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Lyapunov-potential description for laser dynamics
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We describe the dynamical behavior of both classA and classB lasers in terms of a Lyapunov potential. For
classA lasers we use the potential to analyze both deterministic and stochastic dynamics. In the stochastic case
it is found that the phase of the electric field drifts with time in the steady state. For classB lasers, the potential
obtained is valid in the absence of noise. In this case, a general expression relating the period of the relaxation
oscillations to the potential is found. We have included in this expression the terms corresponding to the gain
saturation and the mean value of the spontaneously emitted power, which were not considered previously. The
validity of this expression is also discussed and a semiempirical relation giving the period of the relaxation
oscillations far from the stationary state is proposed and checked against numerical simulations.
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I. INTRODUCTION

Even for nonmechanical systems, it is occasionally p
sible to construct a function~called Lyapunov function or
Lyapunov potential! that decreases along trajectories@1#.
The usefulness of Lyapunov functions lies in the fact t
they allow an easy determination of the fixed points o
dynamical ~deterministic! system as the extrema of th
Lyapunov function as well as determining the stability
those fixed points. In some cases, the existence o
Lyapunov potential allows an intuitive understanding of t
transient and stationary trajectories as movements of test
ticles in the potential landscape. In the case of nondeterm
istic dynamics, i.e., in the presence of noise terms, and un
some general conditions, the stationary probability distri
tion can also be governed by the Lyapunov potential a
averages can be performed with respect to a known prob
ity density function. The aim of this work is to constru
Lyapunov potentials for some laser systems. We start, th
by briefly reviewing the main features of the laser as a
namical system.

A laser has three basic ingredients:~i! a gain medium
capable of amplifying the electromagnetic radiation pro
gating inside the cavity,~ii ! an optical cavity that provides
the necessary feedback, and~iii ! a pumping mechanism. A
complete understanding of laser dynamics is based on a
quantum-mechanical description of matter-radiation inter
tion within the laser cavity. However, the laser is a syst
where the number of photons is much larger than one, t
allowing a semiclassical treatment of the electromagn
field inside the cavity through the Maxwell equations. Th
fact was introduced in the semiclassical laser theory, de
oped by Lamb@2,3# and independently by Haken@4–7#. This
model for laser dynamics was constructed from the Maxw
Bloch equations for a single-mode field interacting with
two-level medium. The semiclassical laser theory ignores
quantum-mechanical nature of the electromagnetic field,
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the amplifying medium is modeled quantum mechanically
a collection of two-level atoms through the Bloch equatio
A simpler description can be obtained by deriving rate eq
tions for the temporal change of the electric field~or photons
number! inside the cavity and the population inversion~car-
riers number in the case of semiconductor lasers! @8#. Rate
equations, with stochastic terms accounting for spontane
emission noise, have been extensively used for semicon
tor lasers.

Different types of lasers can be classified according to
decay rate of the photons, carriers, and material polarizat
Arecchiet al. @9# were the first to use a classification schem
classC lasers have all the decay rates of the same order,
therefore a set of three nonlinear differential equations
required for a satisfactory description of the electric field, t
population inversion, and the material polarization. For cl
B lasers, the polarization decays towards the steady s
much faster than the other two variables, and it can be a
batically eliminated. ClassB lasers, of which semiconducto
lasers@10# are an example, are then described by just t
rate equations for the atomic population inversion~or carri-
ers number! and the electric field. Other examples of classB
lasers are CO2 lasers and solid-state lasers@11#. Finally, in
classA lasers population inversion and material polarizati
decay much faster than the electric field. Both material va
ables can be adiabatically eliminated, and the equation
the electric field is enough to describe the dynamical evo
tion of the system. Some properties of classA lasers, like a
dye laser, are studied in@12,13#. In this paper we interpre
the dynamics of both classA and classB lasers by using a
Lyapunov potential.

