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Abstract

We describe in detail two numerical simulation methods valid to study systems whose ther-
mostatistics is described by generalized entropies, such as Tsallis. The methods are useful for
applications to non-trivial interacting systems with a large number of degrees of freedom, and
both short- and long-range interactions. The �rst method is quite general and it is based on
the numerical evaluation of the density of states with a given energy. The second method is
more speci�c for Tsallis thermostatistics and it is based on a standard Monte Carlo Metropolis
algorithm along with a numerical integration procedure. We show here that both methods are
robust and e�cient. We present results of the application of the methods to the one-dimensional
Ising model both in a short-range and in a long-range (non-extensive) case. We show that
the thermodynamic potentials for di�erent values of the system size N and di�erent values of
the non-extensivity parameter q can be described by scaling relations which are an extension of
the ones holding for the Boltzmann–Gibbs statistics (q = 1). Finally, we discuss the di�erences
in using standard or non-standard mean value de�nitions in the Tsallis thermostatistics formalism
and present a microcanonical ensemble calculation approach of the averages. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Non-extensive systems are those for which the thermodynamic potentials do not
scale linearly with the system size. As a way of example, in some electric or magnetic
systems [1–4] with very long-range interactions the ground-state energy per particle
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increases with the number of particles. In the absence of other e�ects, such as screen-
ing, these system are “genuinely” non-extensive. If we apply to them the standard
Boltzmann–Gibbs formalism of the Statistical Mechanics, we �nd that the internal
energy, Helmholtz free energy and other thermodynamic potentials are non-extensive
as well. This standard formalism can be implemented by using the de�nition of the
entropy S in terms of the probabilities pi of the i = 1; : : : ; W possible microscopic
con�gurations: 2

S =−
∑
i

pi lnpi : (1)

The actual calculation of the entropy assumes a set of probabilities {pi}. These are
computed by �nding the maximum of the above expression when some extra conditions
de�ning an ensemble (�xed number of particles and mean energy, for example) are
imposed.
Even for systems in which the energy levels do scale with the system size, it is

possible, by using generalized de�nitions of the entropy, to obtain non-extensive ther-
modynamic potentials. One of the most successful generalizations is that of Tsallis
which in 1988 proposed [5] the following alternative expression for the entropy:

Sq =
1−∑i p

q
i

q− 1 ; (2)

where q is an entropic index that characterizes the degree of non-extensivity. It is
possible to show that the entropy of the composed system A+ B satis�es the relation

Sq(A+ B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) ; (3)

when A and B are independent systems in the sense that pij(A+B)=pi(A)pj(B).
We see that for q 6= 1 there is no additivity in the entropy, which also implies
non-extensivity. The Boltzmann–Gibbs entropy, Eq. (1), and extensivity are recov-
ered in the limit q → 1. Since the probabilities {pi} satisfy pqi ¿pi for q¡ 1 and
pqi ¡pi for q¿ 1, the superextensive, q¡ 1, and the subextensive, q¿ 1, regimes
will privilege the rare and frequent events, respectively.
In the past years there have been many studies in which Tsallis non-extensive statis-

tics has been applied to di�erent situations (see Refs. [6,7] for a review). In some cases,
the systems considered are genuinely non-extensive (in the sense de�ned above) while
in others the non-extensivity arises as a result of the application of the new statistics. In
fact, and due to the intrinsic non-extensivity of the Tsallis statistics, it has been argued
that its natural range of applicability should include systems with long-range interac-
tions or long-range microscopic memory processes, as well as dynamical systems in
which the space–time geometry has a multifractal-like structure, because those systems
are in general genuinely non-extensive. Although most of the literature (including this
paper) basically derives equilibrium properties starting from the generalized de�nition
of the entropy, it has been conjectured recently [7], however, that the Tsallis entropy
could be relevant instead in the study of non-equilibrium processes.

2 We use throughout the paper dimensionless units where the Boltzmann constant, kB is equal to 1.
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Due to the di�culty of deriving exact results, it is natural to use numerical meth-
ods to obtain the properties of a system with many degrees of freedom when studied
under the rules of the new statistics. This is necessary in order to extract results that
could be checked against experiments. However, these studies have been hampered by
the failure of the typical Monte Carlo methods to adequately generate representative
equilibrium con�gurations distributed according to Tsallis statistics. It is the purpose
of this paper to explain in detail new methods that can be used to study the equi-
librium properties of a many-particle system when it is considered under generalized
statistics. Although our methods are quite general, we will illustrate their use by con-
sidering a prototypical genuinely non-extensive system: the Ising ferromagnet model
with long-range interactions. We will also consider the short-range Ising model in or-
der to test the simulation methods and to compare the results obtained from the use
of Tsallis statistics in extensive and non-extensive systems.
In the remaining of the section, we will outline brie
y which are the basic di�culties

one encounters when trying to generalize the standard Monte Carlo methods (such as
the Metropolis algorithm) to the study of Tsallis statistics. The main problem is that
the probabilities {pi} cannot be given an explicit expression, as we will see in the
following discussion. Let us consider the canonical ensemble. The probabilities {pi}
in this ensemble are found by solving the maximization problem of the entropy Sq as
given by Eq. (2) subject to the constraints of (i) positivity: pi¿0, (ii) normalization:∑

i pi =1 and (iii) a �xed mean value for the internal energy: 〈H〉=U , where H is
the Hamiltonian of the system and the mean value of any function O of the microscopic
con�gurations is computed according to the general rule:

〈O〉=
∑
i

Oiu(pi) ; (4)

Oi is the value of O at the con�guration whose probability is pi and we have introduced
a function u(pi) that allows the de�nition of generalized mean values. The standard
mean values are recovered by taking u(pi)=pi. Although, initially, the choices u(pi)=
pi (�rst option), and u(pi)=p

q
i (second option) were considered, later, it was shown

that a better choice, in the sense that it preserves the Legendre structure of the resulting
thermodynamics formalism, is to consider u(pi) = p

q
i =
∑

j p
q
j (third option) [8]. We

will use the following notation of the averages in this third option:

〈O〉q =
∑
i

OiPi; Pi =
pqi∑
j p

q
j
: (5)

{Pi} are known as the “escorts” probabilities [9]. It is possible to recover the con�g-
uration probabilities pi from the escorts probabilities using

pi =
P1=qi∑
j P

1=q
j

: (6)

The entropy, in terms of the {Pi}’s is given by

Sq =
1− (∑i P

1=q
i )

−q

q− 1 : (7)
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Concerning the di�erent de�nitions for the averages, it should be said that it has been
shown recently [10–12] that the standard mean values of the �rst option, u(pi) =
pi, can be also made compatible with the Legendre structure of the thermodynamics
and the resulting formalism also represents a thermodynamically stable description. In
this paper, we follow mainly the formulation in terms of the mean values de�ned by
Eq. (5), although in a later section we will show that the results obtained using the
standard mean values can be mapped onto the ones obtained using Eq. (5).
The maximization problem for the unknown escort probabilities Pi in the canonical

ensemble with a given internal energy Uq is

�
�Pi

[
Sq − �

∑
i

�iPi − �
∑
i

Pi

]
= 0 ; (8)

