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Lyapunov-potential description for laser dynamics
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We describe the dynamical behavior of both clasnd clasS8 lasers in terms of a Lyapunov potential. For
classA lasers we use the potential to analyze both deterministic and stochastic dynamics. In the stochastic case
it is found that the phase of the electric field drifts with time in the steady state. ForBlasers, the potential
obtained is valid in the absence of noise. In this case, a general expression relating the period of the relaxation
oscillations to the potential is found. We have included in this expression the terms corresponding to the gain
saturation and the mean value of the spontaneously emitted power, which were not considered previously. The
validity of this expression is also discussed and a semiempirical relation giving the period of the relaxation
oscillations far from the stationary state is proposed and checked against numerical simulations.
[S1050-294{@9)02906-9

PACS numbgs): 42.65.Sf, 42.55.Ah, 42.60.Mi, 42.55.Px

[. INTRODUCTION the amplifying medium is modeled quantum mechanically as
a collection of two-level atoms through the Bloch equations.

Even for nonmechanical systems, it is occasionally posA simpler description can be obtained by deriving rate equa-
sible to construct a functiofcalled Lyapunov function or tions for the temporal change of the electric figdd photons
Lyapunov potentigl that decreases along trajectorigl. numbeyj inside the cavity and the population inversi@ar-

The usefulness of Lyapunov functions lies in the fact thatriers number in the case of semiconductor lasg8% Rate
they allow an easy determination of the fixed points of aequations, with stochastic terms accounting for spontaneous
dynamical (deterministi¢ system as the extrema of the emission noise, have been extensively used for semiconduc-
Lyapunov function as well as determining the stability of tor lasers.

those fixed points. In some cases, the existence of a Different types of lasers can be classified according to the
Lyapunov potential allows an intuitive understanding of thedecay rate of the photons, carriers, and material polarization.
transient and stationary trajectories as movements of test pa#recchiet al.[9] were the first to use a classification scheme:
ticles in the potential landscape. In the case of nondetermirelassC lasers have all the decay rates of the same order, and
istic dynamics, i.e., in the presence of noise terms, and undeherefore a set of three nonlinear differential equations is
some general conditions, the stationary probability distriburequired for a satisfactory description of the electric field, the
tion can also be governed by the Lyapunov potential anghopulation inversion, and the material polarization. For class
averages can be performed with respect to a known probabiB lasers, the polarization decays towards the steady state
ity density function. The aim of this work is to construct much faster than the other two variables, and it can be adia-
Lyapunov potentials for some laser systems. We start, thematically eliminated. ClasB lasers, of which semiconductor

by briefly reviewing the main features of the laser as a dydasers[10] are an example, are then described by just two
namical system. rate equations for the atomic population inversion carri-

A laser has three basic ingredientg; a gain medium ers numberand the electric field. Other examples of cl&ss
capable of amplifying the electromagnetic radiation propaiasers are C@lasers and solid-state lasdrkl]. Finally, in
gating inside the cavity(ii) an optical cavity that provides classA lasers population inversion and material polarization
the necessary feedback, afiil) a pumping mechanism. A decay much faster than the electric field. Both material vari-
complete understanding of laser dynamics is based on a fullgbles can be adiabatically eliminated, and the equation for
guantum-mechanical description of matter-radiation interacthe electric field is enough to describe the dynamical evolu-
tion within the laser cavity. However, the laser is a systention of the system. Some properties of cldstasers, like a
where the number of photons is much larger than one, thudye laser, are studied i12,13. In this paper we interpret
allowing a semiclassical treatment of the electromagnetithe dynamics of both class and classB lasers by using a
field inside the cavity through the Maxwell equations. ThisLyapunov potential.
fact was introduced in the semiclassical laser theory, devel- The paper is organized as follows. In Sec. Il we present a
oped by Lami2,3] and independently by Hakg¢A—7]. This  brief review of the relation of Lyapunov potentials to the
model for laser dynamics was constructed from the Maxwell-dynamical equations and the splitting of those into conserva-
Bloch equations for a single-mode field interacting with ative and dissipative parts. We consider the example of class
two-level medium. The semiclassical laser theory ignores thé lasers. In this case, the Lyapunov potential gives an intui-
guantum-mechanical nature of the electromagnetic field, antive understanding of the dynamics observed in the numeri-

cal simulations. In the presence of noise, the probability den-
sity function obtained from the potential allows the
*URL: http://www.imedea.uib.es calculation of stationary mean values of interest as, for ex-
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ample, the mean value of the number of photons. We will dx N N
show that the mean value of the phase of the electric field in d_tl =-> Dj vl
the steady state varies linearly with time only when noise is =1 X]

present, in a phenomenon reminiscent of the noise-sustain%inere the matrixD (x) = S(x) + A(x) splits into a positive-

