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Noise-induced phase separation: Mean-field results
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We present a study of a phase-separation process induced by the presence of spatially correlated multipli-
cative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to
obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the
complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of con-
served and nonconserved systems is made at the level of the mean-field approximation.
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I. INTRODUCTION phase transitionéNIOTs and NIDT$, which has been suc-
cessfully verified(at least qualitativelyby numerical simu-
Many theoretical and experimental observations confirmations in different model§7,8,21,23. The advantages of
nowadays the existence of noise-induced order. Phenometiais procedure as compared to, e.g., linear-stability ap-
such as noise-induced transitiofis], stochastic resonance proaches lie in its ability to describe the system arbitrarily far
[2], and noise-induced transpd@] are examples of the or- from the transition point and to take into account the influ-
dering features of fluctuations in purely temporal dynamicalence of spatial coupling strength, which arises naturally in
systems. Additionally, recent years have witnessed an indiscretized systems. In this way, the mean-field analysis can
creasing interest in noise-induced phenomena in spatially exsuccessfully explain the existence of successive NIOTs and
tended systemgsee[4] for a recent review Some of the NIDTs (also called reentrant transitions in this conjeas a
topics studied in this respect include noise-induced patternsingle control parameter is varied.
[5,6], noise-induced phase transitions-9|, spatiotemporal The aim of this paper is to perform a somewhat detailed
stochastic resonancgl0,11], noise-induced fronts[12],  study, using the mean-field approximation technique, of the
noise-supported traveling structures in excitable mgt#, phenomenon of noise-induced phase separation. This phe-
and noise-sustained convective structurg4,15. We are  nomenon has been recently predicted by a linear stability
concerned in this paper with the phenomenon of noiseapproach and confirmed by numerical simulatiphd6]. It
induced phase separation, recently observed in systems witrises in spatiotemporal systems whose dynamics is con-
conserved dynamiddl 6]. served, in the sense that the spatial average of the field does
Several analytical methods have been used s¢4fato  not vary with time, but depends only on the initial conditions
examine the above-mentioned spatiotemporal problems. Bgf the system. Due to this fact, a standard mean-field ap-
way of example, the stability of a homogeneous state wittproach cannot be applied in this case, because no change in
respect to small perturbations of arbitrary wave number cathe mean field will be observed as a given control parameter
be analyzed in a linear approximation. Such a linear stabilitys varied(and hence no phase transition can be found in this
analysis shows that pattern-forming transitions are nontriviway). Therefore, an extension of the procedure is needed in
ally affected by multiplicative nois¢5,17]. From a more order to handle this situation. The present work is devoted to
fundamental point of view, systems exhibiting phase transideveloping such an extension, and applying the results to the
tions in a statistical-mechanics sense can be investigated Iparticular case of noise-induced phase separation mentioned
means of the dynamic renormalization grddj8,19, which  above. The outline of the rest of the paper is the following.
shows that under certain conditions a new genuine nonequBection Il introduces the general system that will be investi-
librium universality class arises due to the presence of mulgated, along with the particular model to which the obtained
tiplicative noisg20,21]. A third fruitful approach is based on results will be applied. A comparison between conserved and
the well-known mean-field approximation, widely used in nonconserved dynamics is also briefly sketched. Section 1lI
the context of equilibrium statistical mechanics, and that haseviews the mean-field procedure for nonconserved systems,
been recently extended to nonequilibrium systems under thend extends it to include the effect of spatial correlation of
influence of external noisg7,22]. In this context, the ap- the external noise. Section IV introduces the generalized
proximation is introduced by assuming that the interactiormean-field approach for conserved systems. Section V dis-
between a certain spatial point and its neighbors occursusses the limit of strong spatial coupling of the procedure,
through a mean value of the field, which corresponds to iteand compares the corresponding results with those coming
statistical average at the given point. This approach has lefilom linear stability analysis. Throughout all these sections,
to the prediction of noise-induced ordering and disorderinga comparison with respective numerical simulations of the
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complete model is made. Finally, some conclusions arén the absence of noise sources, the behavior of this potential

stated in Sec. VI. is the following: fora<0 the homogeneous trivial solution
¢=0 is stable, whereas f@>0 that solution becomes un-

