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Self-similar domain growth, localized structures, and labyrinthine patterns
in vectorial Kerr resonators

Rafa Gallego,* Maxi San Miguel, and Rau´l Toral
Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 30 July 1999!

We study domain growth in a nonlinear optical system useful to explore different scenarios that might occur
in systems which do not relax to thermodynamic equilibrium. Domains correspond to equivalent states of
different circular polarization of light. We describe three dynamical regimes: a coarsening regime in which
dynamical scaling holds with a growth law dictated by curvature effects, a regime in which localized structures
form, and a regime in which polarization domain walls are modulationally unstable and the system freezes in
a labyrinthine pattern.

PACS number~s!: 05.70.Ln, 42.65.Sf, 47.54.1r
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The problem of the growth of spatial domains of differe
phases has been thoroughly studied in the context of
dynamics of phase transitions: a system is placed in an
stable state and one considers its relaxation to the stat
thermodynamic equilibrium@1#. This process is dominate
by the motion of domain walls and other defects. It is in th
context that seminal ideas of self-similar evolution and d
namical scaling were introduced for nonequilibrium pr
cesses. Asymptotic domain growth laws, with their under
ing physical mechanisms, have been well established,
dynamical scaling has been generally demonstrated
growth law R(t);t1/2, whereR(t) is the characteristic do
main size, holds for dynamics with no conservation law a
domains made of equivalent phases. This law follows fr
the minimization of surface energy, and it has been show
be robust against the appearance of point defects in sys
with a discrete number of phases, three-dimensional vorti
or chiral domain walls@2#. Other well-known growth laws
@1# are R(t);t1/3 for systems with conserved order param
eter andR(t);t for nonconserved dynamics with a met
stable phase@3#, and also for hydrodynamic systems in sp
tial dimensiond.2 @4#.

Domain growth in systems that do not approach a fi
state of thermodynamic equilibrium is much less understo
For example, the mechanisms underlying a growth l
R(t);t1/5 in pattern forming systems in which the spat
coupling is not purely diffusive~Swift-Hohenberg equation!
@5# have not been clearly identified. Other general issues
need to be considered are the role of Hamiltonian vs di
pative dynamics@6#, the effects of nonrelaxational dynamic
such as one-dimensional motion of fronts between equiva
states and spiral formation@7#, the emergence of localize
structures~LS’s! @8,9#, or transverse instabilities of domai
walls leading to labyrinthine patterns@10#.

Driven nonlinear optical systems offer a wealth of opp
tunities for the study of pattern formation and other noneq
librium processes in which the spatial coupling is caused
diffraction instead of diffusion. These systems are especi

*Electronic address: http://rafa@imedea.uib.es
PRE 611063-651X/2000/61~3!/2241~4!/$15.00
t
e

n-
of

-

-
nd
A

d

to
ms
s,

-

l
d.

at
i-

nt

-
i-
y
ly

interesting because they naturally lead to the consideratio
vectorial complex fields, being the vector character ass
ated with the polarization of light, and also because th
often support the formation of LS’s@11–13#. Such bright
light spots are being actively considered for applications
parallel optical processing. Only very recently has dom
growth been considered in some of these systems and s
growth laws obtained from numerical simulations have be
reported @13–15#. However, clear mechanisms for th
growth laws have often not been identified, and some
these laws do not correspond unambiguously to
asymptotic regime. In addition, the question of dynami
scaling has, in general, not been addressed.

In this paper we consider a Kerr medium as a clear
ample of a nonlinear optical system in which many of t
issues and scenarios mentioned above can be explored
show that after switching-on a pump field, domain walls a
formed that separate regions with different polarization
light. The dynamical evolution of these polarization doma
walls leads to three different regimes. For high pump valu
there is a coarsening regime for which we demonstrate
namical scaling with a growth lawR(t);t1/2. For lower
pump values this process is contaminated by the emerg
of LS’s formed by the collapse of polarization domain wa
to a stable bound structure. In a third regime the syst
evolves into a nearly frozen labyrinthine pattern caused b
transverse modulational instability of the polarization d
main wall. These three qualitatively different regimes ha
been experimentally observed in another optical system@12#
and considered in the realm of Swift-Hohenberg mod
@16#.

Our calculations are based on a mean field model
describes the transverse spatio-temporal evolution of the
circularly polarized components of the electric field compl
envelope,E1 and E2 , in an optical cavity filled with an
isotropic self-defocusing Kerr medium and pumped with
linearly polarized real fieldE0 @17,18#:
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Hereu is the cavity detuning, and¹'
2 is the Laplacian in the

transverse plane. Equations~1! are damped and drive
coupled nonlinear Schro¨dinger equations which can be re
written as

] tE652E62 i
dF

dE6*
, ~2!

whereF@E1 ,E2# is a real functional. Therefore, except fo
the linear dissipative term, the dynamics can be written
Hamiltonian form. This corresponds to a rather different d
namics than the normal relaxational dynamics considere
systems that approach a state of thermodynamic equilibri
We will study different regimes for different values of th
pumpE0.

