions 

We have undertaken a numerical study to identify the 
optimal response of a class B laser subjected to an external 
periodic modulation in the pump of relative amplitude 
C, and frequency w,. We have computed the lines in the 
(w,, C,) plane that gives a maximum response for each 
type of nT resonance. The influence of saturation and 
spontaneous emission terms on the dynamics has also 
been examined. We have found that these specific laser 
diode parameters increase the damping of relaxation oscil- 
lations, thus increasing thresholds of instabilities in the 
system. Our results qualitatively agree in part with the 
experimental observations with 1.55 pm InGaAs DFB 
lasers [I]. 
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