Pi¿0 ; (9)

∑
i

Pi = 1 ; (10)

∑
i

�iPi = Uq ; (11)

where �, � are Lagrange multipliers. {�i} are the energy levels of the system under
consideration whose ground-state energy will be denoted by E0. By solving the problem
from Eqs. (8)–(11), one obtains the probabilities for the canonical ensemble as [8]

Pi =




0; 1− (1− q)�(�i − Uq)
(
∑

j P
1=q
j )q

¡ 0 ;

[1− (1− q)�(�i − Uq)=(
∑

j P
1=q
j )

q]q=(1−q)∑
k [1− (1− q)�(�k − Uq)=(

∑
j P

1=q
j )q]

q=(1−q) ; otherwise :

(12)

The probabilities de�ned in this way are real and non-negative. The condition giving the
possible values of � and �i for which Pi 6= 0 in Eq. (12) is called the cut-o� condition.
One can show that the probabilities Eq. (12) are invariant under a change in the energy
levels �i → �i +�� (and the same change in the internal energy Uq → Uq +��) for
arbitrary ��. By introducing the temperature T = 1=�, it is possible to show also the
validity of the relation [11,8]

1=T = @Sq=@Uq ; (13)

which re
ects the Legendre structure of the thermodynamics obtained.
Notice that Eq. (12) does not give yet the actual values of the probabilities since

the {Pi}’s appear in a non-trivial way in both sides of the equation (either explic-
itly or in the cut-o� condition). This is di�erent from the solution obtained in the
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usual Boltzmann–Gibbs canonical ensemble (recovered in the limit q→ 1) in which
the solution adopts the explicit form

Pi =
e−��i∑
j e

−��j (14)

(although, of course, it is very di�cult to compute the denominator of this expression,
the partition function, for an interacting system). An iterative method to solve Eq. (12)
has been used in Ref. [8]. In this method, an initial guess for the probabilities is fed
in the right-hand side of (12) and this equation is used recursively until convergence
is achieved. We will see, however, that for many-particle systems, it might be very
di�cult to achieve convergence in some cases.
A convenient way of writing Eq. (12) is by using an auxiliary parameter �′ de�ned

as [8]

�′ =
�

(1− q)�∑j �jPj + (
∑

j P
1=q
j )−q

: (15)

De�ning T ′ ≡ 1=�′, and using Eqs. (7) and (11) one can rewrite this equation as

T =
T ′ − (1− q)Uq
1 + (1− q)Sq : (16)

In terms of �′ the solution adopts a form similar to that of the standard canonical
ensemble:

Pi =



0; 1− (1− q)�′�i ¡ 0 ;
[1− (1− q)�′�i]q=(1−q)∑
j [1− (1− q)�′�j]q=(1−q)

; otherwise : (17)

One can then adopt the following practical procedure [8]: choose a value for the
parameter T ′ and compute the probabilities Pi as a function of T ′ using Eq. (17).
Compute the internal energy Uq, the entropy Sq and the temperature T , always as a
function of T ′, using Eqs. (11), (7) and (16), respectively. Finally, vary T ′ in order
to make the parametric plots Uq(T ) and Sq(T ). Other thermodynamic potentials follow
the usual de�nition. For instance, the Helmholtz free energy is Fq = Uq − TSq.
It is important to realize that although the probabilities Pi, when considered as a

function of T , do not depend on an arbitrary shift �� of the energy levels or, in
other words, do not depend on the zero of energy, E0, they do depend on E0 when
considered as a function of T ′. This means that the averages as a function of T ′

cannot be physically relevant because they depend on the zero of energy. This is why
T ′ has to be interpreted only as an auxiliary parameter, not as an actual temperature.
Of course, the relation T ′→T depends also on the zero of energy in such a way that
both dependences cancel and the averages as a function of T are independent of a shift
in the energy levels. An interesting question is to determine the range of values for
the parameter T ′ that should be used in order to obtain the usual range 06T ¡∞ for
the temperature T . Using that, according to de�nition (2), it is 1 + (1− q)Sq ¿ 0 we
obtain from Eq. (16) that T ′ should vary in the range [(1− q)E0;∞), where we have
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used that the energy at zero temperature is the ground-state energy Uq(T = 0) = E0.
Therefore, it is important to use the right range of values for T ′ in order to reach all
the possible values for T . In particular, T ′ might need to take negative values either for
q¡ 1 or for q¿ 1 unless one adopts E0 = 0 as we will throughout this paper. To our
understanding, it is not clear in the literature the fact that the averages as a function
of the parameter T ′ depend on the zero of energy and that it might be necessary to
consider negative values for T ′ in order to span the whole range of values for T .
As stated before, the main problem to perform Tsallis thermostatistics simulations at

a given temperature T is that there is not an explicit expression for the probabilities Pi,
c.f. see Eq. (12). The practical procedure outlined above (compute Pi as a function of
T ′ and then compute Uq, Sq and T as a function of T ′ in order to make parametric plots
by varying T ′) is not straightforward to implement numerically since it is very di�cult
to use Eq. (7) to compute the entropy. This is because the usual Monte Carlo methods,
i.e., the Metropolis algorithm, require only the probabilities Pi up to a normalization
factor where Eq. (7) requires the absolute, normalized values of Pi. It is the object
of this paper to explain in detail some numerical methods of the Monte Carlo type
that can be used to perform the necessary averages for generalized statistics, including
Tsallis.
There have been previous attempts to perform numerical simulations of Tsallis statis-

tics using Monte Carlo methods. An earlier work in this direction is that of Penna
et al. [13] who extended the Metropolis acceptance procedure to include a dependence
in the q parameter. However, this method does not satisfy the detailed balance condi-
tion which is a key ingredient of Monte Carlo methods. Another interesting approach
is that of Andricioaei et al. [14], who performed a Metropolis Monte Carlo algorithm
which does satisfy the detailed balance condition for the probability Pi as a function of
the parameter T ′ but, since they do not make the temperature transformation T ′ → T ,
they are unable to determine the actual temperature T of the simulation. All these
works considered the second version, u(pi)=p