{asers i3 precenied i te1ms of the ntonsiy and the canieQSTLE SYMMlc malrxS, and an antisymmetic ond, n
number(we will restrict ourselves to the semiconductor la- this case, the residual dynamics also ceases after the surface
sep. In this case we have found a potential which helps toOf minima ofV(x).has been reached.. .

' We now describe the effect of noise on the dynamics of

analy;e the corresponding dynamics in the ab_sence of nOisﬁ'ie above systems. The stochastic equatigessidered in
By using the conservative part of the equations, one caih o Ito sensg are '

obtain an expression for the period of the oscillations in the

transient regime following the laser switch-on. This expres- dx N

sion extends the one obtained in a simpler case by an iden- —=f,(x)+ >, gij (X) (1), (5)

tification of the laser dynamics with a Toda oscillatof 1. dt =1

Here, we have added in the expression for the period the . . . .
hereg;;(x) are given functions and;(t) are white noise:

corresponding modifications for the gain saturation term an aussian random brocesses of zero mean and correlations
spontaneous emission noise. Finally, in Sec. IV, we summaére P

rize the main results obtained.

4)

(&i(DE& (L)) =2e5;6(t—1), (6)
Il. POTENTIALS AND LYAPUNOV FUNCTIONS:
CLASS A LASERS wheree is the intensity of the noise.

. . In the presence of noise terms, it is not adequate to talk
The evolution of a systertdynamical flow can be clas- 46yt fixed points of the dynamics, but rather consider in-

sified into different categories according to the relation of thegia54 the maxima of the probability density functieex,t)
Lyapunov potential to the actual equations of motion\ynich satisfies the multivariate Fokker-Planck equation
[15,16. We first consider a deterministic dynamical flow in 117 1g whose general solution is unknown. When the deter-
which the real yarlqblesx(l, .- Xn)=x satisfy the general  ninistic part of Eq(5) is a potential flow, however, a closed
evolution equations: form for the stationary distributiofP(x) can be given in
dx. terms of the potential/(x) if the following (sufficien) con-
R i=1 1 ditions are satisfied.

i(x), i=1,...N. (1) . ed. . _
dt (i) Thefluctuation-dissipatiortondition, relating the sym-

_ , metric matrixSto the noise matrixg,
In the so-calledpotential flow there exists a nonconstant

function V(x) (the potentigl in terms of which the above N
equations can be written as Sj= E 9ikjk » S=gg". @
k=1
dXi N Y .. .
N T (i) S;; satisfies
a2 S 7 o 2 j
N
. . ” - . IS; :
whereS(x) is a symmetric and positive-definite matrix, and Zl WZO’ Vi. (8)
v;(x) satisfy theorthogonality condition 1= )
N This condition is satisfied, for instance, for a constant matrix
= Vo (ii) v is divergence-free,
A nonpotential flowon the other hand, is one for which the N dv;
splitting (2), satisfying Eq.(3), admits only the trivial solu- 21 (9_xi:0' 9)

tion V(x) =const,v;(x) = f;(x).

Since the abovesufficieny conditions for a potential flow  This third condition is automatically satisfied for potential
lead todV/dt<0, one concludes that(x) (when it satisfies  flows of the form(4) with a constant matria.
the additional condition of being bounded from bejae a Under those circumstances, the stationary probability den-
Lyapunov potential for the dynamical system. In this casesity function is
one can get an intuitive understanding of the dynamics: the
fixed points are given by the extrema\§fx) and the trajec- 1
tories relax asymptotically towards the surface of minima of Ps(x)=Z""ex
V(x). This decay is produced by the only effect of the terms
containing the matri>XS in Eg. (2), since the dynamics in- whereZ is a normalization constant. Grah4®] has shown
duced byv; conserves the potential, ang(x) represents the that if conditions(ii) and(iii ) are not satisfied, then the above
residual dynamics on this minima surface. A particular cas@xpression folP¢(x) is still valid in the limit e—0.
of potential flow is given when;(x) can also be derived As an example of the use of Lyapunov potentials in a
from the potential, namely, dynamical system, we consider classasers[6] whose dy-
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namics can be described in terms of the slowly varying com-  o.10
plex amplitudeE of the electric field:

