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Self-similar domain growth, localized structures, and labyrinthine patterns
in vectorial Kerr resonators
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We study domain growth in a nonlinear optical system useful to explore different scenarios that might occur
in systems which do not relax to thermodynamic equilibrium. Domains correspond to equivalent states of
different circular polarization of light. We describe three dynamical regimes: a coarsening regime in which
dynamical scaling holds with a growth law dictated by curvature effects, a regime in which localized structures
form, and a regime in which polarization domain walls are modulationally unstable and the system freezes in
a labyrinthine pattern.

PACS numbse(s): 05.70.Ln, 42.65.Sf, 47.54r

The problem of the growth of spatial domains of different interesting because they naturally lead to the consideration of
phases has been thoroughly studied in the context of theectorial complex fields, being the vector character associ-
dynamics of phase transitions: a system is placed in an urted with the polarization of light, and also because they
stable state and one considers its relaxation to the state 6ften support the formation of LS’511-13. Such bright
thermodynamic equilibriuni1]. This process is dominated light spots are being actively considered for applications in
by the motion of domain walls and other defects. It is in thisParallel optical processing. Only very recently has domain
context that seminal ideas of self-similar evolution and dy-growth been considered in some of these systems and some
namical scaling were introduced for nonequilibrium pro_grovvth laws obtained from numerical S|mulat!ons have been
cesses. Asymptotic domain growth laws, with their underly-'éPorted [13-15. However, clear mechanisms for the
ing physical mechanisms, have been well established, a owth laws have often not been |dent|f|eq, and some of
dynamical scaling has been generally demonstrated. Ahese 'a.WS d_o not corr'e.spond unamp|guously to. an
growth law R(t) ~t*2, whereR(t) is the characteristic do- asylmptor;uc regime. Inladdlt;aon, thquuesugn of dynamical
main size, holds for dynamics with no conservation law anoSC?r:n%isasé'ngfvgegih:ig;r eaeajrr nrqec}asdﬁﬁm as a clear ex-
domains made of equivalent phases. This law follows fro pap

L ) mple of a nonlinear optical system in which many of the
the minimization of surface energy, and it has been shown g ;65 and scenarios mentioned above can be explored. We

be robust against the appearance of point defects in systendfg,y that after switching-on a pump field, domain walls are
with a discrete number of phases, three-dimensional vorticegormed that separate regions with different polarization of
or chiral domain wall§2]. Other well-known growth laws jight. The dynamical evolution of these polarization domain
[1] are R(t)~t"? for systems with conserved order param-alls leads to three different regimes. For high pump values
eter andR(t)~t for nonconserved dynamics with a meta- there is a coarsening regime for which we demonstrate dy-
stable phas¢3], and also for hydrodynamic systems in spa-namical scaling with a growth laviR(t)~t*2 For lower
tial dimensiond>2 [4]. pump values this process is contaminated by the emergence
Domain growth in systems that do not approach a finabf LS’s formed by the collapse of polarization domain walls
state of thermodynamic equilibrium is much less understoodto a stable bound structure. In a third regime the system
For example, the mechanisms underlying a growth lawevolves into a nearly frozen labyrinthine pattern caused by a
R(t)~t¥® in pattern forming systems in which the spatial transverse modulational instability of the polarization do-
coupling is not purely diffusivéSwift-Hohenberg equation main wall. These three qualitatively different regimes have
[5] have not been clearly identified. Other general issues thdjeen experimentally observed in another optical sy§tezh
need to be considered are the role of Hamiltonian vs dissiand considered in the realm of Swift-Hohenberg models
pative dynamic$6], the effects of nonrelaxational dynamics [16].
such as one-dimensional motion of fronts between equivalent Our calculations are based on a mean field model that
states and spiral formatiofv], the emergence of localized describes the transverse spatio-temporal evolution of the two
structures(LS’s) [8,9], or transverse instabilities of domain circularly polarized components of the electric field complex
walls leading to labyrinthine patterfi0]. envelope,E. andE_, in an optical cavity filled with an
Driven nonlinear optical systems offer a wealth of oppor-isotropic self-defocusing Kerr medium and pumped with a
tunities for the study of pattern formation and other nonequidinearly polarized real field€, [17,18:
librium processes in which the spatial coupling is caused by
diffraction instead of diffusion. These systems are especially HE+=—(1—-i10)E- +iViEt +Eg
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Here 6 is the cavity detuning, anﬂf is the Laplacian in the

transverse plane. Equationd) are damped and driven
coupled nonlinear Schdinger equations which can be re-
written as
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where /[ E, ,E_] is a real functional. Therefore, except for 0’0 R
the linear dissipative term, the dynamics can be written in 0’2_ 1
Hamiltonian form. This corresponds to a rather different dy- o EaBamo 25 50 35 E,

namics than the normal relaxational dynamics considered in

systems that approach a state of thermodynamic equilibrium. g1, 1. Coefficienty(E,) as defined in the text. Snapshots of