q
i , for the de�nition of averages, which,

as discussed before, has proven afterwards not to be the optimal election [8]. We have
used also a similar sampling in the context of simulated annealing [15,16]. A recent
approach proposed by Lima et al. [17] uses the broad histogram Monte Carlo method
[18,19], which determines the number of microstates using a balance equation between
near-neighbor energy levels. They are able to apply this method to the Ising Model with
short-range interactions. This is a valid Monte Carlo simulation with full control of the
temperature T but its applicability is somewhat restricted. As we will show, the Ising
model with long-range interactions cannot be treated straightforwardly with this method
because the spin 
ip dynamics does not produce transitions between near energy lev-
els. In fact, the broad histogram Monte Carlo method has not yet been used to study
long-range interacting systems. We are able to overcome these di�culties by extending
a method which had been developed some time ago [20–23] to compute directly the
number of states with a given energy and which does not depend on the de�nition
of the entropy. In fact, our method can be used to study other generalized statistics,
as we have shown in Ref. [24]. Here we will show applications to Boltzmann–Gibbs
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and Tsallis statistics. We develop yet a second method which is devised speci�cally
for Tsallis statistics and that has the advantage that it uses the familiar Metropolis
algorithm plus a numerical integration.
This paper is organized in the following form: in Section 2, we use a simple and

limited enumeration procedure valid only for small system sizes. However, this method
is exact and can be used to check against some of the approximated methods we will
introduce later. In this section we also introduce the short-range Ising model (SRIM)
and the long-range Ising Model (LRIM). These two models will be employed in this
paper in order to test the numerical methods described here and to compare the behavior
of the non-extensive Tsallis thermostatistics in genuinely extensive and non-extensive
systems. In Section 3, we explain in some detail the histogram by overlapping windows
(HOW) method. We show that this method has a wide range of applicability since it
can be used both for short- and long-range systems as well as for any kind of statistics.
Section 4 presents a Metropolis Monte Carlo-type method specially devised to study
systems in the Tsallis statistics. In Section 5, we present some results concerning the
validity of some scaling relations for the SRIM and LRIM in the Tsallis thermostatistics
context. These scaling relations are an extension of the ones holding for the Boltzmann–
Gibbs statistics. In Section 6, we present results for these models using standard mean
values instead of those de�ned by Eq. (5). In Section 7, we discuss the results of using
Tsallis statistics in the microcanonical ensemble. Finally, in Section 8, we summarize
the main conclusions of this work.

2. Exact enumeration

The problem to compute the probabilities {Pi} using Eq. (17) is that the number
of terms in the sum of the denominator of this equation, the number of microstate
con�gurations W , is extremely large (typically scales exponentially with the system
size). However, for small systems, it might be possible to enumerate completely the
microstates and, therefore, to compute magnitudes of interest such as the internal energy
Uq(T ), the entropy Sq(T ), the free energy Fq(T ), etc. We follow this approach in this
section. Although the system sizes one can usually study with this method are very
far from reaching a situation in which scaling laws with system size apply, we use the
results as a bench-test in order to compare with other approximate methods that will
be introduced in the following sections.
We will consider Ising-type models with Hamiltonian:

H=
∑
(i; j)

Jij(1− sisj) ; (18)

where each of the N spin variables si, i = 1; : : : ; N can take the values ±1. The sum∑
(i; j) runs over all distinct pairs of sites on a d-dimensional regular lattice of linear

size L= N 1=d with periodic boundary conditions and lattice constant equal to 1. Jij is
the coupling parameter between spins i and j. Note that for ferromagnetic couplings,
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Jij¿0, the ground state is double degenerate and its energy is E0 = 0. The usual,
nearest-neighbors, or short-range Ising model (SRIM), is obtained taking Jij = 1, if
rij = 1 and Jij = 0, if rij¿1. The long-range Ising model (LRIM) is de�ned by using

Jij = 1=r�ij ; (19)

where rij is the distance between the spins i and j, and the parameter � sets the inter-
action range. The SRIM is formally recovered by taking the limit �→ ∞. Depending
on the value of � and the space dimension d, the LRIM has two regimes: the extensive
regime, �¿d, and the non-extensive regime, �6d. This can be seen by roughly es-
timating the mean energy per spin in an in�nite system as

∫∞
1 dr rd−1r−�. We obtain

a convergent integral if �¿d (extensive behavior), and for �6d the integral diverges
(non-extensive). More precisely, a convenient scale for the mean energy per spin in a
�nite system of size N is given by [25]

Ñ = 1 + d
∫ L

1
dr rd−1r−� =

N 1−�=d − �=d
1− �=d : (20)

The de�nition of Ñ is such that the limit �→d is well de�ned. Again, we see that
for �¿d the internal energy per spin scales as a constant in the limit of large N , but
for �6d, it grows with the system size. The system is, in this latter case, genuinely
non-extensive. The SRIM limit, �→ ∞, gives the expected result Ñ = 1.
The number of con�gurations in the Ising model is W = 2N . We have made a

complete enumeration of the i = 1; : : : ; W con�gurations and their energies �i for a
linear chain, d = 1, of sizes up to N = 34. We have used these results to compute
the probabilities Pi and then the thermodynamic magnitudes of interest using Tsallis
statistics with the third option for the averages. In Fig. 1, we plot the exact internal
energy Uq as a function of the temperature T , for several values of the parameter q
for the LRIM in a genuinely non-extensive situation, � = 0:8, Fig. 1(b), and for the
SRIM, Fig. 1(a). In the q¡ 1 case we observe that there is a range of temperature for
which the internal energy is not a single-valued function of the temperature and, for a
given value of T , there are several possible values for Uq. This ambiguity is resolved
by using a Maxwell-like construction [26,8] that replaces the loop in the energy curves
by a vertical straight line connecting the two points with the same free energy Fq(T ).
We stress that the loops in the energy curves appear as a result of the T ′→T trans-

formation and, therefore, will not be observed when plotting the energy as a function
of T ′. Typical T ′→T transformations are shown in Fig. 2. We observe in this �g-
ure that for q¡ 1 a same value of T ′ can correspond, in some cases, to three or
more values of T giving rise to the observed multivalued behavior in the energy.
Fig. 2 helps us to understand the failure of the iterative method that has been proposed
[8] to solve the set of equations (12). Although each value of T ′ de�nes a unique set
{Pi}. We see Fig. 2 that for q¿ 1 there are some intervals of T ′ where the transfor-
mation T ′→T is almost horizontal. Therefore, one value of T corresponds nearly to a
complete interval for T ′ and hence, there are many possible solutions for {Pi} very close
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Fig. 1. Internal energy Uq as a function of the temperature T , from the exact evaluation of Eqs. (11) and
(12) for one-dimensional Ising models with N = 34 spins. Plot (a) is for the SRIM and plot (b) for the
LRIM in a genuinely long-range case, �= 0:8. The inset shows the free energy Fq for q= 0:6. In this case,
a part of the energy curve is replaced by a vertical straight line (shown by dots in the plot) such that the
Maxwell criterion of equal free energies is satis�ed.

to the real one. This is the main reason for the failure of iterative methods for q¿ 1.
The situation worsens for increasing system size N .
Whatever illuminating the method of exact enumeration is, its validity is limited to

very small values for N . To our knowledge, the largest value ever considered using an
explicit exact enumeration scheme for a short-range Ising model is N = 43 = 64 [27],
although the number of states for larger values up to N = 32× 32 has been obtained
[28] by low-temperature series expansion, using Kaufman’s generalization of Onsager’s
solution. Simulations at larger N sizes require other methods, as the ones presented in
the next two sections.
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Fig. 2. The T ′→ T transformation for the one-dimensional Ising models as obtained from the exact evalua-
tion of Eq. (16) for a system size N = 34 and di�erent values of q. Plot (a) is for the SRIM, while plot
(b) is for the LRIM for �=0:8. Notice that, in both cases, there is a temperature range for which the curves
are almost horizontal. This makes it very di�cult to use iterative methods for the determination of the prob-
abilities using directly Eq. (12).