0.0%

0.00

E=(l+ia)($|El2—K)E+§(t), (11

wherea, B, I', and k are real parameterx is the cavity
decay rate]' the gain parameted the saturation-intensity
parameter, and is the detuning parameter. Another widely
used model expands the nonlinear term to give a cubic de-
pendence on the fielghird-order Lamb theory2]), but this

is not necessary here. Equatidl) is written in a reference
frame in which the frequency of then steady state is zero
[12]. £(t) is a complex Langevin source term accounting for
the stochastic nature of spontaneous emission. Itistakenas a5 1 potential for a clasa laser, Eq.(15), with the param-
Gaussian white noise of zero mean and correlations:

(L) (1) =4A5(t—1t"), (12 _ o _ _
symmetric partA (which is proportional toa) induces a
whereA measures the strength of the noise. movement orthogonal to the direction of maximum variation
By writing the complex variablee as E=x;+ix, and  of V(x). The combined effects &andA produce a spiraling
introducing a new dimensionless time such thatxt, the trajectory in the X;,X,) plane. The angular velocity of this
evolution equations become spiral movement is proportional ta. Asymptotically, the
system tends to one of the minima in the linea—Db, the
exact location depending on the initial conditions. The po-
1) (X1 = axp) + (1), (13 tential decreases in time until it arrives at its minimum value:
V(x2+x5=a—h)=—%[aln(a)—a+h].
In the presence of moderate levels of noige&;0, the
)(ax1+x2)+§2(t), (14)  Qualitative features of the transient dynamics remain the
same as in the deterministic case. The most important differ-
ences appear near the stationary situation. As the final value
wherea=I'/(kB) andb=1/B8. & (t) and £,(t) are white  of the intensity is approached and fek: 0, the phase rota-
noise terms with zero mean and correlations given by(Eq. tion slows down and the mean value of the phasef the
with e=A/«k. electric fieldE changes linearly with time also in the steady
In the deterministic caseeE&0), these dynamical equa- state; see Fig. 2. Fax=0 there is only the ordinary phase
tions constitute a potential flow of the forfd) where the diffusion around the Circumferen@é+xgza_b that repre-

etersa=2, b=1. Dimensionless units.

Tl haw2iv?
b+x7+x5

o 2,2
b+x{+x5

potentialV(x) is [7] sents the set of all possible deterministic equilibrium states
[12]. Therefore, fora# 0 the real and imaginary parts &f
V(Xq,Xp) = 1[xi+x§—aln(b+x§+x§)] (15) oscillate not only in the transient dynamics but also in the

and the matriXD(x) (split into symmetric and antisymmetric
parts is
10

D=S+A= +
01

0 —a)
o 0/ (16)

A simpler expression for the potential is given[81 and[17]
valid for the case in which the gain term is expanded in
Taylor series.

According to our discussion above, the fixed points of the 0 =0 20 50 50 100
deterministic dynamics are the extrema of the potei{a): i
for a>b there is a maximum atx,x,) =0 (corresponding
to the laser in theoff statg and a line of minima given by
X1+X2 a—b (see Fig. 1 The asymptotic stable situation, line) there is only phase diffusion and the average value is O for all
then is th?t thze Iazser switches to the state with an In.ten- times. Whernw=5 (solid line) there is a linear variation of the mean
sity | =|E[*=x{+x3=a—b. Fora<b the only stable fixed yajue of the phase at late times. Error bars are included for some
point is theoff statel =0. values. The dot-dashed line has the slope given by the theoretical

In the transient dynamics, the symmetric mat8ixs re-  prediction Eq(21). The initial condition is taken as,=x,=0 and
sponsible for driving the system towards the line of minimathe results were averaged over 10 000 trajectories with different
of V following the lines of maximum slope of. The anti- realizations of the noise. Dimensionless units.

FIG. 2. Time evolution of the mean value of the phasén a
classA laser, in the casa=2, b=1, €=0.1. Fora=0 (dashed
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steady state, and while the frequency of the oscillations still . a
depends orw (as well ase), their amplitude depends on the ()= a<m - 1> (20
noise strengtte.