Equations~1! admit symmetric (I s15I s2) and asymmet-
ric (I s1ÞI s2) steady state homogeneous solutions, wh
I 65uE6u2. The homogeneous symmetric solution is linea
stable for E0,E0,a , while the asymmetric solutions onl
exist for E0,a,E0,b,E0 and are linearly stable forE0,b
,E0,c,E0 @18,19#. There are two equivalent homogeneo
stable solutions forE0,c,E0, one in whichI s1@I s2 and the
other one, obtained by interchangingE1 by E2 , in which
I s1!I s2 . These solutions are elliptically polarized, but ve
close to being circularly polarized, because one of the
circularly polarized components dominates. For simplic
we will call them the right and left circularly polarized solu
tions. If the pump fieldE0 is switched-on fromE050 to a
valueE0.E0,c , only the mode with zero wave number ca
initially grow from the initial conditionE650. One then
expects that either of the two equivalent homogeneous s
tions will locally grow and that domains separated by pol
ization walls will emerge. This is indeed the process that
study. We note, however, that a solution with a stripe patt
orthogonally polarized to the pump exists forE0.E0,a
@17,18#. This pattern solution is the one obtained by contin
ity from the homogeneous symmetric solution through
Turing-like instability. We have numerically checked th
such a solution remains stable for pump valuesE0@E0,c , but
it is not the solution approached by the physical process
described of switching-on the pump to a valueE0.E0,c .

We find three different dynamical regimes forE0.E0,c ,
summarized in Fig. 1. ForE0.E0,2 domains grow and the
system coarsens, forE0,2.E0.E0,1 stable LS’s are formed
while for E0,1.E0.E0,c a labyrinthine pattern emerge
These regimes are better understood by considering the
lution of an initial isolated polarization droplet: a circula
domain of one of the solutions surrounded by the other
lution. We find that the radius of the circular domain vari
consistently with a curvature driven front motion. The no
mal front velocityvn ~eikonal equation! follows a law of the
form vn(r ,t)52g(E0)k(r ,t), wherek is the local curvature
of the domain wall andg(E0) is a coefficient that depend
on the pump field amplitude. For a circular domain we g
dR(t)/dt52g(E0)/R(t). In Fig. 1 we show the function
g(E0) as obtained from the numerical solution of Eqs.~1! in
a two-dimensional system for relatively large initial drople
Notice thatg(E0) changes sign atE05E0,1, which indicates
a change from droplet shrinkage to droplet growth.
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We first consider the regime of domain coarsening wh
occurs forE0.E0,2. In this regimeg(E0).0 and an iso-
lated drop shrinks to zero radius. In the general dynam
starting from random initial conditions aroundE650, sharp
domain walls are initially formed and they evolve reduci
their curvature. The system approaches a final homogen
state in which one of the two circularly polarized solutio
fills the whole system. In order to characterize the coarsen
process we have calculated the pair correlation function
I 1 and I 2 , defined asCI 6

(r ,t)5^I 6(x1r ,t)I 6(x,t)&. The

average^•••& is performed over the set of pointsx ~and
additionally over a set of 100 different random initial cond
tions!. Due to the symmetry of the problemCI 1

5CI 2
[C.

Results for the circularly averaged correlation functi
C(r ,t) are shown in Fig. 2. The mean sizeL(t) of the do-
mains is calculated as the distance at whichC(r ,t) takes half
its value at the origin, i.e.,C„L(t),t…5 1

2 C(0,t). We obtain a
well-defined asymptotic growth lawL(t);t1/2 that follows
from domain wall motion driven by curvature effects. W
have further obtained that the dynamics is self-similar, i
that there is dynamical scaling. This is seen in Fig. 2 wh
we plot C(r ,t) before and after rescaling the spatial coor
nate of the system with the characteristic domain sizeL(t).
We observe that curves for different times in the scal
regime collapse to the single scaling function after rescali
These results coincide with those obtained for many therm

FIG. 1. Coefficientg(E0) as defined in the text. Snapshots
typical configurations for the total intensityI 5I 11I 2 at late times
are shown for each of the three dynamical regimes. The vert
lines identify the values ofE0,151.552 andE0,251.700.

FIG. 2. ~a! Spherical averaged correlation function forE051.8
.E0,2 at timest564.8, 91.8, 118.8, 145.8, and 172.8 and~b! after
scalingr with the domain sizeLI 1

(t). The inset shows the domai
growth lawLI 1

(t);t1/2.
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dynamic systems with nonconserved order parameter@1,2#.
We note, however, that in our case the dynamics does
follow the minimization of any obvious energy and that su
face tension is not a proper concept for the diffractive spa
coupling considered in optical systems.