The paper is organized as follows. In Sec. II we presen
brief review of the relation of Lyapunov potentials to th
dynamical equations and the splitting of those into conser
tive and dissipative parts. We consider the example of c
A lasers. In this case, the Lyapunov potential gives an in
tive understanding of the dynamics observed in the num
cal simulations. In the presence of noise, the probability d
sity function obtained from the potential allows th
calculation of stationary mean values of interest as, for
4690 ©1999 The American Physical Society
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PRA 59 4691LYAPUNOV-POTENTIAL DESCRIPTION FOR LASER DYNAMICS
ample, the mean value of the number of photons. We
show that the mean value of the phase of the electric fiel
the steady state varies linearly with time only when noise
present, in a phenomenon reminiscent of the noise-susta
flows. In Sec. III, the dynamics of rate equations for clasB
lasers is presented in terms of the intensity and the car
number~we will restrict ourselves to the semiconductor l
ser!. In this case we have found a potential which helps
analyze the corresponding dynamics in the absence of n
By using the conservative part of the equations, one
obtain an expression for the period of the oscillations in
transient regime following the laser switch-on. This expr
sion extends the one obtained in a simpler case by an i
tification of the laser dynamics with a Toda oscillator in@14#.
Here, we have added in the expression for the period
corresponding modifications for the gain saturation term
spontaneous emission noise. Finally, in Sec. IV, we sum
rize the main results obtained.

II. POTENTIALS AND LYAPUNOV FUNCTIONS:
CLASS A LASERS

The evolution of a system~dynamical flow! can be clas-
sified into different categories according to the relation of
Lyapunov potential to the actual equations of moti
@15,16#. We first consider a deterministic dynamical flow
which the real variables (x1 , . . . ,xN)[x satisfy the genera
evolution equations:

dxi

dt
5 f i~x!, i 51, . . . ,N. ~1!

In the so-calledpotential flow, there exists a nonconstan
function V(x) ~the potential! in terms of which the above
equations can be written as

dxi

dt
52(

j 51

N

Si j

]V

]xj
1v i , ~2!

whereS(x) is a symmetric and positive-definite matrix, an
v i(x) satisfy theorthogonality condition:

(
i 51

N

v i

]V

]xi
50. ~3!

A nonpotential flow, on the other hand, is one for which th
splitting ~2!, satisfying Eq.~3!, admits only the trivial solu-
tion V(x)5const,v i(x)5 f i(x).

Since the above~sufficient! conditions for a potential flow
lead todV/dt<0, one concludes thatV(x) ~when it satisfies
the additional condition of being bounded from below! is a
Lyapunov potential for the dynamical system. In this ca
one can get an intuitive understanding of the dynamics:
fixed points are given by the extrema ofV(x) and the trajec-
tories relax asymptotically towards the surface of minima
V(x). This decay is produced by the only effect of the ter
containing the matrixS in Eq. ~2!, since the dynamics in
duced byv i conserves the potential, andv i(x) represents the
residual dynamics on this minima surface. A particular c
of potential flow is given whenv i(x) can also be derived
from the potential, namely,
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dxi

dt
52(

j 51

N

Di j

]V

]xj
, ~4!

where the matrixD(x)5S(x)1A(x) splits into a positive-
definite symmetric matrix,S, and an antisymmetric one,A. In
this case, the residual dynamics also ceases after the su
of minima of V(x) has been reached.

We now describe the effect of noise on the dynamics
the above systems. The stochastic equations~considered in
the Itô sense! are

dxi

dt
5 f i~x!1(

j 51

N

gi j ~x!j j~ t !, ~5!

wheregi j (x) are given functions andj j (t) are white noise:
Gaussian random processes of zero mean and correla
are

^j i~ t !j j~ t8!&52ed i j d~ t2t8!, ~6!

wheree is the intensity of the noise.
In the presence of noise terms, it is not adequate to

about fixed points of the dynamics, but rather consider
stead the maxima of the probability density functionP(x,t),
which satisfies the multivariate Fokker-Planck equat
@17,18# whose general solution is unknown. When the det
ministic part of Eq.~5! is a potential flow, however, a close
form for the stationary distributionPst(x) can be given in
terms of the potentialV(x) if the following ~sufficient! con-
ditions are satisfied.