We can understand these aforementioned features of the . . . .
noisy dynamics using the deterministic Lyapunov potentialand' by using the distributiofi), one obtains the stochastic
V(X1,X5). Since conditiongi)—(iii) above are satisfied, the frequency shift
stationary probability distribution is given by E¢LO) with

V(X1,X5) given by Eq.(15). By changing variables to inten- exp( —b/2¢)(b/2e)**

sity and phase, we find that the probability density functions (Po=—a a b @D
for | and ¢ are independent functionBg( ¢) =1/(27) is a r ZJF 112)
constant, and
P(1)=2"te 29 (h+ )29, (17) Notice that this average rotation speed is zero in the case of
no detuning ¢=0) or for the deterministic dynamicse (
where (Z=(2¢) (@29 +1gb2¢['[ (a/2¢) + 1 b/2€]) is the nor- =0) and that, due to the minus sign, the rotation speed is

malization constant, anff(x,y) is the incomplete gamma ©PpOsite to that of the deterministic transient dynamics when
function. From this expression, we see that, independently citarting from theoff state. These results are in excellent
the value fore, P¢(1) has its maxima at the deterministic @greement with numerical simulations of the rate equations
stationary valud ,—a—b. Starting from a given initial con- in the presence of noissee Fig. 2

dition corresponding, for instance, to the laser indfestate,

the intensity fluctuates around a mean value that increases ll. CLASS B LASERS
monotonically with time. In the stationary state, the intensity _ _ _
fluctuates around the deterministic valye=a— b but, since The dynamics of a typical clas3 laser, for instance a

the distribution(17) is not symmetric aroundl,,, the mean single mode semiconductor laser, can be described in terms
value (I ) is larger than the deterministic value. By using Of two evolution equations, one for the slowly varying com-

Eq. (17) one can easily find that plex amplitudekE of the electric field inside the laser cavity
and the other for the carriers numbir (or electron-hole
exp( — b/2¢e)(b/2e) @29 +1 pairg [10]. These equations include noise terms accounting
(Ds=(a—b)+2¢ 1+ a b - for the stochastic nature of spontaneous emission and ran-
r 2—E+1,2—6) dom nonradiative carrier recombination due to thermal fluc-

(18 tuations. Both noise sources are usually assumed to be white
Gaussian noise.

An expression for the mean value of the intensity in the 1€ equation for the electric field can be written in terms

steady state was also given[iti7] in the simpler case of an ©f the optical intensityl and the phasep by defining E

expansion of the saturation-term parameter in the dynamica V! €. For simplicity, we neglect the explicit random fluc-

equations. tuations terms and retain, as us@ia0], the mean power of
As mentioned before, in the steady state of the stochasti$'e spontaneous emission. The equations are

dynamics, the phas¢ of the electric field fluctuates around

a mean value that changes linearly with time. Of course, dl

since any value of can be mapped into the interjdl,2), dt =[G(N,l) = yJI+4pN, (22)

this is not inconsistent with the fact that the stationary dis-

tribution for ¢ is a uniform one. We can easily understand

the origin of thisnoise sustained floW20]: the rotation in- d_¢: E[G(N,I)— vla, (23)
ducing terms, those proportional ® in the equations of dt 2

motion, are zero at the line of minima of the potenWahnd,

hence, do not act in the steady deterministic state. Fluctua- dN

tions allow the system to explore regions of the configuration i ~C7eN-G(N.DI. (24)

space X;,X,) where the potential is not at its minimum

value. Since, according to E¢l.8), the mean value dfis not

at the minimum of the potential, there is, on average, a non

zero contribution of the rotation terms producing the phase

drift observed. G(N.1)= g(N—No)
The rotation speed can be calculated by writing the evo- ' 1+sl

lution equation for the phase of the electric field as

G(N,1) is the material gain given by
(29

The definitions and typical values of the parameters for semi-
(19) conductor lasers are given in Table I. The first term of Eq.

(22) accounts for the stimulated emission while the second

accounts for the mean value of the spontaneous emission
where£(t) is a white noise term with zero mean value andpower. Equations(22)—(24) are written in the reference
correlations given by Eq(6). By taking the average value frame in which the frequency of then state is zero when
and using the rules of the ltwalculus, one arrives at spontaneous emission noise is neglected. The threshold con-

L a 1
¢= b+

NES
a \/I—f( :
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TABLE I. Definitions and typical values of the parameters for semiconductor lasers.