Il. CONSERVED AND NONCONSERVED DYNAMICAL stable. This instability gives rise either to a phase transition
MODELS towards an orderedferromagnetic phase in the noncon-

. ) o served case, or to a phase separation process in the conserved
The spatiotemporal dynamics of a nonequilibrium systentgse.

in the presence of both internal and external noise can be The external noise will be taken to be coupled to the field
described by the following Langevin equati¢®4] for the  according to

time evolution of thed-dimensional scalar field(x,t):
. 9(p)=¢, (6)
dp(x,t)

oF -
g S TADIEY

-T 56

+7(X,1), (1) which corresponds to allow the control paramedein Eq.
(5) to fluctuate in space and time. We will use the following

where the additive noisa(i,t) is Gaussian and white, with Gaussian spatial correlation function:

zero mean and correlation |e a,|2
X—X

. 1
(p(X,H) (X' t"))y=2eT 8(x—x")d(t—t"). 2 e(x=x |)_(>\ﬂ)dem< 2\?

The intensity of the noise is measured by the parameter whose width\ characterizes the correlation length of the
The existence of the factdr in correlation(2) is a sign of  noise. The normalization is such that in the limit-0 this

the internal character of this noise, in whose only presencgg relation goes to 4 function andé(x,t) becomes a spatial
(g=0) the system can exhib&quilibrium properties. The white noise with intensity2.

multiplicative noise temf(i,t), on the other hand, is exter-
nal and brings the systeaut of equilibrium It may arise, for
instance, from a fluctuating control parameter. It is also

) 1 (7)

IIl. MEAN-FIELD APPROACH FOR NONCONSERVED

Gaussian with zero mean, but its correlation will be assumed DYNAMICS
in principle to have a nontrivial structure in space: We now review the main points of the mean-field ap-
proach in its application to nonconserved order-parameter
(E(XDEX ) =2a%c(|x—X"|) 8(t—t"), (3)  systemsmodelA), in order to clarify the extension to con-

served dynamics that will be presented in the next section.
where c(|x—x'|) is the spatial correlation function of the We begin by discretizing the field equatiéh) with I'=1 in

external noise and~ is its intensity. a regulard-dimensional lattice of mesh siz&x=1 and lat-
Different and physically motivated choices forwill lead  tice pointsx,, . .. Xy,

to a variety of dynamical and steady-state phenomenologies.

The particular case df = — V? (calledmodel Bin the litera- do; D ~

ture of critical phenomenas appropriate to describe a sys- TSR 2 Dijé;+ m(t)+9()éi(t), (8)

tem in which the global quantity¢(x,t)d’ is conserved in
time. Physical .rea!izat.ions of this syste_m include t_heT case O\‘;vhere ¢i5¢()zi)! f(4)=—V'(¢), and only one index is
phase separation in binary alloys. In this case, an initial m'x'lfsed to label the cells, independently of the dimension of the
ture of the two components may undergo, for some valuesof =~ < . . .
the control parameters, a separation process which, depenlél-tt'ce' Dj; accounts for the discretized Laplacian operator
ing on the initial relative concentrations of each component,
takes the form of spinodal decomposition or nucleaf®f. VZ—’E 5” 22 (Bangy,— 246, ), (9)
In this paper we will be mainly concerned with the con- ] i
served case, although a comparison will also be made with
the corresponding nonconserved case, definedI'byl where nn(i) represents the set of all the sites which are
(known asmodel A. nearest neighbors of site

Even though the theoretical approach that will be pre- The discrete noises;(t) and¢;(t) are still Gaussian with
sented here is quite general, our results will be applied, fozero mean and their correlations are given by
the sake of clarity, to the particular Ginzburg-Landau form
of the free energy, (mi(t)m(t"))=2¢&6 jo(t—t") (10

