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Phase Behavior of Binary Fluid Mixtures Confined in a Model Aerogel
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Instituto Mediterŕaneo de Estudios Avanzados (IMEDEA, UIB-CSIC) and Department de Fı́sica,
Universitat de les Illes Balears, 07071 Palma de Mallorca, Spain

rafael@imedea.uib.es

raul@imedea.uib.es

A. CHAKRABARTI †

Department of Physics, Kansas State University, Manhattan, KS 66505, USA
amitc@phys.ksu.edu

Received April 21, 1998; Accepted March 8, 1999

Abstract. It is found experimentally that the coexistence region of a vapor-liquid system or a binary mixture is
substantially narrowed when the fluid is confined in an aerogel with a high degree of porosity (e.g., of the order of 95
to 99%). A Hamiltonian model for this system has recently been introduced [1]. We have performed Monte-Carlo
simulations for this model to obtain the phase diagram for the model. We use a periodic fractal structure constructed
by diffusion-limited cluster-cluster aggregation (DLCA) method to simulate a realistic gel environment. The phase
diagram obtained is qualitatively similar to that observed experimentally. We also have observed some metastable
branches in the phase diagram which have not been seen in experiments yet. These branches, however, might be
important in the context of recent theoretical predictions and other simulations.
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1. Introduction

When a simple liquid or a binary mixture is confined in
a porous material which has a very low density (1–5%)
of spatially fixed impurities, such as in an aerogel, the
coexistence region in the phase diagram is substantially
narrowed. This result has been obtained in a broad
class of experimental studies, such as vapor-liquid
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coexistence of4He [2] and Nitrogen [3], binary mix-
tures of isobutyric acid-water [4] and3He-4He [5], etc.
In all of these studies, the coexistence curve was shown
to change dramatically when the system was confined
in a low concentration silica aerogel.

Recent theoretical efforts have been aimed to un-
derstand the above mentioned behavior. These in-
clude mean-field type studies of the Random Field
Ising model [6], a liquid state approach using the
Ornstein-Zernike equations [7] and numerical simu-
lations of a modified version of the Blume-Emery-
Griffiths model [8]. A very successful approach was
initiated by Donley and Liu [1]. In this reference, the
authors introduce a free energy functional that takes
into account the interactions that arise from the contact
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between the system molecules and the aerogel. By
minimizing this free energy they obtain a coexistence
curve which is in rough qualitative agreement with the
experimental results. Moreover, the authors go beyond
this mean field type approach by using a parametric
form of the equation of state, combined with linear
interpolation techniques. Although this new approach
yields better results than the previous mean field treat-
ment, it is not conclusive since other parametric mod-
els may give different results. Moreover, as the authors
point out correctly, it is very important to study the role
of the fluctuations.

In this paper, we go beyond the mean field approach
and numerically determine the phase diagram of the
model introduced in [1] by using Monte-Carlo meth-
ods. In this model, one considers a scalar fieldm(r )
and writes down a Hamiltonian which includes bulk
terms plus surface terms coming from the interaction
with the aerogel:

H=
∫

V
dV

×
[
θ

2
m2(r)+ X

4
m4(r)−Hm(r)+ 1

2
|∇m(r)|2

]

+
∮

s
dS

[
−H1m(r)+ G

2
m2(r)

]
(1)

The bulk terms, the first volume integral, is the usual
Ginzburg-Landau model for a scalar concentration field
m(r ) used in binary phase-transitions. The additional
term given by the surface integral represents the super-
ficial stress [9] in the neighborhood of gel. Here, the
volumeV is the available volume for the fluid and the
surfaceSis the set of fluid points in contact with the gel.
The parameters for this model are:θ , which is related
to the temperature;X which sets the width of the co-
existence curve; the external field (playing the role of
the chemical potential)H ; the surface fieldH1; and the
surface enhancement parameterG.

We have performed Monte-Carlo simulations of the
lattice version of the above Hamiltonian in order to find
its phase diagram. We consider a three-dimensional
simple cubic lattice with periodic boundary conditions.
In this lattice, we simulate the presence of the aerogel
by considering thatNG out of theL3 lattice sites belong
to a gel structure generated in a way to be explained
in detail later. We call these sites “gel sites”. In the
remaining sites (the “field sites”) we consider the scalar
variablemi (i = 1, . . . , N = L3 − NG) representing

the fluid density field. The gradient term of Eq. (1) is
discretized in the usual way:

|∇m(r)|2→
3∑

µ=1

(
mi −miµ

)2
(2)

where (i1, i2, i3) stands for the set of right-nearest-
neighbors sites to sitei . However, the presence of the
gel has the effect that in this expression for the gradi-
ent: only those neighbor sites which are actually field
sites contribute to the sum. Accordingly, we introduce
a set of indexes,Oiµ defined to be equal to 1, when the
site iµ is a field site, or 0, when the siteiµ is a gel site.
The gradient term becomes then:

|∇m(r)|2→
3∑

µ=1

Oiµ

(
mi −miµ

)2
(3)