Parameters Values
C Carriers injected per unit time >threshold
¥ Cavity decay rate 0.5 pd
Ye Carrier decay rate 0.001 ps
No Number of carriers at transparency %.50°
g Differential gain parameter 1510 8 ps?
s Saturation parameter 186—107
B Spontaneous emission rate ~fops?
a Linewidth enhancement factor 3-6

dition is obtained by settin@(N,l)=1v, | =0, and neglect-
ing spontaneous emission, i.Bly,=N,+ v/g. The threshold
carrier injected per unit time to turn the lasaris given by

Cin=veNun. Equation(23) shows thaip is linear withN and

slightly (due to the smallness of the saturation paramsgter

see Table)l nonlinear withl.

small. This corresponds to thodf solution in which the only
emitted light corresponds to the spontaneous emission.
Above threshold, stimulated emission occurs and the laser
operates in then state with largeyg. In what follows, we

will concentrate in the evolution following the laser
switch-on to theon state.

Since in the deterministic case considered henceforth the Itis known that the dynamical evolution gfandzis such
evolution equations fof andN do not depend on the phase that they both reach the steady state by performing damped

¢, we can concentrate only on the evolutionl @ndN. One

oscillations[10] whose period decreases with time. This fact

can obtain a set of Simp'er dimensionless equations by pef-s diﬁerent from the Usual relaxation OSCi"a.tionS that are

forming the following change of variables:

2
=2 2=3Neny, -
Y

N[

y t. (26)

The equations then become

dy ol -2 _1ly+cz+d 27)
— = — — czZ ,
dr 1+sy y
dz zy
—=a—bz— ——, (28)
dr 1+sy

where we have definea=2g/y*(C— y.N,), b=2v./7v, ¢

calculated near the steady state by linearizing the dynamical
equations. The time evolution gfandzis shown in Fig. 8)

for some parametergfor other values of the parameters,
equivalent results are obtainedwhile the corresponding
projection in they, z phase plane is shown in Fig. 4. We are
interested in obtaining a Lyapunov potential that can help to
explain the observed dynamics. This study was dorjd.4i
without considering either the saturation term or the mean
value of the spontaneous emission power, and under those
conditions an expression for the period of the transient oscil-
lations was obtained. In our work, we calculate the period of
the oscillations by taking into account these two effects. The
period is obtained in terms of the potential, by assuming that
the latter has a constant value during one period. It will be
shown that this assumption works reasonably well and gives

=16B/y, d=16B8gN,/y?, and§=3y/29. These equations a good agreement with numerical calculations. Near the
form the basis of our subsequent analysis. The steady states

are obtained by setting EqR7) and(28) equal to zero, i.e.,

1 _
—[2(a—b)+d(1+bs)+cas+v], (29

Y= 41+ bs)
a(1+sys)
=, (30)
b+y(1+bs)
where the constant is given by
v=4(a—b)?+4d(a+b)(1+bs)+d?(1+bs)?
+c[8a+4as(a+b)+2das1+bs)]+c2a?s?.
(31)

There is another steady-state solution ¥Qr given by Eg.
(29) (with a minus sign in front of/v) which, however, does
not correspond to any possible physical situation, singe

0.05
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y, z/40

0.02 F

0.01F
0.00
0.05F

0.04 E

0.03F

0.02F E
0.01

0 200 400

T

600 800

FIG. 3. (a) Normalized intensityy (solid line) and normalized
carriers number/40 (dot-dashed lingversus time in a clasB laser
obtained by numerical solution of Eq27) and(28). (b) Plot of the
potential (32). Parametersa=0.009, b=0.004, s=0.5, c=3.2
x107°, d=1.44x10"8, which correspond to physical parameters

<0. For a value of the injected carriers per unit time belowin Table | with C=1.2C,,. The initial conditions are taken as

threshold C<Cy, equivalent toa—b<0), yq is very

=5x%10 8 andz=0.993. Dimensionless units.
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FIG. 4. Number of carriers versus intensiscaled variables The vector field and contour pléthick lines are also represented. Same
parameters as in Fig. 3. Dimensionless units.

steady state, the relaxation oscillations can also be calculated 4y?
in this form, but the potential is almost constant and conse- dyp=—— _—, (39
quently so is the period. (1+sy)[2y+c(1+sy)]
The evolutions equation®7) and(28) can be cast in the L
form of Eq. (4) with the following Lyapunov potential: 4y[(1+2s+Dbs)y?+by+d+cz] 35
22—

A 1 (1+sy)[2y+c(1+sy)]?