F=fdx

where the local potentidl(¢) is

and

D .
V<¢>+R|V¢|2}, @
(D& () =20, o(t—1), 1y

wherecj;_; is a convenient discretization of the function

c(|>?—>?’|) and specific values such eg,c; have to be com-

a 1
—_ _ 42, 44
Vi¢) 2 ¢t 4 ¢ ® puted numericallyf4,16] when needed. For the white-noise
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case { =0) and with the mesh size chosax=1 it is cg 2.0
=1, ¢,=0, whereas for large., ¢, scales roughly ag,
N

The corresponding Fokker-Planck equation, in the Stra- 1.0
tonovich interpretation, for the multivariate probability den-

Slty P(¢lr¢21 e rt)EP({¢}!t) iS [4]

,gf 0.0
B E f D 5 P v
= a¢. (#)+5g 2 (di=d)—eqp
J
—ozg<¢i>; cnfnyﬁgw P (12)

-2.0

In order to get the evolution equation for the single-site
probability distributionP (¢, ,t), defined as

P(o0- | H;[i dg

FIG. 1. Steady-state order parametép, versus control param-
etera for model A. Lines are mean-field results and points corre-
P({¢},1), (13 spond to numerical simulations of the complete model for a two-
dimensional square lattice with 8464 cells, mesh sizAx=1, for

. . system parameteis= 0.0 (circles and solid ling A =0.5 (squares
we integrate Eq(12) over all the variables excepti. Van-  anq dotted ling and\ = 1.5 (triangles and dashed lineOther pa-

ishing of the probability for the field going ta- leads to  rgmeters ard =3.7, £¢=0.1, ando=5.0. All simulations in this
paper use the same lattice parameters.

f [H debi| [g(ch)P({qb}t i (14
| 3 | [f(gﬁ 1D ) b) 2~ 2o D)2 0 8) [Pl )
and using the standard definition of the conditional probabil- ¢ ¢
ity, one gets =0, (19)
> f [H dd,k}qg.p({d,},t) where subscripi has been dropped for simplicity.
jenn() k#i . The solution of the previous equation can be easily writ-
ten down:
EL 2 f do; ;P (|4 ,t)}wi ) .
Ps(d.(¢) t)=NeXp( f dp'—————
=2d((1)) 4, P( 1) (15) ’ ° o%cogX(¢')+e
which defineg ¢(t)>¢i as a nearest-neighbor conditional av- X[f(¢")+D($)s—
erage. Thus we finally find that the one-point steady prob-
ability distribution follows the simpler but still exact equa- —o%cog(¢")g' (¢")]], (20)
tion,
IP(; 1) J 9 whereN is an appropriate normalization constant. The above
- (f((;S )+D[{( t)>¢. bil— solution is only formal, becausgb)s depends on the prob-
IPi i ability distribution itself. However, botRg and( ¢) can be
determined by means of the following self-consistency rela-
-0 Cog(fﬁ) 7% 9( i )) P(ait). (16)  tion, which is a signature of the mean-field approach,
The mean-field approximation consists in assuming that (Y= J'w PP(b.()s)dep. (21)
the conditional average in the last equation is replaced by -
[26]

We now apply our results to the particular model defined
(¢(t))¢i=<¢i(t)>, 17 by Egs.(4)—(7). The solution of the self-consistency equa-
tion (21) in this case is plotted in Fig. 1 versus the control
which is equivalent to doing directly the following assump- parametear for three different values of the noise correlation
tion at the level of the Langevin E@8): length A. Note that the existence of multiplicative noise
shifts the critical point towards negative valuesapfwhich
indicates the ordering character of the external noise. This
noise-induced phase transition has been substantially studied
in the past in the case of white external no[&17,23.
Using this approximation, and imposing the condition of sta-Figure 1 also displays the results obtained by numerical
tionary probability distribution with no flux, we get that the simulations of the complete mod@) for a two-dimensional
single-site steady distribution satisfies square lattice and using the mean-field results as the initial

1 ~
34 2 Didi(D=(i(1)~ (0. (18)
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conditions. It can be seen that mean-field results give the D -

correct qualitative behavior of the system, and are also quan- h=—ad¢;+ ¢i3—% > Dij¢y (24)
titatively right far from the critical point. The agreement be- !