For the sake of clarity in notation we have ordered theN
field points such that, from 1 toNB we have “pure bulk”
field sites (i.e., those which are not in contact with the
gel) and fromNB + 1 to N we haveNS “surface” field
sites, (i.e., those in contact with the gel,NS = N−NB).
With this convention in mind, the lattice version of the
Hamiltonian (Eq. (1)) can be written as:

H=
N∑

i=1

[
tm2

i + um4
i − hmi + 1

2

3∑
µ=1

Oiµ

(
mi −miµ

)2]

+
N∑

i=NB+1

[−h1mi + gm2
i

]
(4)

where,t,u, h, h1 andgare parameters obtained by suit-
able rescaling of the continuous valuesθ,X , H, H1,G,
respectively. The gel sites in this lattice form a peri-
odic fractal structure generated by a diffusion-limited-
cluster-aggregation (DLCA) process [10, 11], which
mimics the aggregation process that form silica gels.
The algorithm proceeds as follows [12, 13]:

Let us consider the starting configuration of the gel
as a collection of aggregates (clusters) containing one
particle each, the total number of particles isNG. At
a later time, one obtains a collection ofNa aggregates,
the i th aggregate containingni gel particles, so that

Na∑
i=1

ni = NG (5)

The aggregates evolve in the following way: an aggre-
gatei is chosen at random according to a probability
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pni which depends on the number of particlesni

that it contains, given by the phenomenological for-
mula [12]:

pni =
nαi∑
i nαi

(6)

with α a new parameter that can be varied in the sim-
ulations. Then a space direction is chosen at random
among the six possible directions and the cluster is
moved by one lattice step in that direction (we use
periodic boundary conditions). If the cluster does not
collide with any other cluster the algorithm contin-
ues by choosing again another cluster at random and
moving it. If instead a collision occurs, the two col-
liding clusters merge into a new cluster formed by
sticking together the colliding clusters. The process
is repeated until a single cluster remains in the sys-
tem. The fractal dimension in this model turns out to
be independent ofα and has been previously com-
puted [12] approximately asDF ≈ 1.78. We have
chosenα = −1/DF = −0.55 in such a way that the
resulting effective diffusion coefficient varies as the in-
verse of the cluster radius [12]. In Fig. 1, we can see a
typical picture of a fractal gel structure obtained using
this DLCA process in a three-dimensional lattice with
side L = 32 and for a gel concentration of 4%. The
fractal dimension of the clusters obtained in our simu-
lation DF = 1.9± 0.1 is consistent with the previous
value,DF ≈ 1.78.

Figure 1. Three dimensional gel structure with a concentration of
4%, generated by a realization of the DLCA process, in a lattice with
L = 32 and periodic boundary conditions.

2. The Method

We use the average value of the field as the order pa-
rameter〈M〉:

〈M〉 =
〈

1

N

N∑
i =1

mi

〉
(7)

where, for a fixed gel structure, averages are performed
with respect to the distributione−H. For a given gel
structure representative configurations are obtained by
the use of the Monte-Carlo method applied to the lattice
Hamiltonian (3). We have used the simple Metropolis
algorithm [14]: a field valuemi is proposed to change to
a new valuem′i chosen randomly from a uniform distri-
bution in (mi−δ,mi+δ) for givenδ. The new valuem′i
is accepted with a probability given by min [1,e−1H],
with 1H = H′ −H is the change in the Hamiltonian
implied by the proposed change. The order parameter
〈M〉 is computed as an average over different field con-
figurations. An additional average has been performed
with respect to 10 different gel structures.

To find the phase diagram, i.e., the dependence on
the “temperature”t of the order parameter〈M〉, we
take fixed values for the system parametersu, g and
h1, and vary the “temperature”t . For each value of the
temperaturet we compute the hysteresis loop by us-
ing the Monte-Carlo method varying the external field
h from +h0 to −h0 and vice-versa. We first start at a
sufficiently high value forh0 (see later) and compute
〈M〉0. Next, by keeping the same final configuration
for the density field, the external field is lowered by an
amount10 to h1 = h0 − 10 and compute the corre-
sponding value for the order parameter〈M〉1. Then the
field is changed toh2 = h1 − 11 and so on until we
arrive at−h0. The process is reversed by increasing in
a similar way the external field to reach again+h0.