~i! Thefluctuation-dissipationcondition, relating the sym-
metric matrixS to the noise matrixg,

Si j 5 (
k51

N

gikgjk , S5ggT. ~7!

~ii ! Si j satisfies

(
j 51

N
]Si j

]xj
50, ; i . ~8!

This condition is satisfied, for instance, for a constant ma
S.

~iii ! v i is divergence-free,

(
i 51

N
]v i

]xi
50. ~9!

This third condition is automatically satisfied for potenti
flows of the form~4! with a constant matrixA.

Under those circumstances, the stationary probability d
sity function is

Pst~x!5Z21 expS 2
V~x!

e D , ~10!

whereZ is a normalization constant. Graham@19# has shown
that if conditions~ii ! and~iii ! are not satisfied, then the abov
expression forPst(x) is still valid in the limit e→0.

As an example of the use of Lyapunov potentials in
dynamical system, we consider classA lasers@6# whose dy-
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namics can be described in terms of the slowly varying co
plex amplitudeE of the electric field:

Ė5~11 ia!S G

11buEu2
2k D E1z~ t !, ~11!

wherea, b, G, and k are real parameters.k is the cavity
decay rate,G the gain parameter,b the saturation-intensity
parameter, anda is the detuning parameter. Another wide
used model expands the nonlinear term to give a cubic
pendence on the field~third-order Lamb theory@2#!, but this
is not necessary here. Equation~11! is written in a reference
frame in which the frequency of theon steady state is zero
@12#. z(t) is a complex Langevin source term accounting
the stochastic nature of spontaneous emission. It is taken
Gaussian white noise of zero mean and correlations:

^z~ t !z* ~ t8!&54Dd~ t2t8!, ~12!

whereD measures the strength of the noise.
By writing the complex variableE as E5x11 ix2 and

introducing a new dimensionless time such thatt→kt, the
evolution equations become

ẋ15S a

b1x1
21x2

2
21D ~x12ax2!1j1~ t !, ~13!

ẋ25S a

b1x1
21x2

2
21D ~ax11x2!1j2~ t !, ~14!

where a5G/(kb) and b51/b. j1(t) and j2(t) are white
noise terms with zero mean and correlations given by Eq.~6!
with e5D/k.

In the deterministic case (e50), these dynamical equa
tions constitute a potential flow of the form~4! where the
potentialV(x) is @7#

V~x1 ,x2!5
1

2
@x1

21x2
22a ln~b1x1

21x2
2!# ~15!

and the matrixD(x) ~split into symmetric and antisymmetri
parts! is

D5S1A5S 1 0

0 1D 1S 0 2a

a 0 D . ~16!

A simpler expression for the potential is given in@6# and@17#
valid for the case in which the gain term is expanded
Taylor series.

According to our discussion above, the fixed points of
deterministic dynamics are the extrema of the potentialV(x):
for a.b there is a maximum at (x1 ,x2)50 ~corresponding
to the laser in theoff state! and a line of minima given by
x1

21x2
25a2b ~see Fig. 1!. The asymptotic stable situation

then, is that the laser switches to theon state with an inten-
sity I[uEu25x1

21x2
25a2b. For a,b the only stable fixed

point is theoff stateI 50.
In the transient dynamics, the symmetric matrixS is re-

sponsible for driving the system towards the line of minim
of V following the lines of maximum slope ofV. The anti-
-

e-

r
s a

e

symmetric partA ~which is proportional toa) induces a
movement orthogonal to the direction of maximum variati
of V(x). The combined effects ofSandA produce a spiraling
trajectory in the (x1 ,x2) plane. The angular velocity of this
spiral movement is proportional toa. Asymptotically, the
system tends to one of the minima in the lineI 5a2b, the
exact location depending on the initial conditions. The p
tential decreases in time until it arrives at its minimum valu
V(x1