V(y,2)= Ay + Ay + Az In(y) + -+ 5B%(y.2), (32)
y This potential re_duces to the one obtained in R&#]

when settingc=d=s=0 (which corresponds to set the laser

where parameterg3=s=0). As expected, nonvanishing values for
1 1 _ 1 1 the parameters and 8 increase the dissipative part of the
A;=5 ~ 5astbs—7sd(1+bs) —ZaSZC, potential d,,), associated with the damping term. This result
was pointed out if21] when linearizing the rate equations
— around the steady state.
A :§(1+b§) The equipotential lines of E¢32) are also plotted in Fig.
274 ' 4. It is observed that there is only one minimum frand
hence the only stable solutidfor this range of parameters
—d is that the laser switches to thm state and relaxes to the
As=—5|a-b+(actbd)s+ 5], minimum of V. The movement towards the minimum of
has two components: a conservative one that produces closed
(ac+hbd) equipotential trajectories and a damping that decreases the
4= value of the potential. The combined effects drive the system
to the minimum following a spiral movement, best observed
in Fig. 4.
B(y Z):Z_l_ger(dJrcz)(lJrgy)_ The time evolution of the potential is also plotted in Fig.
’ 2y 3(b). In this figure it can be seen that the Lyapunov potential
is approximately constant between two consecutive peaks of
The correspondingnonconstantmatrix D is given by the relaxation oscillationsthis fact can also be observed
with the equipotential lines of Fig.)4This fact allows us to
D=( 0 _d12) 33 estimate the relaxation oscillation period by approximating
di, dy, /)’ V(y,z) =V, constant, during this time interval. When the po-

tential is considered to be constant, the period can be evalu-
being ated by the standard method of elementary mechanics:
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i andd,, is the coefficiend;, calculated in the steady state.

FIG. 5. Period versus time in a claBdaser. Solid line has been T Ne period of the relaxation oscillations near the steady state

calculated as the distance between two peaks of intensity, with tric@n be obtained by linearizing Eq&27) and (28) after a
angles plotted at the beginning of each period; dashed line has be§fall perturbation is applied. The frequency of the oscilla-
calculated using expressidB6), with the value of the potentiat  tions in the steady state is the imaginary part of the eigen-
obtained also from the simulation; dotted line corresponds to th&/alues of the linearized equations. This yields a period:
semiempirical expressiol). Same parameters as in Fig. 3. We
have usedr,="55.55, coinciding with the position of the first inten-
sity peak. Dimensionless units.

-1/2
. (39

T 2
' dyp 0/ EF—HZ

The difference between Eq&7) and (38) vanishes with
o (i-€., dyy in the stationary staje SinceEF—H? is al-
ways a positive quantity, our approximation will give, at
least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variation
of the period with time, we need to compute the time varia-
tion of the potentiaM(7) between two consecutive intensity
peaks. This variation is induced by the dissipative terms in
the equations of motion. We have not been able to derive an
expression for the variation of the potentiake[14] for an

(36) approximate expression in a simpler casdowever, we
wherey, andy, are the values of that cancel the denomi- have found that a semiempirical argument can yield a very
nator. We stress the fact that the only approximation used isimple law which is well reproduced by the simulations. We
the derivation of this expression is that the Lyapunov potenstart by studying the decay to the stationary state in the lin-
tial is constant during two maxima of the intensity oscilla- earized equations. By expanding around the steady state,
tions. The previous equation for the period reduces, in the=y + 8y, z=z,+ 6z, the dynamical equations imply that
casec=d=s=0, to the one previously obtained by using the variables decay to the steady state &¢7), 6z(7)
the relation between the laser dynamics and the Toda oscitexp(— (p/2)7), where
lator derived in14]. Evaluation of the above integral shows
that the periodT decreases as the potentidl decreases. p=dzsf-
Since the Lyapunov potential decreases with time, this ex- . . -
plains the fact that the period of the oscillations in the tran_ExpandmgV(y,z) arounq the steady St"?“e and taking an ini-
sient regime decreases with time. In Fig. 5 we compare th al condltl_on. ato, we find an expression for the decay of
results obtained with the above expression for the perio& € potential:
with the one obtained from numerical simulations of the rate
equations(27) and (28). In the simulations we compute the INLV(7) =Ved =I[V(70) Vel =p(7=70). (40
period as the time between two peaks in the evolution of the, Fig. 6 we plot IfV(r)—Vy] versus time and compare it
variabley. As can be seen in this figure, the above expressiolith the approximatior(40). One can see that the latter fits
for the period, when using the numerical value of the pOte”In[V(r)—Vs,] not only near the steady statahere it was

