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Abstract

We present a new method devised to overcome the intrinsic di�culties associated to the nu-
merical simulations of the Tsallis statistics. We use a standard Metropolis Monte Carlo algorithm
at a �ctitious temperature T ′, combined with a numerical integration method for the calculation
of the entropy in order to evaluate the actual temperature T . We illustrate the method by apply-
ing it to the 2d-Ising model using a standard reweighting technique. c© 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

In 1988 Tsallis [1] (for a recent review, see Ref. [2]) proposed a thermostatistics
formalism based on a non-extensive entropy de�nition. In the most recent formulation
[3] of the Tsallis Statistics (TS) in the canonical ensemble, at �xed temperature T ,
observables Oq are obtained as averages of microscopic functions Oi:

Oq =
W∑
i=1

OiPi ; (1)

while the entropy is given by

Sq =
(
∑W

i=1 P
1=q
i )

−q − 1
1− q : (2)
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In these expressions, Pi are the escort probabilities [4] for con�guration i = 1; : : : ; W
with energy �i:

Pi =
Ai∑W
j=1 Aj

≡ [1− (1− q)�i=T ′]q=(1−q)∑W
j=1 [1− (1− q)�j=T ′]q=(1−q)

(3)

and the additional rule that Ai = 0 whenever 1 − (1 − q)�i=T ′¡ 0. Here, to simplify
notation, one introduces the auxiliary parameter

T ′ = (1− q)
W∑
i=1

�iPi + T

(
W∑
i=1

P1=qi

)−q
: (4)

The probabilities Pi, the entropy Sq and the mean value de�ning the observable Oq
depend, besides the temperature T , on a parameter q, which measures the degree of
non-extensivity of the TS. It is not possible, in general, to solve the previous equations
to give explicit expressions for the probabilities Pi as a function of q and T . An
exception being the limit q→ 1 in which one recovers the Boltzmann–Gibbs statistics
(BGS): Pi ˙ exp(−�i=T ) and S1 =−∑W

i=1 Pi ln(Pi). For systems with a small number
W of con�gurations it is possible to solve Eqs. (3) and (4) iteratively starting from
an initial ansatz for Pi, e.g. the Boltzmann–Gibbs expression. However, this method is
not useful for a system with a moderately large number of con�gurations.
The fact that one cannot give explicit expressions for the probabilities Pi has ham-

pered the development of numerical methods to perform the usual Metropolis Monte
Carlo or molecular dynamics simulations of the TS for interacting systems. Very re-
cently, however, methods based on the numerical calculation of the number of con-
�gurations with a given energy have allowed the direct calculation of the necessary
averages [5,6]. In this paper, we introduce a new and more direct method, based on
the standard Metropolis algorithm combined with a numerical integration, which can
be used in many cases to perform the thermodynamic averages involved in the TS. In
the next section we describe the method in some detail, and in Section 3 we show
the results of the application of the method to the Ising model as well as some of the
di�culties encountered.

2. The Monte Carlo method

As mentioned before, the main problem to perform a numerical simulation of a
system described by the TS at �xed temperature T is that we do not have at hand
the solution for the probabilities Pi, since the non-linear Eqs. (3) and (4) have no
explicit solution for q 6= 1. For q= 1 (BGS), it is Pi =Z−1 exp(−�i=T ), and one can
use a variety of Monte Carlo techniques for the numerical calculation of the averages
(Eq. (1)). For example, in the Metropolis Monte Carlo algorithm [7], one generates
a change in the con�guration i → j and the new con�guration j is accepted with a
probability min(1; Pj=Pi)=min[1; exp(−(�j−�i)=T )]. Note that the partition function Z

cancels out in the calculation of the acceptance probabilities. Unfortunately, since for
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q 6= 1 the probabilities Pi are not known as a function of T , there is no trivial general-
ization of the Monte Carlo method to perform the averages (1) at �xed temperature T .
The method we propose in this paper works in two steps: (i) we perform Monte Carlo
simulations at a �xed value of the auxiliary parameter T ′; (ii) we then use Eq. (4)
in order to determine the physical temperature T . We describe now in detail both
steps.
(i) To perform a Metropolis Monte Carlo simulation of the TS at a �xed “�ctitious

temperature” T ′, one proposes a change in the con�guration i → j and accepts this
change with probability min(1; Pj=Pi) [8]. Using Eq. (3), one notices that the normal-
izing factor cancels out

Paccep = min

[
1;
[
T ′ − (1− q)�j
T ′ − (1− q)�i

]q=(1−q)]
(5)

(it is also understood that the acceptance probability is zero if the con�guration j is
such that T ′ − (1 − q)�j ¡ 0). By using this Monte Carlo algorithm, one generates
a sequence of M representative con�gurations which are distributed according to the
probability Eq. (3). The statistical averages, Eq. (1), are then approximated by sample

averages Oq =
∑M

k=1Ok=M and the errors computed in the standard way [7].
(ii) To perform the T ′ → T transformation, we invert Eq. (4) using Eqs. (1)

and (2)

T =
T ′ − (1− q)Uq(T ′)
1 + (1− q)Sq(T ′)

: (6)

In this expression, the energy Uq(T ′) is obtained in the Monte Carlo simulation which
is performed at �xed T ′. In order to compute the entropy Sq(T ′) we make use of
the thermodynamic relation 1=T = @Sq=@Uq [9] which, using Eq. (6), can be integrated
between two equilibrium states characterized by values T ′

0 and T
′ of the parameter, to

yield:

1
1− q ln

[
1 + (1− q)Sq(T ′)
1 + (1− q)Sq(T ′

0)

]
=
∫ T ′

T ′
0

dUq
T ′ − (1− q)Uq : (7)

The temperature T is �nally given by

T =
T ′ − (1− q)Uq(T ′)
1 + (1− q)Sq(T ′

0)
exp

[
(q− 1)

∫ T ′

T ′
0

dUq
T ′ − (1− q)Uq

]
: (8)

In summary, one performs a Monte Carlo simulation using the Metropolis acceptance
probability corresponding to states with a �xed value of T ′, starting from some ini-
tial value T ′

0 up to the desired valued of T
′. In these simulations one computes,

using the standard Monte Carlo procedure, the sample value of the energy Uq(T ′).
Finally, in order to obtain the physical temperature T one uses the previous expression
Eq. (8) where the integral is computed numerically. The initial value T ′

0 must be some
limiting value in which the entropy Sq(T ′

0) is known. This depends on the problem,
although obvious candidates are the very high or very low temperature con�gura-
tions. One could think that a disadvantage of the method is that the integration in
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Fig. 1. The points show the raw data obtained from a Metropolis Monte Carlo simulation using Eq. (5).
The lines connecting the points have been obtained by using a reweighting extrapolation method (see
Eq. (10)). We use here q = 0:8.

Eq. (8) requires a large number of simulations at di�erent �ctitious temperatures to
be able to perform the T ′ → T transformation accurately. However, we will show
that the use of the reweighting techniques [10] reduces drastically the number of
simulations.

3. The two-dimensional ising model

To illustrate the method described in the previous section we present results for the
short-range Ising Model, de�ned by the following Hamiltonian:

H=
∑
〈i; j〉
(1− SiSj) ; (9)

where each of the N = L × L spin variables Si can take the values ±1, and the sum∑
〈i; j〉 runs over all nearest neighbor sites on a two-dimensional lattice with periodic

boundary conditions.
The Metropolis Monte Carlo simulation is performed, as usual, by randomly choosing

one of the spins, Si, and proposing a change in con�guration in which the spin Si 
ips
its value, Si → −Si. This change is accepted with a probability given by Eq. (5)
whereas, if rejected, the spin keeps its old value.
In the Fig. 1 we show the raw Monte Carlo data for L = 4; 10; 20; 30, in the case

q = 0:8. In order to produce this plot, we have used the Metropolis algorithm at the
points marked by symbols in the plot. The lines joining the points in the Fig. 1 have
been obtained by a reweighting technique [10], which allows the calculation of mean
values of observables for a T ′ di�erent from the actual T ′

a where the simulation was
performed. In the case of the TS and the probabilities given by Eq. (2), the reweighting
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Fig. 2. The shadowed area is the result of the integration needed in Eq. (8) to perform the T ′ → T
transformation. We use here N = 10× 10, and q = 0:8.

is based upon the exact relation

Oq(T ′) =
∑

� O(�)H (�;T
′
a)[(1− (1− q)�=T ′)=(1− (1− q)�=T ′

a)]
q=(1−q)∑

� H (�;T
′
a)[(1− (1− q)�=T ′)=(1− (1− q)�=T ′

a)]
q=(1−q) ;

(10)

where H (�;T ′
a) is the histogram of all the energy values generated in the Monte Carlo

run at T ′
a. Here O(�) is the microcanonical mean value at energy � of the observable

O. Note that in Eq. (10) the sums run over the energy levels � at variance with
Eq. (1) where the sums run over all con�gurations i.
Once, we have obtained the averages as a function of T ′ as shown in Fig. 1 for

the energy, the value of the temperature T is obtained from Eq. (8) by performing
the indicated integration from the chosen temperature T ′

0. In the Ising model, we have
used the limit T ′

0 = 0 for which the representative con�gurations are the two ground
states, Uq = 0, and the entropy is: Sq(T ′

0 = 0) = 2
(1−q)=(1− q).

In Fig. 2, we plot the function that has to be integrated in order to perform the
T ′ → T transformation. The main goal of this �gure is to show that the function to
integrate is, at least for these values of the parameters and system sizes, a smooth
function. For the actual integration, we have used Simpson’s 3

8 rule. Finally, in Fig. 3
we plot the resulting internal energy Uq as a function of the actual temperature T , for
several values of the parameter q and di�erent system sizes. We note that for q¡ 1
one obtains a hysteresis-like loop that induces an ambiguity in the actual value of
the energy. This is a generic feature of the TS, which can be resolved by applying
a minimum free energy criterion [11] to choose the most stable solution. We have
observed that for q¿ 1 and large system sizes (this is not the case in Fig. 3) the
Monte Carlo simulations in some temperature ranges near the ferromagnetic transition
take a very long time to equilibrate, thus preventing us from performing a very accurate



64 R. Salazar, R. Toral / Physica A 283 (2000) 59–64

Fig. 3. The internal energy Uq plotted as a function of the actual Temperature T for three values of the
parameter q. The sizes used here are N = 20× 20 for q = 0:8; 1:0 and N = 4× 4 for q = 1:2.

measurement. We believe this is a generic feature of any dynamical updating scheme
one could use to simulate the TS.
Finally, we want to remark that Eq. (8) can be combined with any other simula-

tion technique which performs a sampling of the con�guration space according to the
probability Eq. (3). For instance, one could use the Molecular Dynamic methods using
thermostats at T ′ [12] to study the dynamic behavior of systems with a large number
of degrees of freedom.
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