21x2
25a2b)52 1

2 @a ln(a)2a1b#.
In the presence of moderate levels of noise,eÞ0, the

qualitative features of the transient dynamics remain
same as in the deterministic case. The most important dif
ences appear near the stationary situation. As the final v
of the intensity is approached and foraÞ0, the phase rota-
tion slows down and the mean value of the phasef of the
electric fieldE changes linearly with time also in the stead
state; see Fig. 2. Fora50 there is only the ordinary phas
diffusion around the circumferencex1

21x2
25a2b that repre-

sents the set of all possible deterministic equilibrium sta
@12#. Therefore, foraÞ0 the real and imaginary parts ofE
oscillate not only in the transient dynamics but also in t

FIG. 1. Potential for a classA laser, Eq.~15!, with the param-
etersa52, b51. Dimensionless units.

FIG. 2. Time evolution of the mean value of the phasef in a
classA laser, in the casea52, b51, e50.1. Fora50 ~dashed
line! there is only phase diffusion and the average value is 0 for
times. Whena55 ~solid line! there is a linear variation of the mea
value of the phase at late times. Error bars are included for s
values. The dot-dashed line has the slope given by the theore
prediction Eq.~21!. The initial condition is taken asx15x250 and
the results were averaged over 10 000 trajectories with diffe
realizations of the noise. Dimensionless units.
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PRA 59 4693LYAPUNOV-POTENTIAL DESCRIPTION FOR LASER DYNAMICS
steady state, and while the frequency of the oscillations
depends ona ~as well ase), their amplitude depends on th
noise strengthe.

We can understand these aforementioned features o
noisy dynamics using the deterministic Lyapunov poten
V(x1 ,x2). Since conditions~i!–~iii ! above are satisfied, th
stationary probability distribution is given by Eq.~10! with
V(x1 ,x2) given by Eq.~15!. By changing variables to inten
sity and phase, we find that the probability density functio
for I andf are independent functions,Pst(f)51/(2p) is a
constant, and

Pst~ I !5Z21e2I /(2e)~b1I !a/(2e), ~17!

where „Z5(2e)(a/2e)11eb/2eG@(a/2e)11,b/2e#… is the nor-
malization constant, andG(x,y) is the incomplete gamma
function. From this expression, we see that, independentl
the value fore, Pst(I ) has its maxima at the determinist
stationary valueI m5a2b. Starting from a given initial con-
dition corresponding, for instance, to the laser in theoff state,
the intensity fluctuates around a mean value that incre
monotonically with time. In the stationary state, the intens
fluctuates around the deterministic valueI m5a2b but, since
the distribution~17! is not symmetric aroundI m , the mean
value ^I &st is larger than the deterministic value. By usin
Eq. ~17! one can easily find that

^I &st5~a2b!12eF 11
exp~2b/2e!~b/2e!(a/2e)11

GS a

2e
11,

b

2e D G .

~18!

An expression for the mean value of the intensity in t
steady state was also given in@17# in the simpler case of an
expansion of the saturation-term parameter in the dynam
equations.

As mentioned before, in the steady state of the stocha
dynamics, the phasef of the electric field fluctuates aroun
a mean value that changes linearly with time. Of cour
since any value off can be mapped into the interval@0,2p),
this is not inconsistent with the fact that the stationary d
tribution for f is a uniform one. We can easily understa
the origin of thisnoise sustained flow@20#: the rotation in-
ducing terms, those proportional toa in the equations of
motion, are zero at the line of minima of the potentialV and,
hence, do not act in the steady deterministic state. Fluc
tions allow the system to explore regions of the configurat
space (x1 ,x2) where the potential is not at its minimum
value. Since, according to Eq.~18!, the mean value ofI is not
at the minimum of the potential, there is, on average, a n
zero contribution of the rotation terms producing the ph
drift observed.