tial V, accurately reproduces the simulation results althoughyeriveq, but also during the transient dynamics. The value
it is systematically lower than the numerical result. The dis-

; ) \ of 7y, being a free parameter, was chosen at the time at
crepancy is less than 1% over the whole range of times. \ ich the first peak of the intensity appears. Although other

It is possible to quantify thﬁ differencel between rt}he 8P+alues ofr, might produce a better fit, the one chosen here
proximate expressio(86) and the exact values near the sta-»q the advantage that it can be calculated analytically by

2 2
Ay F

d2, 4(EF—H?)

replaced by its expression obtained from EZy) in terms of
y andy (the dot stands for the time derivativin V(y,z).
Using the condition thaw/(y,z)=V=const, we obtain an
equation fory of the form F(y,y)=V. From this equation,
we can calculate the relaxation oscillation peri@d by in-
tegrating over a cycle. This leads to the expression

Jyl 1+sy dy
vo Y {2[V-Ay—Ay2—Asin(y)—Ay Y2

(39

tionary state. In this case expressi@®) reduces to

2

T=——, (37)
dip/EF—H?

where

following the technique of Ref22]. It can be derived from
Eq. (36) that the periodr is linearly related to the potential
V. This, combined with the result of E¢40), suggests the
semiempirical law for the evolution of the period of the form

IN[T(7) = Ts]=IN[T(70) = T —p(7— 7).  (41)
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FIG. 6. Logarithm of the potential difference versus time in a  FIG. 7. Logarithm of the period difference versus time in a class
classB laser(solid line), compared with the theoretical expression B laser. Triangles correspond to the period calculated from the
in the steady staté10) (dashed ling Same parameters as in Fig. 3 simulations as the distance between two consecutive intensity
and 7y as in Fig. 5. Dimensionless units. peaks, at the same position as in Fig. 6. The dashed line is the

semiempirical expression E¢41). Same parameters as in Fig. 3

This simple expression fits well the calculated period no2nd7o as in Fig. 5. Dimensionless units.

only near the steady state, but also in the transient regime, h .
see Figs. 5 and 7. The tiny differences observed near the In the case (.Jf cIas_sB 'asefs' we have .Ot.’t‘”!'”ed a
steady state are due to the fact that the semiempirical |amll._yapun0\_/ potentlal_ valid only in the deterministic case,
Eq.(41), is based on the validity of relation E(R6) between when hoise flgctuanons are negl_ected. We have founo! that
the period and the potential. As was already discussed abov. e dynamics is nonrelaxational with a nonconstant marix

that expansion slightly underestimates the asympttia- . Te flxe:[d dpomt corrgsponc_hn?hto thte I:;\_S(larl In dthestateBls b
tionary) value of the period. By complementing this study Interpreted as a minimum In the potential flandscape. by ob-

with the procedure given ifi22] to describe the switch-on serving that the potential is nearly constant between two con-

process of a laser, and valid until the first intensity peak isSeCUtIVe intensity peaks during the relaxation process to-

reached, we can obtain a complete description of the varia\’—vards the steady state, but still in a highly nonlinear regime,

tion of the oscillations period in the dynamical evolution we were able to o_btayn an approximate expressmn_for the
following the laser switch-on. period of the oscillations. Moreover, we have derived a

simple exponential approach of the period of the oscillations
with time towards the period of the relaxation oscillations
IV. SUMMARY near the steady state. This dependence appears to be valid
] S after the first intensity peak following the switch-on of the
In this work we have used Lyapunov potentials in thejaser. A possible extension of our work could be to consider

context of laser dynamics. For classlasers, we have ex- the presence of an external field, which is numerically stud-
plained qualitatively the observed features of the determinisgq in [23].

tic dynamics by the movement on the potential landscape.
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