tween mean-field predictions and simulations close to the \ye now need to consider separately the subthreshold and
critical point improves when the correlation lengihin-  gyperthreshold situations.

creases. (i) In the subthresholthomogeneoyscase, the condition

Notice that, in this mean-field approximation, the only #,=¢o,Vi, has to be verified, and therefore Ead) reduces
effect of the finite correlation lengtk of the noise shows up g

in the valuecy<1 [see Eq(20)] of the correlation function

at zero distance. As mentioned before, this value decreases h=—ape+ ¢3. (25
with increasing\. In other words, for nonconserved dynam-

ics the disordering effect of the spatial correlation of multi- Hence the value ofi does depend on the initial condition in
plicative noise in the mean-field approximation arises onlythe subthreshold situation.

through a decrease of the effective noise intensity. (i) Above the transition pointnot yet determined the
steady state of the system is not globally homogeneous, since

IV. MEAN-FIELD APPROACH FOR CONSERVED the flelq separates in tvyo bulk phases with yalukgsand ¢_2,

DYNAMICS respectively. The fractiox of the system in phaseé; is

given by the lever rulex¢,+ (1—X) ¢p,= ¢po. FoOr a general

The mean-field approach discussed above cannot bfeee energy, a Maxwell-type construction would give us the
straightforwardly extended to deal with conserved-ordervalue of h. In the case of a locally symmetric free energy
parameters systems, because in these cases the mean figdch as the one defined in Eq4) and(5)], a simpler argu-
(¢) is constant in time, depending only on the initial condi- ment can be used: each phase has to satisfyZ&ywith ¢,
tions and not on the control parameterWe now introduce equal to the field value of the corresponding phase, either
a generalized mean-field approximation that overcomes sudlr ¢,, and, since by the symmetry of the free energy, these
a restriction. The main ideas underlying this extension willtwo quantities verify¢, = — ¢, andh must be zero. Conse-
be first presented in the deterministic moé&el quently, we get

A. Deterministic dynamics 1= % Va, (26)

In the absence of all noise sources, moBetakes the which are the solutions of the deterministic modefor a
form value of the external control field=0.

Just at the transition point, there is a unique phése
= ¢ andh is identically zero. Thus the transition lifalso

ap(x.t) _, oF
N called in this context the coexistence lirie given by

at 54

(22

_ 42
This model evolves in time under the following restriction: ar(¢o) = bo- (27

1 We also note that fogpy=0, the critical point is obtained:
—j dXe(X,t)= g, (23 ar=a,=0.
\ We will now show that the concept of the constant effec-

o o N tive field can be used to generalize the mean-field approxi-
wheredgy is fixed by the initial conditions. The phenomenol- mation to conserved systemsth noise

ogy of this model is well knowr25]: there is a transition
point at(¢g), such that fora<ar(¢g) the homogeneous
state ¢p= g is stable, whereas foa>a(¢g) the system ) )
separates in two bulk phases; and ¢, fulfilling that the We now add stochastic sources to mo@), in the form
spatial average op is also equal tap,. The transition from  ©Of both an internal additive noise and an external multiplica-
a homogeneous state to a two-phase state is crifieaj of ~ tive one. The resulting model is represented by Etjs=(3)

B. Noise-induced phase separation

second ordérfor ¢,=0, so thatar(po=0)=a,. with T'=—V?2. The discretized version of this model is
In order to determine both(¢,) anda., we look for do, D

the steady-state so.lutiozns of H@2). These solutio'ns fulfill d_t': _z 5” f((ng.H_E > 5;k¢k+ a()& |+ mi(t),

the Laplace equatioV<(6F/6¢)=0. The analytical and ] k

bounded solution i$F/5¢=h, whereh is a constant. There- (28)

fo're. the steady sta.tes of mo'dalcan be |ntgrpreted as. the with f(¢,) = —V'(4), as before. The correlation of the ad-
minima of an effective potentidt.s=F —h[dx¢, and coin-  itive noise is now
cide with the steady states of modelwith an external con-
trol field h. Following Ref.[27], we call h the constant ef- (i) ;i(t))y=—2eD;;8(t—t") (29)