The rotation speed can be calculated by writing the e
lution equation for the phase of the electric field as

ḟ5S a

b1I
21Da1

1

AI
j~ t !, ~19!

wherej(t) is a white noise term with zero mean value a
correlations given by Eq.~6!. By taking the average valu
and using the rules of the Itoˆ calculus, one arrives at
ill
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a-
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e

-

^ḟ&5a K a

b1I
21L ~20!

and, by using the distribution~17!, one obtains the stochasti
frequency shift,

^ḟ&st52a
exp~2b/2e!~b/2e!a/2e

GS a

2e
11,

b

2e D . ~21!

Notice that this average rotation speed is zero in the cas
no detuning (a50) or for the deterministic dynamics (e
50) and that, due to the minus sign, the rotation spee
opposite to that of the deterministic transient dynamics wh
starting from theoff state. These results are in excelle
agreement with numerical simulations of the rate equati
in the presence of noise~see Fig. 2!.

III. CLASS B LASERS

The dynamics of a typical classB laser, for instance a
single mode semiconductor laser, can be described in te
of two evolution equations, one for the slowly varying com
plex amplitudeE of the electric field inside the laser cavit
and the other for the carriers numberN ~or electron-hole
pairs! @10#. These equations include noise terms account
for the stochastic nature of spontaneous emission and
dom nonradiative carrier recombination due to thermal fl
tuations. Both noise sources are usually assumed to be w
Gaussian noise.

The equation for the electric field can be written in term
of the optical intensityI and the phasef by defining E
5AI eif. For simplicity, we neglect the explicit random fluc
tuations terms and retain, as usual@10#, the mean power of
the spontaneous emission. The equations are

dI

dt
5@G~N,I !2g#I 14bN, ~22!

df

dt
5

1

2
@G~N,I !2g#a, ~23!

dN

dt
5C2geN2G~N,I !I . ~24!

G(N,I ) is the material gain given by

G~N,I !5
g~N2No!

11sI
. ~25!

The definitions and typical values of the parameters for se
conductor lasers are given in Table I. The first term of E
~22! accounts for the stimulated emission while the seco
accounts for the mean value of the spontaneous emis
power. Equations~22!–~24! are written in the reference
frame in which the frequency of theon state is zero when
spontaneous emission noise is neglected. The threshold
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TABLE I. Definitions and typical values of the parameters for semiconductor lasers.

Parameters Values

C Carriers injected per unit time .threshold
g Cavity decay rate 0.5 ps21

ge Carrier decay rate 0.001 ps21

No Number of carriers at transparency 1.53108

g Differential gain parameter 1.531028 ps21

s Saturation parameter 102821027

b Spontaneous emission rate 1028 ps21

a Linewidth enhancement factor 3–6
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dition is obtained by settingG(N,I )5g, I 50, and neglect-
ing spontaneous emission, i.e.,Nth5No1g/g. The threshold
carrier injected per unit time to turn the laseron is given by
Cth5geNth . Equation~23! shows thatḟ is linear withN and
slightly ~due to the smallness of the saturation parametes,
see Table I! nonlinear withI.

Since in the deterministic case considered henceforth
evolution equations forI andN do not depend on the phas
f, we can concentrate only on the evolution ofI andN. One
can obtain a set of simpler dimensionless equations by
forming the following change of variables:

y5
2g

g
I , z5

g

g
~N2No!, t5

g

2
t. ~26!

The equations then become

dy

dt
52S z

11 s̄y
21D y1cz1d, ~27!

dz

dt
5a2bz2

zy

11 s̄y
, ~28!

where we have defineda52g/g2(C2geNo), b52ge /g, c

516b/g, d516bgNo /g2, and s̄5sg/2g. These equations
form the basis of our subsequent analysis. The steady s
are obtained by setting Eqs.~27! and~28! equal to zero, i.e.,

yst5
1

4~11bs̄!
@2~a2b!1d~11bs̄!1cas̄1Av#, ~29!

zst5
a~11 s̄yst!

b1yst~11bs̄!
, ~30!

where the constantv is given by

v54~a2b!214d~a1b!~11bs̄!1d2~11bs̄!2

1c@8a14as̄~a1b!12das̄~11bs̄!#1c2a2s̄2.