3. The energy histogram method using overlapping windows

Although the number of possible microscopic con�gurations is in general very
large, the range of possible energy values usually takes a much smaller value. For in-
stance, for the one-dimensional SRIM introduced in the previous section, with N spins
we have W=2N , but the number of possible energy values is N=2+1. Let M , in general,
be the number of possible energy levels. We denote by 
(Ek) the number of micro-
scopic states sharing the same energy Ek , k=0; : : : ; M − 1. Obviously, ∑k 
(Ek)=W .
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We rewrite all the sums in Eqs. (17), (7) and (5) as

P(Ek) =



0; 1− (1− q)�′Ek ¡ 0 ;

[1− (1− q)�′Ek ]q=(1−q)∑
n 
(En)[1− (1− q)�′En]q=(1−q)

; otherwise ;

(21)

Sq =
1− (∑k 
(Ek)P(Ek)

1=q)−q

q− 1 ; (22)

〈O〉q =
∑
k


(Ek)O(Ek) P(Ek); (23)

where the sums run over the M energy levels.
Notice that, once the 
(Ek)’s have been computed, any statistics can be performed

upon the system. Whether we use Tsallis, Boltzmann–Gibbs or any other generalized
statistics is simply a trivial change in the computational scheme. Moreover, it is also
trivial to compute the averages for any value of the parameters, say T or q. There-
fore, although the calculation of the 
k ’s might be time consuming, the pay-o� is
tremendous. 3

In general, the 
(Ek) are very di�cult to obtain exactly. An important exception
that will be used throughout this paper is the SRIM in 1-d, for which the energy levels
are given by Ek = 4k for k = 0; : : : ; N=2 and whose degeneracy is


(Ek) = 2
(
N
Ek=2

)
: (24)

In the cases in which 
(Ek) is not known we need approximate numerical methods.
The most naive way to �nd the 
(Ek)’s is to generate di�erent system con�gurations
randomly and count how many times a con�guration with energy Ek appears. However,
this approach fails because the complete set of 
(Ek) values span too many orders
of magnitude. In general, two energy levels Ek and En could di�er as much as 
k=

n ∼ expN . This means that the range of variation of 
(Ek) over the M di�erent
energy levels is very large and it is not possible to generate in a single run a histogram
that covers all the energy levels, unless one generates a number of con�gurations of
the order of the total number available to the system, W .
The histogram by overlapping windows method (HOW) used here [20] avoids this

problem by generating system con�gurations within a restricted energy interval and
estimating the relative weights of these energy levels from the number of times they
appear in each interval. By generating enough intervals spanning the whole energy
range, one is able to obtain good-quality estimators of the numbers 
(Ek). An earlier
account of the method has been given in [29] and we explain now in some detail how
the method works.

3 All the simulations in this paper have been performed using a Pentium-III processor at 550 MHz.
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Let us consider �rst the SRIM in arbitrary dimension. In this case, the possible energy
values are Ek = 4k for k = 0; : : : ; dN=2. Following the original work [20], we consider
the intervals (windows) {E0; E1; E2; E3}, {E3; E4; E5; E6}, {E6; E7; E8; E9}, etc. Each
window consists of four consecutive energy levels and the last energy value of one
window is the �rst of the next one. The next step is to take one of the intervals and
to generate con�gurations whose energy belongs to it. This is achieved, after preparing
the system initially with one of the energies of the interval, by 
ipping spins chosen
at random. A spin 
ip is accepted only if it leaves the system in one of the energy
levels of the interval and it is rejected otherwise. The ratio of the number of generated
states with energy Ek to the number of generated states with energy En is an unbiased
estimator of 
(Ek)=
(En), for Ek and En within the energy window. The quality of
the estimator increases with the number of generated con�gurations. From the overlap
between windows one can compute 
(Ek) for the whole range of energies. The number
of energy values in each window (4 in the previous example) is not important as far
as it is not too large (such that the ratios 
(Ek)=
(En) are not extremely small or
large) and it is not too small either. If the window is very small, most spin 
ips will
yield an energy outside the range of allowed values and the number of accepted, i.e.,
independent, con�gurations will be very small. Moreover, the �nal algorithm must be
ergodic: any energy value in a window should be obtained from any other value in
the same window after a su�cient number of spin 
ips.
The same basic idea has been used in other short-range Hamiltonians [20–23,29].

We are concerned now with the extension of this method to consider long-range
interactions, in particular the LRIM introduced before. A modi�cation needed is that
the energy values Ek will represent now a continuum set of energies with a bin size
�E. The energy levels are then Ek = k �E k = 1; : : : ; M and 
(Ek) counts all the con-
�gurations i whose energy �i satis�es Ek6�i ¡Ek + �E. In other words, one makes
the approximation of considering that all the energies lying in one bin count as one
single level. This turns out not to be a critical point, although one has to check that
the results are independent, within the simulation errors, of the magnitude of �E.
A more important point concerns the optimal size l of the energy window {Ek;

Ek+1; : : : ; Ek+l}. Since, for a long-range interacting system, a single spin 
ip can pro-
duce a very large change in the energy, it is important not to choose l too small. To
make this point clear, we have calculated exactly the number of states 
(Ek) for a
system with N =34 by using the complete enumeration of the W =234 possible con�g-
urations, see Fig. 3. Using these exact results we study the energy changes that a single
spin 
ip makes both in the SRIM and the LRIM cases. A typical situation is shown
in Fig. 4. In this �gure we plot the histogram of the (exact) number of con�gurations
using a value for the bin �E = 4 for the SRIM, and �E = 1 for the LRIM. We select
several con�gurations belonging to one of the energy bins (marked black in the �gure)
and we dash all the levels that are obtained from these con�gurations by 
ipping one
spin. We see that, as expected, the change in energy for the SRIM brings the system to
one of its neighboring energy levels. However, for the LRIM the energy changes are
very large and, in fact, the nearest-neighbor energy levels cannot be reached by using
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Fig. 3. The number of states 
(Ek) for N = 34 calculated exactly (lines), and using the HOW method
(symbols). (a) SRIM, (b) LRIM.