. . . . . | ] 1] 1
fective fieldof the system. For equilibrium systems,is
merely the chemical potential. Moreover,is not an arbi- and that of the multiplicative noise was already introduced in
trary constant, and it has to be determined by imposing th&q. (11). The corresponding Fokker-Planck equation, in the
conservation law, Eq(23). Substitution of the Ginzburg- Stratonovich interpretation, for the multivariate probability
Landau form in the discretized versionlof 5F/5¢ leads to  densityP({#},t) is in this case
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IP J - D - J In the deterministic conserved case it has been shown that
—=> —Djj| f(¢)+ 55 > Dixdx—e=7 the solution of this equation is the constant effective field,
T o 2d % I . > .

(Mj)4,=—h. We can now takg=i and perform the condi-
) d ~ tional average oM;. If we consider the expression analo-
to 9(‘1’1')% [;T,SDsrC\J*rlg(‘f’r) P. (B0 gous to Eq(14) for the multiplicative noise term and make
' the standard mean-field approximati@y), we arrive at

As done in the nonconserved case, we now integrat€¢3oy.

over all the variables except;, in order to get the evolution p

equation of the single-site probability distributid?(¢; ,t) —hPst(¢)=(f(¢)+D((¢>st— ¢)—e— +2do?g(p)

[see Eq(13)], I

J J
Clg(<¢’>st)£ - Coﬁg(sﬁ)}) Ps(¢), (39

&P(QSI 1t) o d ~ X
T—&—d)i; Dij(Mj)4,P(i 1), (31
where where subscripts have been dropped again for simplicity. In
b 5 the derivation of this equation, a generalization of the mean-
_ (S _ field approximation for the nearest-neighbor conditional av-
Mi=f(pi)+ = D, —
i=f(¢) 2d % P sﬂcj)j erage of functiorg(¢) has been applied, namely
5 Jd ~
To%9(d) 2 5o Becg(d). (32 (9(6))6,=9(b1)). (35
, S
If we impose the condition of stationarity probability distri- | principle this is an uncontrolled approximation whose va-
bution with no flux,(M;) 4 must satisfy lidity needs to be assessed by the numerical simulations,
which will be presented in what follows.
Ej: 5”<Mj>¢ipst(¢i):0_ (33) The solution of Eq.(34) yields the following stationary

probability distribution:

do’
2do?g(¢')[cod(d') —c10((P)s)]+e

Pst<¢,<¢>st,h>=Nexp< |

X[f(¢")+D(¢)s— ¢')—2do’cog(#')g' (¢')+h] ], (36)

whereh and(¢) are parameters to be determined self-consistently.
We now particularize the result obtained above to the Ginzburg-Landau model defined H#)E(®. In this case, the
stationary single-site probability distribution is

. 2 r_ 413
(a—D—2do%co)¢p'— ¢ +D<¢>st+hd¢r>_ (37)

P.( o, s,h)=Nexp(
(9:(9)a 2002(Cod P cy(Bud) + 0

We now need to determine the unknown consténésid  with ()= .
(@) Similarly to the deterministic case studied above, we Fora>ar, the system has two phases, and thus there are
consider separately the subthreshold and superthreshold sitwvo different local mean values, corresponding to each of the
ations. We recall at this point that the mean-field approachyylk phases(¢), and{¢),). Because of the symmetry &f
presented above iscal, and leads to an expression for the gnd g, these values must satisfyp); = —(¢),. Therefore,
probability distribution of the field at a given site of the gjncen needs to be the same for the two phases, and given
lattice as a function oh and of the mean field¢)s in the  the form of the numerator in E¢37), h must be zero in this
neighborhood of the given cell. In the homogeneous casgjered state. Hence only the values of the Idgsgmmetri-
(a<ay), this mean field is the same everywhere, and it iscal) mean fields({¢); and (), need to be determined for
equal togy. Hence onlyh is left to be evaluated., which €an a>a.. This can be done as in the case of motlebolving
be done by means of the generalized self-consistency relatiqpq self-consistency relatid1) using the steady probability
given in Eq.(37) with h=0. For nonsymmetric functions