~31!

There is another steady-state solution foryst given by Eq.
~29! ~with a minus sign in front ofAv) which, however, does
not correspond to any possible physical situation, sinceyst
,0. For a value of the injected carriers per unit time bel
threshold (C,Cth , equivalent to a2b,0), yst is very
e

r-

tes

small. This corresponds to theoff solution in which the only
emitted light corresponds to the spontaneous emiss
Above threshold, stimulated emission occurs and the la
operates in theon state with largeyst. In what follows, we
will concentrate in the evolution following the lase
switch-on to theon state.

It is known that the dynamical evolution ofy andz is such
that they both reach the steady state by performing dam
oscillations@10# whose period decreases with time. This fa
is different from the usual relaxation oscillations that a
calculated near the steady state by linearizing the dynam
equations. The time evolution ofy andz is shown in Fig. 3~a!
for some parameters~for other values of the parameter
equivalent results are obtained!, while the corresponding
projection in they, z phase plane is shown in Fig. 4. We a
interested in obtaining a Lyapunov potential that can help
explain the observed dynamics. This study was done in@14#
without considering either the saturation term or the me
value of the spontaneous emission power, and under th
conditions an expression for the period of the transient os
lations was obtained. In our work, we calculate the period
the oscillations by taking into account these two effects. T
period is obtained in terms of the potential, by assuming t
the latter has a constant value during one period. It will
shown that this assumption works reasonably well and gi
a good agreement with numerical calculations. Near

FIG. 3. ~a! Normalized intensityy ~solid line! and normalized
carriers numberz/40 ~dot-dashed line! versus time in a classB laser
obtained by numerical solution of Eqs.~27! and~28!. ~b! Plot of the

potential ~32!. Parameters:a50.009, b50.004, s̄50.5, c53.2
31029, d51.4431028, which correspond to physical paramete
in Table I with C51.2Cth . The initial conditions are taken asy
5531028 andz50.993. Dimensionless units.
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FIG. 4. Number of carriers versus intensity~scaled variables!. The vector field and contour plot~thick lines! are also represented. Sam
parameters as in Fig. 3. Dimensionless units.
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steady state, the relaxation oscillations can also be calcul
in this form, but the potential is almost constant and con
quently so is the period.

The evolutions equations~27! and~28! can be cast in the
form of Eq. ~4! with the following Lyapunov potential:

V~y,z!5A1y1A2y21A3 ln~y!1
A4

y
1

1

2
B2~y,z!, ~32!

where

A15
1

2
2

1

2
as̄1bs̄2

1

4
s̄d~11bs̄!2

1

4
as̄2c,

A25
s̄

4
~11bs̄!,

A352
1

2S a2b1~ac1bd!s̄1
d

2D ,

A45
~ac1bd!

4
,

B~y,z!5z212 s̄y1
~d1cz!

2y
~11 s̄y!.

The corresponding~nonconstant! matrix D is given by

D5S 0 2d12

d12 d22
D , ~33!

being
ed
- d125

4y2

~11 s̄y!@2y1c~11 s̄y!#
, ~34!

d225
4y@~112s̄1bs̄!y21by1d1cz#

~11 s̄y!@2y1c~11 s̄y!#2
. ~35!

This potential reduces to the one obtained in Ref.@14#

when settingc5d5 s̄50 ~which corresponds to set the las
parametersb5s50). As expected, nonvanishing values f
the parameterss and b increase the dissipative part of th
potential (d22), associated with the damping term. This res
was pointed out in@21# when linearizing the rate equation
around the steady state.