the spin 
ip dynamics. 4 A measure of the typical change in energy obtained when

ipping one spin is estimated by considering the ferromagnetic ground-state con�gura-
tion with all the spins pointing in the same direction. One spin 
ip in this con�guration
produces a change in energy �E =2

∑N
i=1 r

−�
ij . The equivalent number of energy bins

is � = �E=�E. We �nally take the size of the energy windows l = 3�. In order to
make sure that ergodicity is satis�ed, we adopt a large overlap of size 2� between
the windows. This means that a window goes from Ek to Ek+3�, but the next window
goes from Ek+� to Ek+4� and so on. For the window {Ek; Ek+1; : : : ; Ek+3�} only those
values in the interval {Ek+�; : : : ; Ek+2�} are considered for the evaluation of the ratios

(Ek)=
(En). To summarize, for the LRIM, it is necessary that both the window size

4 This a�rmation is valid for small �E values, which are needed in the method used in Ref. [17].
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Fig. 4. All the possible jumps from the energy level mark in black generated by a single spin 
ip. (a) SRIM,
(b) LRIM. Note in (b) the small modulation in 
(Ek) of the order of lE = 2

∑N
i=1
r−�ij (see the text).

and the overlap between windows has the correct size, depending on �. For � = 0:8,
used in our simulations, we take �=4 independently of the system size and adjust �E
accordingly. We have checked that �=10 gives the same results within the numerical
errors. The number of con�gurations necessary increases with the required accuracy.
We have adopted in our simulations the criterion that the minimum number of counts
for any energy bin within a window is 100. The knowledge of the exact degeneration
of the ground state 
(E0) = 2 allows �nally the calculation of all the 
(Ek).
In Fig. 3, we plot the number of states computed either exactly or by using the

HOW method, for N = 34 both for the SRIM and the LRIM. At the resolution of the
�gure, the exact results and the approximate ones are indistinguishable. This serves as
a test that the HOW method, as implemented here, is capable of reproducing accurately
the number of states in a known case. In Fig. 5, we show the number of states for
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Fig. 5. The number of states 
(Ek) calculated using the HOW method for the 1-d Ising models for several
values of N . (a) SRIM, (b) LRIM. In (b) we have shifted vertically the curves to avoid overlapping. The
insets show the collapse of all the curves using Eq. (25).

sizes N = 34; 100; 200; 400; 1000 as computed using the HOW method. The insets of
these �gures show that this function scales as


(Ek) = eN�(Ek =NÑ ) : (25)

This is valid both for the SRIM and for the LRIM, if we recall that Ñ = 1 for the
SRIM. The scaling function �(x) is di�erent for the SRIM and the LRIM. For the
SRIM, result (24) leads to

�SRIM (x) =
x
2
ln
(
2
x
− 1
)
− ln

(
1− x

2

)
: (26)

No analytical expression is available for the LRIM. Fig. 6 compares the result for the
internal energy Uq obtained using the HOW method and the exact results obtained from
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Fig. 6. Internal energy Uq(T ) for one-dimensional Ising models with N = 34 and q = 0:8; 1:0; 1:2. Symbols
are obtained using the HOW method and lines show the exact results. (a) SRIM, (b) LRIM.

the exact enumeration algorithm in the case N =34. Again, we can see that di�erences
are too small to show up in this plot. Finally, in Fig. 7 we make a similar plot for
larger values of N obtained in this case by application of the HOW method.

4. The Monte Carlo method

We have mentioned already that the usual Monte Carlo algorithms of the Metropolis
type cannot be applied to Tsallis statistics, because the probabilities {Pi} are not known
as a function of the temperature T . However, it is possible to use them to compute
averages as a function of the parameter T ′ because the probabilities are known as
a function of T ′ except for a normalizing factor, which is irrelevant in the Monte
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Fig. 7. Internal energy Uq as a function of temperature T for one-dimensional Ising models and di�erent
values of N and q, as coming from the application of the HOW method in the (a) SRIM and (b) LRIM.
The values of q are q = 0:8; 0:9; 1:0; 1:1; 1:2 (curves from left to right).

Carlo methods. Those averages can be performed by using the Metropolis algorithm
to generate con�gurations distributed according to the probabilities {Pi} as follows:
consider the con�guration i with energy �i, 
ip a spin chosen at random to produce
con�guration j with energy �j, accept this change with a probability min(1; Pj=Pi).
For the Boltzmann–Gibbs statistics the acceptance probability is the celebrated factor
min[1; exp(−�(�j − �i))]. For Tsallis statistics, Eq. (17), it is instead

P(i → j) =



0; 1− (1− q)�′�j ¡ 0 ;

min
[
1;

1− (1− q)�′�j
1− (1− q)�′�i

]q=(1−q)
; otherwise :

(27)
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This acceptance probability was used for the �rst time by Andricioaei et al. [14]. After
generating N con�gurations, the averages 〈O〉q at �xed T ′ are obtained as the sum:
〈O〉q=N−1∑N

s=1 O(s), where O(s) is the value of the observable O at the con�guration
s in the sequence of con�gurations generated by the Monte Carlo method.
Still, we need to perform the T ′→T transformation, in order to plot averages with

respect to T , using Eq. (16). In this equation, we can use the Monte Carlo averages
for the internal energy Uq= 〈H〉, but the entropy is yet unknown. In order to compute
the entropy, we combine Eqs. (16) and (13):

@Sq
@Uq

=
1 + (1− q)Sq
T ′ − (1− q)Uq ; (28)

which can be integrated between arbitrary points A and B:

1
1− q ln[1 + (1− q)Sq]

∣∣∣∣
B

A
=
∫ Uq(B)

Uq(A)

dUq
T ′ − (1− q)Uq ; (29)

to obtain

Sq(B) =
[1 + (1− q)Sq(A)]e

[(1−q)
∫ Uq(B)
Uq(A)

dUq=[T ′−(1−q)Uq]] − 1
1− q : (30)

Finally, we need to know the value of the entropy, Sq(A) at the initial integration
point A. This depends on the particular system considered, but usually the extreme
temperature cases are known. For the Ising models (both long- and short-range),
Eq. (18), the limits T → 0 and T → ∞ are

(i) Sq(T = 0) = 2(1−q)

1−q .

(ii) Sq(T =∞) = 2N (1−q)

1−q .
We have implemented this Monte Carlo method using a system size N =34. Fig. 8

shows that the function that needs to be integrated in order to perform the T ′ → T
transformation is a smooth one. Fig. 9 compares the internal energy obtained by this
Monte Carlo method with the exact results obtained by the exact enumeration procedure
showing the validity of this Monte Carlo scheme.
The main disadvantage of this Monte Carlo method is that one might need to simulate

a large range of values of T ′ to be able to perform accurately the integration needed
for the T ′→T transformation. However, the use of extrapolation techniques, such as
the multiple histogram reweighting [30,31], which permit to extend the results of a
simulation at a value of the temperature to a continuum range of temperatures, allows
to reduce dramatically the number of simulation points needed [32].