We next address the regime of formation of LS’s (E0,2
.E0.E0,1). In this regime, as in the previous case,g(E0)
.0, and a large isolated droplet initially shrinks with a r
dius decreasing asR(t);t21/2. However the shrinkage stop
at a well defined final value of the radius. Initial drople
with a smaller radius grow to this final stable radius. In t
general dynamics following the switch-on of the pump, d
main walls are initially formed. They first evolve reducin
their length as in the coarsening regime. But while in th
regime a closed loop disappears, here it collapses to a s
LS formed by a bound state of the domain wall. The fin
state is composed of stretched domain walls and LS’s.
understand this process it is convenient to consider the f
of the polarization domain walls in ad51 geometry, as
shown in Fig. 3. An isolatedd51 domain wall is stationary
We observe that the intensity profiles of the walls do n
approach monotonically the asymptotic value of the hom
geneous state. When several domain walls are created i
transient dynamics, they interact with each other. Since
front profiles have oscillatory tails, the interaction betwe
two walls can lead to repulsive forces@8#. As a consequence
LS’s formed by bound domain walls can be formed, whi
stop the coarsening process. These oscillatory tails are
important the larger isE0 ~see Fig. 3!. However, we find that
for all the values ofE0 which we have explored~up to E0
510), this effect is enough to stop coarsening ind51: a
frozen pattern state is always dynamically reached@20#.
What happens in ourd52 situation is a competition betwee
the d51 repulsive effect between walls and the curvatu

FIG. 4. Total field intensity (I 11I 2) of a LS and transverse
profile of I 1 and I 2 for E051.6.

FIG. 3. d51 intensity profiles of the polarization domain wa
for two pump values:E051.2,E0,1, E052.E0,2.
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effect that tends to reduce a droplet to zero radius. When
repulsive force is large enough, it might counterbalance
shrinkage process driven by curvature, and thus leads to
formation of a LS. This happens forE0,1,E0,E0,2. The
mechanism is the one also discussed in@13#. These structures
can be seen as a hole ofI 1 (I 2) in the background of a
circularly 1 polarized (2 polarized! state, together with a
peak ofI 2 (I 1). Since the oscillatory tails are larger asE0
decreases, the size of the LS decreases withE0. We have
found a perfect linear dependence of the radius of the
with E0. In Fig. 4 we show a plot of a LS together with it
transverse profile. Note that the intensity in the LS is grea
than in the surrounding background.

We finally discuss the regime of labyrinthine pattern fo
mation which occurs forE0,E0,1: switching-on the pump
produces a very dense pattern of domain walls that re
each other. In this regimeg(E0),0, and an isolated drople
of arbitrary small size grows asR(t);t1/2. In an infinitely
large system the droplet would grow without limit, but wit
periodic boundary conditions it grows until the domain w
interacts with itself. Repulsion of the domain wall leads to
labyrinthine pattern as shown in Fig. 5. An independent w
of identifying the valueE05E0,1, below which labyrinthine
patterns emerge, is by a linear stability analysis ind52 of
thed51 domain wall profile. We have numerically obtaine
that such a flat domain wall has a transverse modulatio
instability for values of the pump amplitude for whic
g(E0),0. We find a long wavelength instability in whic
arbitrary small wave numbers become unstable forE0
,E0,1 ~see Fig. 6!. This is reminiscent of the situation de
scribed for vectorial second harmonic generation@15#. In
physical terms, both the droplet growth and the modulatio
instability indicate that the system prefers to have the long
possible domain walls, or equivalently the largest possi
curvature. This leads to a nearly frozen state in which

FIG. 5. Growth of a polarization droplet and creation of a lab
rinthine pattern forE051.3,E0,1. Snapshots at timest50, 1000,
2100, 2400, 3200, and 4900.

FIG. 6. Transverse modulational instability for a flat doma
wall. E051.4. Snapshots at timest50, 400, 600, and 860.
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oscillatory tails of the domain walls prevent their se
crossing and in which coarsening is suppressed. LS’s m
form, but their natural tendency to grow is stopped by s
rounding walls.

In summary, we have described a situation in nonlin
optics in which many of the generic issues and possible
narios of domain growth in nonthermodynamic systems
cur. In spite of the nonrelaxational dynamics we have fou
a regime of self-similar evolution with a growth law chara
teristic of curvature driven motion. In other regimes, o
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tained just by changing the pump amplitude, domain grow
is contaminated by the emergence of LS’s or suppresse
an instability of the domain wall that leads to a nearly froz
labyrinthine pattern. Domain walls and LS are here asso
ated with the polarization vectorial degree of freedom
light.
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