The equipotential lines of Eq.~32! are also plotted in Fig.
4. It is observed that there is only one minimum forV and
hence the only stable solution~for this range of parameters!
is that the laser switches to theon state and relaxes to th
minimum of V. The movement towards the minimum ofV
has two components: a conservative one that produces cl
equipotential trajectories and a damping that decreases
value of the potential. The combined effects drive the syst
to the minimum following a spiral movement, best observ
in Fig. 4.

The time evolution of the potential is also plotted in Fi
3~b!. In this figure it can be seen that the Lyapunov poten
is approximately constant between two consecutive peak
the relaxation oscillations~this fact can also be observe
with the equipotential lines of Fig. 4!. This fact allows us to
estimate the relaxation oscillation period by approximat
V(y,z)5V, constant, during this time interval. When the p
tential is considered to be constant, the period can be ev
ated by the standard method of elementary mechanics:z is
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replaced by its expression obtained from Eq.~27! in terms of
y and ẏ ~the dot stands for the time derivative! in V(y,z).
Using the condition thatV(y,z)5V5const, we obtain an
equation fory of the form F(y,ẏ)5V. From this equation,
we can calculate the relaxation oscillation period~T! by in-
tegrating over a cycle. This leads to the expression

T5E
y0

y1 11 s̄y

y

dy

$2@V2A1y2A2y22A3 ln~y!2A4y21#%1/2
,

~36!

wherey0 andy1 are the values ofy that cancel the denomi
nator. We stress the fact that the only approximation use
the derivation of this expression is that the Lyapunov pot
tial is constant during two maxima of the intensity oscill
tions. The previous equation for the period reduces, in
casec5d5 s̄50, to the one previously obtained by usin
the relation between the laser dynamics and the Toda o
lator derived in@14#. Evaluation of the above integral show
that the periodT decreases as the potentialV decreases
Since the Lyapunov potential decreases with time, this
plains the fact that the period of the oscillations in the tra
sient regime decreases with time. In Fig. 5 we compare
results obtained with the above expression for the pe
with the one obtained from numerical simulations of the r
equations~27! and ~28!. In the simulations we compute th
period as the time between two peaks in the evolution of
variabley. As can be seen in this figure, the above express
for the period, when using the numerical value of the pot
tial V, accurately reproduces the simulation results altho
it is systematically lower than the numerical result. The d
crepancy is less than 1% over the whole range of times.

It is possible to quantify the difference between the a
proximate expression~36! and the exact values near the s
tionary state. In this case expression~36! reduces to

T5
2p

d12,stAEF2H2
, ~37!

where

FIG. 5. Period versus time in a classB laser. Solid line has been
calculated as the distance between two peaks of intensity, with
angles plotted at the beginning of each period; dashed line has
calculated using expression~36!, with the value of the potentialV
obtained also from the simulation; dotted line corresponds to
semiempirical expression~41!. Same parameters as in Fig. 3. W
have usedt0555.55, coinciding with the position of the first inten
sity peak. Dimensionless units.
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E52S A22
1

2
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1
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yst
3

1
1

2 F s̄1
~d1czst!

2yst
2 G 2D ,

F5F11c
~11 s̄yst!

2yst
G2

,

H52F11
c~11 s̄yst!

2yst
GF s̄1

~d1czst!

2yst
2 G ,

andd12,st is the coefficientd12 calculated in the steady state
The period of the relaxation oscillations near the steady s
can be obtained by linearizing Eqs.~27! and ~28! after a
small perturbation is applied. The frequency of the oscil
tions in the steady state is the imaginary part of the eig
values of the linearized equations. This yields a period:

Tst5
2p

d12,stAEF2H2 F12
d22,st

2

d12,st
2

F2

4~EF2H2!
G21/2

. ~38!

The difference between Eqs.~37! and ~38! vanishes with
d22,st ~i.e., d22 in the stationary state!. SinceEF2H2 is al-
ways a positive quantity, our approximation will give,
least asymptotically, a smaller value for the period.