5. The scaling functions

For extensive systems, the internal energy per particle is just a function of the
temperature, U (N; T )=N = u(T ). Clearly, by de�nition, this scaling relation does not
hold for non-extensive systems and there has been some recent interest in �nding the
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Fig. 8. The integration procedure implicit in the Eq. (30) to perform the T ′→ T transformation in the Monte
Carlo method. We use here N = 34; q = 0:6 and TA = 0. (a) SRIM, (b) LRIM.

correct scaling laws that apply to non-extensive systems. A �rst result was to obtain
the scaling laws that follow from the application of Boltzmann–Gibbs statistics to a
genuinely non-extensive system such as the LRIM in the regime �¡d. The results for
the internal energy, U , the magnetization M (de�ned as M = |∑N

i=1 si| and computed
using Eq. (23)), the Helmholtz free energy F and the entropy S can be summarized
by the following relations [4,25,3,33–35]:

U (N; T ) = NÑu(T=Ñ ) ; (31)

M (N; T ) = Nm(T=Ñ ) ; (32)

F(N; T ) = NÑf(T=Ñ ) ; (33)

S(N; T ) = Ns(T=Ñ ) ; (34)
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Fig. 9. Internal energy Uq as a function of the temperature T , for N =34 and q=0:6. By symbols we show
the results of the Monte Carlo method and by lines the exact results. In the insets we show the free energy
criterion explained in the main text. (a) SRIM, (b) LRIM.

where m; u; f; s are the scaling functions. The argument justifying these scaling laws can
be summarized as follows: the internal energy and the entropy appear in the de�nition
of the free energy as F=U −TS, therefore one expects that U and TS should have the
same behavior for large N . Since U scales as NÑ and S scales as N one obtains that
T must scale as Ñ thus leading to the previous scaling ansatzs. Note that the SRIM
case is recovered from the LRIM case in the limit �→∞, when Ñ→ 1 and the scaling
relations, Eqs. (31)–(34), become the standard ones for extensive systems.
We present now the extensions of these scaling laws in the case that the models are

considered under the rules of Tsallis entropy [29]. In the case q 6= 1, the entropy is no
longer an extensive quantity (this is true both for the SRIM and the LRIM). In order
to generalize the argument of the previous paragraph giving the correct scale factor
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for the temperature, we derive from Eq. (3) the following general expression for the
entropy Aq(N ) of a set of N independent particles:

Aq(N ) = Sq(N; T =∞) = [1 + (1− q)Sq(1)]
N − 1

1− q (35)

here Sq(1) is the one-particle entropy. In the Ising model case, one particle can be in
any of the two states with probability 1=2, yielding: Sq(1) = [1 − 2(1=2)q]=(q − 1) =
[21−q − 1]=(1− q). After replacing in Eq. (35), we obtain

Aq(N ) =
2N (1−q) − 1
1− q : (36)

Assuming that Tsallis entropy will be scaled generically with Aq(N ), we now assume
that U and TS scale in the same way as NÑ . Since TS=NÑ = [TAq(N )=NÑ ][S=Aq(N )]
we conjecture that the temperature has to be scaled with N ′ ≡ NÑ =Aq(N ). However,
it turns out that the numerical results do not support this expression for the rescaling
factors in the case q¿ 1. Therefore, we write the scaling relations in the following
more general form:

Uq(N; T ) = NÑuq(T=N ′
U ) ; (37)

Mq(N; T ) = Nmq(T=N ′
U ) ; (38)

Fq(N; T ) = NÑfq(T=N ′) ; (39)

Sq(N; T ) = Aq(N )sq(T=N ′
S) : (40)

The previous argument, valid in the case q61, implies simply N ′
U = N ′

S = N ′.
For consistency in the notation, we de�ne AUq (N ) and A

S
q(N ) by means of N

′
U ≡ NÑ =

AUq (N ) and N
′
S ≡ NÑ =ASq(N ), respectively. Notice that for q = 1 it is A1(N )˙N

and the scaling laws (31)–(34) are recovered. In order to obtain a good scaling de-
scription in the case q¿ 1 it is seen numerically that one needs to assume the limits
AUq (N )∼ 2N (1−q)=(q − 1) and ASq(N ) ∼ 2N (q−1)=(q − 1). A unifying expression that
reduces to the necessary ones for large N and for all values of q is

ASq(N ) =
2N (1−q)

q− 1 ; AUq (N ) =
Aq(N )2

ASq(N )
: (41)

Although we lack a satisfactory explanation for these relations, we note that similar
scaling factors have been used previously to plot in the same scale curves for the
speci�c heat in in�nite-range Ising models and non-interacting ideal paramagnet [36,37].
In order to check the validity of these scaling relations, we have used the HOW

method to simulate the one-dimensional SRIM and LRIM with �=0:8, for system sizes
N = 34; 100; 200; 400; 800; 1000, and several values for the non-extensive parameter
q ∈ [0:1; 1:9]. We test the proposed scaling relations, Eqs. (37)–(40), by plotting the
scaled results in Figs. 10–12. One can observe in the Fig. 10 that, for the same value
of q, the collapse of curves of di�erent sizes N . This is similar to what has been
observed in the q= 1 case [4].
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Fig. 10. Internal energy Uq(T ) plotted in order to check the scaling relation Eq. (37) for q = 0:9; 1:0; 1:1
and di�erent system sizes. (a) SRIM, (b) LRIM.

It is more remarkable of the fact that, with the previous choice for the scaling
factors, all the q¡ 1 data collapse in a single curve. The same thing occurs for the
q¿ 1 curves. Therefore, data can be described by just three universal scaling functions,
corresponding to q¡ 1, q= 1, and q¿ 1 regimes, respectively (see Figs. 11 and 12).
One can see in Figs. 11 and 12 that the collapse in the entropy curves for q¿ 1

is very poor. This is easily understood by noticing that the low-temperature limit of
the entropy for in�nite system size is Sq(T = 0) = (1 − 21−q)=(q − 1) whereas the
high-temperature limit is Sq(T→∞) = 1=(q − 1) and those two �nite values cannot
be rescaled simultaneously. This is di�erent of what happens for the internal energy
and the magnetization for which the limits T→ 0 and T→∞ coincide for di�erent
values of q. Finally, the scaling for the free energy follows directly from its de�nition
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Fig. 11. Internal energy (top graph), magnetization (middle graph) and entropy (lower graph) plotted in order
to check the proposed scaling relations Eqs. (37), (38) and (40) for the short-range Ising model (SRIM).
We have used N =1000 and the curves with q¡ 1 include q=0:2; 0:4; 0:6; 0:8 while the curves with q¿ 1
include q= 1:2; 1:4; 1:6; 1:8. For clarity, in the entropy plot, the inset shows all the values of q, whereas the
main plot shows only q¿ 1.
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Fig. 12. Same plot as that of Fig. 11 but for the long-range Ising model (LRIM). We plot all the same
q values than in Fig. 11, although the di�erent curves are almost indistinguishable with the resolution of
this �gure.
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Fq = Uq − TSq. For q61 it is fq(x) = uq(x) − xsq(x), whereas for q¿ 1 and in the
limit of large N , the scaling function is given simply by fq(x)= uq(0)− xsq(∞)=−x.
In summary, the scaling laws given by Eqs. (37)–(40) work for all values of q

when using the scaling factors given by Eqs. (41). Moreover, the scaling functions uq,
mq and fq adopt only three di�erent forms for each magnitude corresponding to q¿ 1,
q= 1 and q¡ 1, both in the SRIM and LRIM cases.