_ P.(&, .h)d 38 F(¢) andg(¢), a possible extension of the Maxwell rule is
($)s f—x¢ (S (P)sun)dd (38 to chooseh in such a way that the two solutions of E&8)
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2.0 : , , just additive noise, and three cases with also multiplicative
noise for different correlation lengths, corresponding to the
situations shown in Fig. 2. The noise-induced shift of the
transition point and the influence of the noise correlation
length as well as the disordering role of the additive noise
(reflected in the shift of the transition point towards the right

1.0

é- 0.0 ¢ when only additive noise is considered — dotted Jioan be
clearly seen.
A comment on the comparative influence of multiplica-
1.0 tive noise on conserved and nonconserved dynamics is worth
making at this point. We note that, in the ordered stdite (
=0), the single-site probability distribution of the conserved

-2.0 model (36) in the presence ofvhite multiplicative noise

(co=1 andc;=0) reduces to

FIG. 2. Steady-state bulk order parameter versus control
parametera for model B. Lines are mean-field results and points  Py(¢,(d)s) =N
correspond to numerical simulations foar=0.0 (circles and solid
line), A=0.5 (squares and dotted lin@nd A=1.5 (triangles and
dashed ling Other parameters ai2=3.7, ¢=0.1, ando?=1.25.

1
! f !
epr W art e )

+D((p)s—d")—2da?g(¢")g" (#)]1],

have the same value for the stationary probability (39)

Ps({@)st:(d)st.h). . o

The bifurcation diagram resulting from the application of \yhich should be compared with the corresponding expres-
the self-consistency relations is plotted in Fig. 2 for threegjg, (20) for the nonconserved case with=1. One can
different values of the multiplicative-noise correlation easily see that multiplicative noise has a stronger effect on
length. Numerical simulation results of the complete modekne conserved model than on the nonconserved one, since in
(28) are also shown. Mean-field results have been used as thge former case the noise intensity is multiplied by a factor
initial conditions of the numerical simulations letting eachoq |n the particular case in which the two noise intensities

phase evolve until its stationary value. The effects of theys ihe nonconservedA) and conservedB) models are re-
intensity and correlation length of the multiplicative noise |5t¢q by

are qualitatively the same as in modelthe noise-induced
shift of the transition point, in the direction of enhancing o2 =2d o2 (40)
order in the system, increases with noise intensity and de-

creases with correlation length. . the two models are equivalent above the transition point.
Figure 3 shows the values of the constant effective field However, this equivalence disappears in the caseotzfred
obtained numerically by imposing the self-consistency rela‘multiplicative noise, because of the term
tion (38) until h vanishes, for a nonzero initial concentration 2dozclg(¢’)g(<¢>so appearing in Eq(36). This different
$o=0.2. The corresponding value of the control paramater yenendence indicates that spatial correlation of the noise is
at which h first becomes zero is the transition po@t.  more relevant for the conserved model than for the noncon-
Results have been plotted for the deterministic dagiich  go1eq one, where the correlation length of the noise pro-
can be calculated analytically, see Eg9)], the case with  y,ces only a shift of the transition poiftt6]. A comparison
between the results of modeisandB is shown in Fig. 4, for
both A\=0 and A #0. Noise intensities have been chosen

05 \ Deterministic case | here to verify expressiof#0), so that in the white-noise case,
: N BN mean-field results coincide for the two models. Mean-field
04 N \ . — - 0l=1.25 A=0.5 1 results are in better agreement with simulations in the case of
\\\ \\ :“_.:.—-— G'=1.25 A=1.5 modelB.
h 92 : \\ . Finally, we now address the issue of whether a reentrant
\ noise-induced phase transition towards disorder arises in the
02 - : Y i conserved modeB. Previous works have shown the exis-

tence of such a transition for nonconserved mod&ls].
This means that for fixed values afandD, when increasing
the multiplicative noise intensity, the system goes first
on ‘ ‘ ‘ through a phase transition from disorder to ord¢iOT) and