In order to have a complete understanding of the variat
of the period with time, we need to compute the time var
tion of the potentialV(t) between two consecutive intensit
peaks. This variation is induced by the dissipative terms
the equations of motion. We have not been able to derive
expression for the variation of the potential~see@14# for an
approximate expression in a simpler case!. However, we
have found that a semiempirical argument can yield a v
simple law which is well reproduced by the simulations. W
start by studying the decay to the stationary state in the
earized equations. By expanding around the steady stay
5yst1dy, z5zst1dz, the dynamical equations imply tha
the variables decay to the steady state asdy(t), dz(t)
}exp„2(r/2)t…, where

r5d22,stF. ~39!

ExpandingV(y,z) around the steady state and taking an i
tial condition att0, we find an expression for the decay
the potential:

ln@V~t!2Vst#5 ln@V~t0!2Vst#2r~t2t0!. ~40!

In Fig. 6 we plot ln@V(t)2Vst# versus time and compare
with the approximation~40!. One can see that the latter fi
ln@V(t)2Vst# not only near the steady state~where it was
derived!, but also during the transient dynamics. The va
of t0, being a free parameter, was chosen at the time
which the first peak of the intensity appears. Although oth
values oft0 might produce a better fit, the one chosen he
has the advantage that it can be calculated analytically
following the technique of Ref.@22#. It can be derived from
Eq. ~36! that the periodT is linearly related to the potentia
V. This, combined with the result of Eq.~40!, suggests the
semiempirical law for the evolution of the period of the for

ln@T~t!2Tst#5 ln@T~t0!2Tst#2r~t2t0!. ~41!
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This simple expression fits well the calculated period
only near the steady state, but also in the transient reg
see Figs. 5 and 7. The tiny differences observed near
steady state are due to the fact that the semiempirical
Eq. ~41!, is based on the validity of relation Eq.~36! between
the period and the potential. As was already discussed ab
that expansion slightly underestimates the asymptotic~sta-
tionary! value of the period. By complementing this stud
with the procedure given in@22# to describe the switch-on
process of a laser, and valid until the first intensity peak
reached, we can obtain a complete description of the va
tion of the oscillations period in the dynamical evolutio
following the laser switch-on.

IV. SUMMARY

In this work we have used Lyapunov potentials in t
context of laser dynamics. For classA lasers, we have ex
plained qualitatively the observed features of the determi
tic dynamics by the movement on the potential landsca
We have identified the relaxational and conservative term
the dynamical equations of motion. In the stochastic dyna
ics ~when additive noise is added to the equations!, we have
explained the presence of a ‘‘noise sustained flow’’ for t
phase of the electric field as the interaction of the conse
tive terms with the noise terms. An analytical express
allows the calculation of the phase drift.

FIG. 6. Logarithm of the potential difference versus time in
classB laser~solid line!, compared with the theoretical expressio
in the steady state~40! ~dashed line!. Same parameters as in Fig.
andt0 as in Fig. 5. Dimensionless units.
t
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he
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s-
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In the case of classB lasers, we have obtained
Lyapunov potential valid only in the deterministic cas
when noise fluctuations are neglected. We have found
the dynamics is nonrelaxational with a nonconstant matrixD.
The fixed point corresponding to the laser in theon state is
interpreted as a minimum in the potential landscape. By
serving that the potential is nearly constant between two c
secutive intensity peaks during the relaxation process
wards the steady state, but still in a highly nonlinear regim
we were able to obtain an approximate expression for
period of the oscillations. Moreover, we have derived
simple exponential approach of the period of the oscillatio
with time towards the period of the relaxation oscillatio
near the steady state. This dependence appears to be
after the first intensity peak following the switch-on of th
laser. A possible extension of our work could be to consi
the presence of an external field, which is numerically st
ied in @23#.
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FIG. 7. Logarithm of the period difference versus time in a cla
B laser. Triangles correspond to the period calculated from
simulations as the distance between two consecutive inten
peaks, at the same position as in Fig. 6. The dashed line is
semiempirical expression Eq.~41!. Same parameters as in Fig.
andt0 as in Fig. 5. Dimensionless units.
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