6. Thermostatistics using standard mean values

It has been shown recently [10–12] that the use of the standard rule for the calcu-
lation of the mean values in Tsallis statistics provides also a valid thermodynamical
formalism. By “standard” rule we mean the use of the �rst option for the averages in
which u(pi) = pi is used in (4). Moreover, it has been argued [8,38] that the results
of using this �rst option coincide with the results of the third option (the one used up
to here in this paper) with a trivial change in the parameter q→ 1=q. In this section
we show that it is possible indeed to map the results of one option into the results
of the other, although the relation between them implies, besides the previous change
in the parameter q, a non-trivial mapping for the temperature. Numerical results using
the techniques developed in the previous sections, will allow us to plot the relation
between the temperatures of the two options.
For the sake of clarity in the exposition we will use the subindexes “1” and “3”

to denote the results one obtains in each option. Hence, the �rst option seeks the
maximization of

S1(q) =
1−∑i p

q
i

q− 1 (42)

subject to the canonical ensemble constraints: pi ¿ 0,
∑

i pi = 1,
∑

i �ipi = U . The
third option, on the other hand, seeks the maximization of

S3(q) =
1− (∑i p

1=q
i )

−q

q− 1 (43)

subject to the same constraints. Of course, in the third option, the probabilities pi
should be interpreted as “escort” probabilities, but this interpretation has no practical
consequence whatsoever in the calculation of the averages. The key point now is that
both entropies are related by

S1(1=q) = Gq[S3(q)] ; (44)

where Gq(x)= q=(1− q)[1− (1+ (1− q)x)−1=q] is a monotonically increasing function
of x. This function satis�es the property: G−1

q (x) = G1=q(x), see Fig. 13. Hence, the
same set of probabilities {pi} that maximize S3(q) for a given value of U will maxi-
mize S1(1=q), for the same value for U . However, the fact that the probabilities
coincide in both options does not mean that the averages computed using these probab-
ilities coincide when they are plotted as a function of the temperature because it turns
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Fig. 13. Transformation function between the two entropic forms S3(q) and S1(1=q) as indicated in Eq. (44).

out that there is a non-trivial relation between the temperatures of both options. Let
us denote by T1 and T3, respectively, the temperatures of the �rst and third options.
They can be de�ned as the (inverse of the) Lagrange multiplier needed to satisfy the
constraint of �xed mean energy or, alternatively, they have been shown to satisfy the
relations [11]:

1=T1(q) =
@S1(q)
@U

; 1=T3(q) =
@S3(q)
@U

: (45)

Using (44) we �nd the desired relation between the two temperatures:

T3(q) = T1(1=q)=G′
1=q[S1(1=q)] : (46)

G′
q(x) is the derivative of Gq(x). After substitution of Eq. (42), we �nd

T3(q) = T1(1=q)

(∑
i

p1=qi

)q+1
: (47)

Therefore, it is true that the results of the third option at the value q of the parameter
can be obtained from those of the �rst one at the value 1=q. However, the mapping
requires a non-trivial rescaling of the temperature, as given by Eq. (47). Let us recall
again that only the dependence with T does not vary when changing the zero of
energies and, hence, can be the only physically relevant one.
In order to give an alternative explanation of the relation between the temperatures

of both options, let us write down the solutions for the probabilities using the �′

parameter. For the third option, the solution is read directly from Eq. (17) that we
rewrite using the notation of this section:

pi =



0; 1− (1− q)�′3�i ¡ 0 ;
[1− (1− q)�′3�i]q=(1−q)∑
j [1− (1− q)�′3�j]q=(1−q)

; otherwise ; (48)
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where the parameter �′3=1=T
′
3 is related to the temperature T3 by Eq. (16) which reads

T ′
3(q) = T3(q)[1 + (1− q)S3(q)] + (1− q)U : (49)

For the �rst option, it is possible to write the solution in the following form:

pi =



0; 1− (1− 1=q)�′1�i ¡ 0;
[1− (1− 1=q)�′1�i]1=(q−1)∑
j [1− (1− 1=q)�′1�j]1=(q−1)

; otherwise ; (50)

where the parameter �′1 = 1=T
′
1 is related to the temperature T1 by

5

T ′
1(q) = T1(q)[1 + (1− q)S1(q)] + (1− 1=q)U : (51)

Now, it is clear by comparing Eqs. (48) and (50) that the probabilities pi of the third
option computed at q are equal to the probabilities pi of the �rst option computed at 1=q
provided that we choose the same values for the primed temperatures, T ′

3(q)=T
′
1(1=q).

After substitution of (49) and (51) and using (43), (42) we recover Eq. (47).
It is straightforward now to use the number of states 
(Ek) obtained using the

HOW method to compute Eqs. (50), (51) and (42) by replacing the sums over the
con�gurations to sums over energy levels weighted by 
(Ek). In this way, we can
perform the necessary averages implied in the �rst option as well as the temperature
transformation factor needed in Eq. (47). In Fig. 14, we plot the internal energy Uq
as a function of the temperature using the standard averages of the �rst option. The
most noticeable di�erence with the results of the third option, see Fig. 5 is that it is
not necessary now to use the Maxwell construction because there are no loops with
the temperature. In Fig. 15 we plot T3(q) vs. T1(1=q) in the LRIM and SRIM cases.
Using these two results, it is possible to obtain the averages within the third option
as a function of T3. Of course, the results agree perfectly with those shown in Fig. 7.
It is possible also to obtain from Eqs. (37)–(40) the scaling relations valid when
the standard calculation of mean values is used for the calculation of thermodynamic
quantitities.