7.0 -4.0 -1.0 2,0 then, for higher values of the noise, it experiments another
transition back to disordéNIDT). These two transitions can

FIG. 3. Constant effective fieli as a function of the control Only be found when increasing?, instead ofa or D.

parametera, as obtained from mean-field theory, for=3.7 and Mean-field theory predicts the existence of reentrant tran-
¢o="0.2. All the cases with multiplicative noise have also additive Sitions also for modeB, as shown in Fig. 5. This figure
noise withe=0.1. shows the behavior of the mean fidlg); versus multipli-
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analysis of the model. In order to verify this agreement, we
will now compute this limit for the mean-field results ob-
tained so far, for both models and B.

A. Model A

<¢p>

In the mean-field approximation and in the linft— oo,
the stationary probability distributioRg(,{¢)s) (20) be-
comes

Pst(¢:<¢>st):5(¢_<¢>st)v (41

as can be easily seen by means of a steepest-descent calcu-

lation. This expression verifies trivially the self-consistency

relation(21), which can thus no longer be used to determine
FIG. 4. Steady-state bulk order parametgfs versus control  (¢)g. In order to do that, we now integrate E@.9) with

parametern for model A and B with additive white and multiplica- respect top, and obtain

tive colored noises for different correlation lengths. Lines are mean-

field results for modeR with A =0.0 (solid line) and\ = 1.5 (dotted (f())srt 02c0<g’(¢)g( ?))=0. (42

line) and for modelB with A =0.0 (solid line) and\ =1.5 (dashed

line). Points correspond to numerical simulations of model For D—x, these averages are evaluated trivially using ex-

(empty symbolsand modeB (full symbols. Of these, circles cor-  pression(41), and Eq.(42) becomes
respond to white multiplicative noise and triangles\te 1.5. Other

parameters arB=3.7, £=0.1, 04=5, ando3=1.25. F({ b))+ 02Co0" ({($))a((B)e) =0, (43)

2.0 . L .
-5.0 -3.0 -1.0 1.0 3.0
a

cative noise intensity with two different correlation lengths from which ( ¢), can be found. For modei and in the case

(A=0 andA=0.5) for modelsA and B. Again, the noise defined by Eqs(4)—(7), the solutions of this equation are
intensities for the two models have been chosen to verify Eggijther

(40), so that thex =0 result is identical in the two cases.

However, the effect of the correlation length is different for ($)s=0 (44)
the two models: whereas for modAl N retards both the

NIOT and the NIDT, for modeB the NIOT is retarded, but or

the NIDT is advanced. This is an indication of the nontrivial

influence of the noise correlation length in the conserved (d)1,=*+Ja+ o2Cy. (45)
case.
This second set of solutions can only exist #or — o%C,.
V. STRONG-COUPLING LIMIT Hence, the critical point is given in this case by
In the limit of strong couplingD — <, the predictions of a.=—02Cy, (46)

mean-field theory can be evaluated analytically and should
agree with the results given by a standard linear stabilityn such a way that the ordered state appearsifen.. The
shift of the critical point increases the ordered region, due to

Oy (05=0,/2) the effective multiplicative noise intensity’cy. This shift,
0 o 20 0 o 50 as seen in the previous sections, increases with increasing
noise intensity and decreases for increasing correlation
lengths. This result coincides with the one given by a linear
stability analysis of the homogeneous sta€l 6,17, as ex-
pected. However, in contrast with the linear stability analy-
sis, this calculation can be extended to other situations and

*\%’ models not necessarily controlled by the linear term.
0.5
o® B. Model B
In this case, the stationary probability distributi¢86)
5 | given by the mean-field approach for each phase andfor
0.0 bt %5 ~ T —o s also Eg.(41) as can be seen using the steepest-

Ca descent method, as before. Following the procedure de-
scribed above for modeA, we formally integrate now Eq.