We will study different regimes for different values of the typical configurations for the total intensity=1, +1_ at late times

pumpE,. are shown for each of the three dynamical regimes. The vertical
Equations(1) admit symmetric (s, =1s_) and asymmet- lines identify the values oE,;=1.552 andE, ,=1.700.

ric (Isy#1s_) steady state homogeneous solutions, where

|.=|E.|?. The homogeneous symmetric solution is linearly e first consider the regime of domain coarsening which
sta_lble forEq<Eg,, while the asymmetric solutions only 5ccurs forEg>Eg,. In this regimey(Ey)>0 and an iso-
exist for Eqa<Egp<Eo and are linearly stable foEop,  |ated drop shrinks to zero radius. In the general dynamics
<Eoc<Eg [18,19. There are two equivalent homogeneousgiarting from random initial conditions arouiit, =0, sharp
stable solutions foEq < Eo, one in whichls, >1s_and the  domain walls are initially formed and they evolve reducing
other one, obtained by interchangiig by E_, in which  thejr curvature. The system approaches a final homogeneous
Is+ <ls- . These solutions are elliptically polarized, but very state in which one of the two circularly polarized solutions
close to being circularly polarized, because one of the twajjs the whole system. In order to characterize the coarsening
circularly polarized components dominates. For simplicityprocess we have calculated the pair correlation function of
we will call them the right and left circularly polarized solu- |, and|_, defined aC, (r,t)={l.(x+r,t)l.(xt)). The
tions. If the pump fieldg, is switched-on fromE,=0 to a average(---) is performted over the set ofipoints (and

Y"’.‘ly?IE0> E0~°f’ Onlﬁﬁhe. rq_o?e W'tdht.zercé W_a\c/)e réumbtehr can additionally over a set of 100 different random initial condi-
initially grow from the iniial conditione.. =U. Une then tions). Due to the symmetry of the proble@ =C, =C.

expects that either of the two equivalent homogeneous solu- | . .
tions will locally grow and that domains separated by po|ar_ResuIts for the qrcu.larly averaged cprrelatlon function
ization walls will emerge. This is indeed the process that we=(T,t) aré shown in Fig. 2. The mean si¢t) of the do-
study. We note, however, that a solution with a stripe patterfn@ins is calculated as the distance at wagn, t) takes half
orthogonally polarized to the pump exists f@,>E,, IS value atthe origin, i.eC(L(t),t)= EC(O*BZ: We obtain a
[17,18. This pattern solution is the one obtained by continu-ell-defined asymptotic growth law (t)~t* that follows
ity from the homogeneous symmetric solution through afom domain wall motion driven by curvature effects. We
Turing-like instability. We have numerically checked that have further obtained that the dynamics is self-similar, i.e.,
such a solution remains stable for pump valBigs E, . , but that there is dynamical scaling. This is seen in Flg. 2 Whe-re
it is not the solution approached by the physical process just® PlotC(r,t) before and after rescaling the spatial coordi-
described of switching-on the pump to a valEg>Eq.. nate of the system with the characteristic domain &i¢g.

We find three different dynamical regimes f56>Eo We observe that curves for different times in the scaling
summarized in Fig. 1. FoEy>E,, domains grow and'ct,he regime collapse to the single scaling function after rescaling.

system coarsens, fd, ,>Eq>E,; stable LS’s are formed,
while for Eg,>Ey>Eq. a labyrinthine pattern emerges.
These regimes are better understood by considering the evo-
lution of an initial isolated polarization droplet: a circular
domain of one of the solutions surrounded by the other so-
lution. We find that the radius of the circular domain varies
consistently with a curvature driven front motion. The nor-
mal front velocityv,, (eikonal equationfollows a law of the
formuv,(r,t)=— y(Ey) «(r,t), wherex is the local curvature

of the domain wall andy(E;) is a coefficient that depends

on the pump field amplitude. For a circular domain we get
dR(t)/dt=—y(Eg)/R(t). In Fig. 1 we show the function
v(Eg) as obtained from the numerical solution of E¢fS.in

These results coincide with those obtained for many thermo-

CI.,, (r»t)

—_
T

a)

"y
'

+ W obO
+ % opO
+ % ¢p0
+ % opO

Ia b
%,
Py

8g
<
:%ggﬂﬂﬂiﬂ

)

2L

8

7

6

8 9 1011 1213
- tl/Z

5

10

15
r

20 2500 07 14 21 28 35

r/L;, (1)

FIG. 2. (a) Spherical averaged correlation function f65=1.8

a two-dimensional system for relatively large initial droplets. >E, , at timest=64.8, 91.8, 118.8, 145.8, and 172.8 ghyafter

Notice thaty(Eg) changes sign &,=Eg ;, which indicates
a change from droplet shrinkage to droplet growth.

scalingr with the domain siz&, (t). The inset shows the domain
growth lawL, (t)~t"2
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FIG. 3. d=1 intensity profiles of the polarization domain wall
for two pump valuesEy=1.2<E;,, Eg=2>E,,.

dynamic systems with nonconserved order paramété.
We note, however, that in our case the dynamics does not FIG. 5. Growth of a polarization droplet and creation of a laby-
follow the minimization of any obvious energy and that sur-rinthine pattern folE,=1.3<E, . Snapshots at timeis=0, 1000,
face tension is not a proper concept for the diffractive spatiap100, 2400, 3200, and 4900.

coupling considered in optical systems.