7. Microcanonical ensemble

As mentioned in the introduction, the third option can be formulated by using the
entropic form Eq. (7) plus the standard rule for the calculation of mean values, Eq. (5)
or, alternatively, by using the original entropic form Eq. (2), but with a mean value
de�nition

〈O〉q =
∑
i

Oi
pqi∑
j p

q
j
: (52)

These two points of view are completely equivalent. The �rst option, as explained
in the previous section, uses also the original entropic form but with standard mean

5 To prove this relation it is useful to consider the following identity:
∑

j
[1 − (1 − 1=q)�′1�j]

1=(q−1) =
(
∑

j
pqj )=(1− (1− 1=q)�′1

∑
j
pj�j).
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Fig. 14. The same plot as in Fig. 7 but using lineal mean values instead of non-lineal ones for the values
of N indicated and q = 0:8; 0:9; 1:0; 1:1; 1:2. (a) SRIM, (b) LRIM.

values. We will consider in this section Tsallis original entropic form S(q) in the
context of the microcanonical formalism. The aim is to be able to derive the internal
energy without any a priori assumption about the de�nition of averages. In the mi-
crocanonical ensemble we consider the maximization problem for the original entropic
form Sq given by Eq. (2) with the constraint of given energy E. The solution is the
equiprobability,

pi =
{

(E)−1; �i = E ;
0; otherwise ;

(53)

where 
(E) is the number of con�gurations with energy E. The entropy as a function
of the energy is

Sq(E) =

(E)1−q − 1

1− q : (54)
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Fig. 15. Transformation between temperatures T1 and T3 using Eq. (47) for N = 100 and the indicated
q values. (a) SRIM, (b) LRIM.

The temperature is de�ned by the thermodynamic relation Eq. (13), 1=T = @Sq=@E
or

1
T
= 
(E)−q

@

@E

: (55)

Inverting this relation, we obtain the energy as a function of the temperature, E(T ). In
general, this relation needs to be inverted numerically. In terms of the scaling function
�(x) de�ned in (25) we have

T =
Ñe(q−1)N�(E=NÑ )

�′(E=NÑ )
; (56)

where �(x) is known exactly for the SRIM and can be evaluated numerically using
the HOW method for the LRIM (from the plot in the inset of Fig. 5b). Results are
shown in Fig. 16 where we plot the internal energy coming from the application of
the microcanonical ensemble to both the SRIM and the LRIM. In the same �gure we
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Fig. 16. Plot of the internal energy as a function of the temperature for N = 100. By points we show the
results of using the microcanonical ensemble described in the text, and by lines the results obtained from
the canonical ensemble (see Fig. 7) by using the non-standard mean values of the third option. (a) SRIM,
(b) LRIM.

have also plotted the energy coming from the canonical ensemble using non-standard
mean values (third option). We can see that both approaches coincide for q61, and dif-
fer for q¿ 1 in some temperature range. The ultimate reason for not having equivalence
between the two ensembles is that 
uctuations of the energy in the canonical ensem-
ble cannot be neglected. We have checked that this is indeed the case by computing
the energy 
uctuations �(H) =

√〈H2〉 − 〈H〉2 as a function of the system size. In
Fig. 17 we see that 
uctuations, normalized by the scale of energy, NÑ , do not decay
to zero for increasing N in the range of temperatures for which the microcanonical
and canonical ensemble do not agree. For q61 
uctuations do decay to zero with the
system size in all the temperature range.
If we compare the microcanonical and the canonical ensemble using the standard

mean values (the �rst option studied in the last section) we observe the coincidence
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Fig. 17. Plot of the energy 
uctuations in the canonical ensemble �(H)=NÑ =
√

〈H2〉 − 〈H〉2=N Ñ as a
function of the scaled temperature for the indicated values of the sizes N and the q parameters. (a) SRIM,
(b) LRIM.

of both ensembles for q¿1, and disagreement (in a given temperature range) for
q¡ 1. This turns out to be also consistent with non-vanishing energy 
uctuations in
the appropriate range. This is the expected result because of the mapping q→ 1=q
implied in going from the third option to the �rst one.

8. Conclusions

In this paper, we have given details of two methods that can be used to perform
numerical simulations for many-particle systems that are governed by generalized statis-
tics, such as the Tsallis one. The �rst method extends the histogram by overlapping
windows method, devised originally for short-range Hamiltonians, to systems with
very-long-range interactions. The second method, devised speci�cally for the Tsallis
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thermostatistics, uses a typical Metropolis Monte Carlo updating scheme combined
with a numerical integration. We have emphasized the need of using the right tem-
perature de�nition if averages are to be independent of the zero of energy. We have
applied our methods to the case of the Ising model with either short-range (SRIM) or
long-range (LRIM) interactions. The latter case corresponds to a situation genuinely
non-extensive in which the energy levels scale as N� with �¿ 1, N being the number
of variables. We have compared the methods with some exact results available in the
case of one-dimensional short-range Ising model of arbitrary size and the long-range
model for small system sizes.
We have shown that the internal energy, entropy, Helmholtz free-energy and mag-

netization follow non-trivial scaling laws with the temperature T and the number of
variables N . We have justi�ed these scaling laws by some heuristic arguments that,
however, fail to reproduce the observed behavior for q¿ 1. These scaling laws for
q 6= 1 are non-extensive in the sense that the di�erent thermodynamic potentials have
to be scaled with a factor that depends in a non-trivial, i.e., non-linear, way of N . The
scaling laws hold for both the LRIM and the SRIM (with di�erent scaling functions in
each case), independently of the fact that the systems are genuinely non-extensive or
extensive. This shows that the non-extensivity arises mainly because of the application
of the Tsallis statistics.
We have discussed the di�erences between the use of standard (�rst option) and

non-standard (third option) mean value de�nitions for the Tsallis Thermostatistics for-
malism. We show that, although the results of both de�nitions can be mapped onto each
other by using the q→ 1=q transformations, this mapping requires as well a non-trivial
change in the temperature. Finally, we have shown that the use of the microcanonical
ensemble coincides with the results of the canonical ensemble in the third option only
for q61. We interpret this result as the non-vanishing energy 
uctuations that occur
in the corresponding case.
An obvious extension of the results presented here is to consider the Ising models

in spatial dimension greater than one. 6 The HOW method can be extended in any
dimension for short- and long-range interactions. For the SRIM in d = 2 the exact
results [28] should be used.
We remark that the present work concerns equilibrium systems and there is no time

dependence in our simulations. However, it has been recently conjectured [7] that
Tsallis statistics appears in some non-equilibrium systems such as the relaxation of the
non-neutral plasma experiments in Ref. [1]. To study these non-equilibrium systems
within the Tsallis statistics formalism, it would be more appropriate to use molecular
dynamics (MD) methods in which the evolution equations are solved as a function of
time. We are currently working on a MD simulation valid for a Lennard–Jones system
within the Tsallis statistics. This MD method uses a Kusnezov, Bulgac and Bauer
thermostat [39,40] where additionally the actual temperature has to be calculated using
a relation similar to Eq. (30).

6 A study of the 2-d SRIM using the broad histogram Monte Carlo method was carried in Ref. [17].
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