FIG. 5. Mean field steady-state bulk order parametérs ver- (34) to obtain an equation fan

sus multiplicative noise intensity for modedswith A =0.0 (solid
line) and A =0.5 (dotted ling and for modelB with A\ =0.0 (solid h=—(f(¢) +2do¥c ( ()
line) and\ =0.5 (dashed ling Parameters are=1, a=0.75, and < (¢ >St [eg <¢>Sr)<g ¢ >St

D=2.66. —co(9($)g' (#))odl. (47
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noise correlation between first neighbars which indicates
09 b I the nontrivial influence of the spatial correlation of the noise
S on conserved dynamics, as opposed to nonconserved dynam-
0.7 - ] ics where this influence disappears in the mean-field ap-
proach.
h 05 B
03 | ] VI. CONCLUSIONS
' Mean-field theory has been previously applied to noncon-
o1 r 1 served models with additive and multiplicative white noises
] [7,8,22. Here we have applied it in the case of spatially
015 o0 B0 485 30 25 o correlated multiplicative noise. Our mean-field results and
a numerical simulations of the complete model in two dimen-

sions indicate the decrease of the ordering role of multipli-
cative noise when its correlation length increases.

We have also extended mean-field theory to deal with
conserved models by using the concept of a constant effec-
tive field. As in the case of nonconserved systems, we have
found that additive noise has a disordering role, whereas

At the limit D— o, the averages appearing in the precedingmultiplicative noise has an ordering one. The latter increases

expression are calculated using the stationary probability dior increasing multiplicative noise intensity and for decreas-
tribution obtained above, leading to ing noise correlation length. However, the quantitative ef-

fects of multiplicative noise are different in each model; the
_ 2 p transition to order occurs earlier for modglthan for model
h==1(($)s) +2d0*(C1=Co)G ()9 D)s)- (48) 5 Moreover, mean-field calculations show that the correla-
o tion length of multiplicative noise has nontrivial effects in
In the casea<ar, the field is homogeneous and we canthe conserved case, while for modlit just decreases the
replace in the above expression)s= ¢o. Thus this equa-  effective noise intensity. Numerical simulations of the com-
tion gives us the value df in this case as a function of the p|ete conserved model in two dimensions are in good agree-
initial condition. The results for modeB and in the case ment with mean-field predictions.
defined by Eqs(4)—(7) are plotted in Fig. 6 versus the con-  previous works on mode with additive and multiplica-
trol parametem, along with the values dfi given by mean-  tive white noises have shown the presence of NIOTs and
field theory for finite but larg®, obtained numerically in the NIDTs. We have seen that, at least in the mean-field ap-
preceding section. We can see that these mean-field resuligoach, these transitions appear for higher values of the noise
approach Eq(48) asD increases, as it should be. The shift of jntensity when multiplicative noise is spatially correlated.
the transition point increases for increasing couplingThis is explained by the fact that the effective noise intensity
strength, as can be seen from Fig. 6. decreases. Modé has also been found to go first through a
We now turn to the casa>ar, whereh=0. Now Eq.  NIOT and after through a NIDT when the multiplicative
(48) can be solved fof¢)s, which gives the values of the noise intensity is increased. As in moda) the NIOT is

FIG. 6. Constant effective field versus control parametarfor
D—o (solid line) as given by Eq(48), and forD=3.7 (dashed
line) andD =20 (dotted ling coming from the mean-field approach
described in Sec. IV B. Other parameters agg=0.2, €=0.1, o>
=1.25, and\=0.5.

two bulk phases, retarded when the correlation length of multiplicative noise
increases. However, contrary to what happens in médel
(#)1,=*+a+2do?(co—cy), (49)  the NIDT is advanced, which shows clearly different effects
of noise correlation length upon conserved and nonconserved

models.

Finally, in the strong-coupling limit we have found ana-
lytical expressions for the critical-point shift and the steady-
state bulk order parameter for both mod@lsand B with
) 5 additive white and multiplicative colored noises. These re-
ar=¢g—2do(co—Cy), (500 sults coincide with previously reported predictions coming
from linear stability analysi§16].

again for the particular modé#)—(7). The transition line is
determined by setting¢), = ¢, in the preceding expression,
which leads to

and the critical pointfor ¢¢=0) is then
a,=—2do?(Co—Cy). (5D ACKNOWLEDGMENTS
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