We next address the regime of formation of LSEof  effect that tends to reduce a droplet to zero radius. When the
>Eo>Eo,). In this regime, as in the previous caséEq)  repulsive force is large enough, it might counterbalance the
>0, and a large |solated_32roplet initially shrinks with & ra- shrinkage process driven by curvature, and thus leads to the
dius decreasing &3(t)~t~ . However the shrinkage stops formation of a LS. This happens fdE,;<E,<Eg,. The
at a well defined final value of the radius. Initial droplets mechanism is the one also discussefl8]. These structures
with a smaller radius grow to this final stable radius. In thecan pe seen as a hole bf (I_) in the background of a
general dynamics following the switch-on of the pump, do-cjrcylarly + polarized (- polarized state, together with a
main walls are initially formed. They first evolve reducing peak ofl _ (1,). Since the oscillatory tails are larger Bg
their length as in the coarsening regime. But while in thalyecreases. the size of the LS decreases HithWe have
regime a closed loop disappears, here it collapses 10 a stalygng a perfect linear dependence of the radius of the LS
LS for_med by a bound state of the d(_)mam wall. The finalyy;ih E,. In Fig. 4 we show a plot of a LS together with its
state is composed of stretched domain walls and LS's. T@ansyerse profile. Note that the intensity in the LS is greater
understand this process it is convenient to consider the forh 5 in the surrounding background.
of the polarization domain walls in d=1 geometry, as We finally discuss the regime of labyrinthine pattern for-
shown in Fig. 3. Anisolated=1 domain wall is stationary. mation which occurs foEg<Eo,: switching-on the pump
We observe that the intensity proﬂle; of the walls do ”Otproduces a very dense pattern of domain walls that repel
approach monotonically the asymptotic value of the homogach other. In this regime(Ey) <0, and an isolated droplet
geneous state. When several domain walls are created in the arbitrary small size grows a&(t)~tY2 In an infinitely
transient _dynamics, thgy interac't with egch oth_er. Since th%\rge system the droplet would grow without limit, but with
front profiles have oscﬂlatory tails, the interaction betwee”periodic boundary conditions it grows until the domain wall
two walls can lead to repulsive forcE]. As a consequence, jnteracts with itself. Repulsion of the domain wall leads to a
LS’s formed by bound domain walls can be formed, whichgpy rinthine pattern as shown in Fig. 5. An independent way
;top the coarsening process. 'These oscillatory tglls are legg identifying the valueE,=E, ;, below which labyrinthine
important the larger i&, (see Fig. 3 However, we find that  aerns ‘emerge, is by a linear stability analysigiin2 of
for all the values off, which we have exploredup to !EO thed=1 domain wall profile. We have numerically obtained
=10), this effect is enough to stop coarseningdinl: @  that such a flat domain wall has a transverse modulational
frozen pattern state is always dynamically reacidl. jngiapility for values of the pump amplitude for which
What happens in owt= 2 situation is a competition between y(Eo)<0. We find a long wavelength instability in which
the d=1 repulsive effect between walls and the Curvaturearbitrary small wave numbers become unstable Ey

<Eq, (see Fig. 6. This is reminiscent of the situation de-
35, scribed for vectorial second harmonic generatjd@b]. In
physical terms, both the droplet growth and the modulational

30r instability indicate that the system prefers to have the longest
~'25 possible domain walls, or equivalently the largest possible
+ curvature. This leads to a nearly frozen state in which the
~72.0
) ) £ “3
| ) * =3
) J » =2
I b B = [ Dt
FIG. 4. Total field intensity I(. +1_) of a LS and transverse FIG. 6. Transverse modulational instability for a flat domain

profile of I, andl_ for E;=1.6. wall. Eo=1.4. Snapshots at timés-0, 400, 600, and 860.
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oscillatory tails of the domain walls prevent their self- tained just by changing the pump amplitude, domain growth

crossing and in which coarsening is suppressed. LS’s migtis contaminated by the emergence of LS’s or suppressed by

form, but their natural tendency to grow is stopped by sur-an instability of the domain wall that leads to a nearly frozen

rounding walls. Iabyrint_hine pattern. Do_main walls and LS are here associ-
In summary, we have described a situation in nonlineaﬁted with the polarization vectorial degree of freedom of

optics in which many of the generic issues and possible scdight.
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