In order to determine accurately the hysteresis loop,
we do not take a constant value for1i but we take:

1i =10 1i−1√
(hi − hi−1)2+ (〈M〉i − 〈M〉i−1)2γ 2

(8)

whereγ is an additional scale control parameter. This
means that we control the length along the hysteresis
curve allowing us to have smooth hysteresis curves.
Two typical results for the hysteresis loops are shown
in Fig. 2 for the cases of no gel and a gel filling 4% of
the lattice points. In the no-gel case, the hysteresis loop
is symmetrical aroundh = 0 and one can read directly
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Figure 2. Hysteresis loops,〈M〉 vs. h, for two cases: The gel case (¦) with a concentration ofc = 4% and the no gel case (+), both for a
parameter valuet = −1.26. The two vertical lines show the actual valueh where the transition take place, in each case,h = −0.18 in the gel
case, andh = 0 in the no gel case. Note the presence of little steps in the lower branch in the gel hysteresis loop.

the equilibrium values for±〈M〉 by taking the values at
h = 0. When the gel is present, we determine the equi-
librium values for〈M〉 by demanding that the Gibbs
free energy in the two phases is equal. The Gibbs free
energy can be obtained by integration of the general
relation [15]:

〈M〉 = −∂G

∂h
(9)

By integrating along the upper curve of the hysteresis
loop we obtain:

G(1)(h) = G(h0)−
∫ h

h0
〈M〉dh (10)

whereas from the lower part of the hysteresis loop:

G(2)(h) = G(−h0)−
∫ h

−h0
〈M〉dh (11)

The equilibrium values for〈M〉 are read from the hys-
teresis loop at the value of the external fieldh such
thatG(1)(h)=G(2)(h). In order to compute those val-
ues for the free energy, according to (10) and (11) we
need to know the values ofG(h0) andG(−h0). For
this, we use a sufficiently large value forh0. For such
a large external field, the mean field is a good approx-
imation, in such a way that the Gibbs free-energy can
be replaced by just the internal energyH. So we take

G(±h0) ≈ H(±h0). We have takenh0 = 10. In or-
der to check the validity of mean field for this value
of h0 we have compared the resulting average〈M〉0
obtained in the simulation with the mean field value
obtained from minimizing the HamiltonianH for the
same value forh0. Both results agree within 1%.

In Fig. 3 we plot the results of the numerical inte-
grations (10) and (11) both for the no-gel case and for
one gel configuration of porosity 96% for a value of
the parametert = −1.26. As expected, in the no gel
case,G(1)(h) andG(2)(h) coincide forh = 0. In the
gel case, we read from this curve the corresponding
value forh ≈ −0.18. Using this value, we obtain from
the upper and lower curves of the hysteresis loops, see
Fig. 2, the corresponding values for〈M〉.

We have found that this method can be used effi-
ciently far enough from the critical point. Near the
critical point, the numerical errors produce a large un-
certainty in the numerical integrations and it is difficult
to accurately determine the required value of the ex-
ternal field. In those cases, we have taken simply an
average of the lower and upper branches of the hystere-
sis loop as the values for〈M〉. For temperatures above
the critical one, there is no hysteresis loop.

3. Phase Diagram

We present in this section the phase diagram as a func-
tion of the parametert for three different cases: (i) the
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Figure 3. The Gibbs free-energyG(h) vs. h obtained by integration, Eqs. (10) and (11), from the hysteresis curves in Fig. 2, in the gel case (¦)
and the no gel case (+). From these curves we deduce the necessary value for the external fieldh, where the first-order transition takes place.

Figure 4. Phase diagrams, in the gel (¦), c = 12%, and no gel (continuous line) cases.

no-gel situation, (ii) a gel case with a porosity of 88%
and (iii) a gel case with a porosity of 96%.

Most of our results shown here are for a lattice with
L3 = 323 sites and the Hamiltonian parameter values
u = 0.5, h1 = 4 andg = 1. For the factors control-
ling the step size for the variation of the external field
we takeγ = 3,10 = 0.05. The initial values for the
hysteresis loop ish0 = 10. In the gel cases, we have
taken averages with respect to 10 gel structures. By
following the method described in the previous sec-
tion, we obtain for each temperature two values for
the order parameter〈M〉. These are plotted in Figs. 4

and 5 for a porosity of 88 and 96%, respectively. In
these figures, we can see clearly the narrowing of the
coexistence region when the gel is present. For smaller
porosity (larger fraction of the gel) the narrowing is
more pronounced as observed in the experiments and
in accordance with the results of mean field theory. Al-
though, as mentioned at the end of the previous section,
numerical errors become large near the critical point,
we conclude from the figures that the critical tempera-
ture is lowered when the gel is present. Again, the re-
duction in the critical temperature is larger for smaller
porosity.
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Figure 5. Phase diagrams, in the gel (¦), c = 4%, and no gel (continuous line) cases. Note in the gel case that we have included some points
(+), corresponding to the steps found in the hysteresis loops.

We have cheked that finite size effects are not im-
portant in our simulations when we chooseL = 32.
The correlation length associated with the crossover
from a short length scale fractal structure to a long
length scale uniform structure is given approximately
by ξ = Kc1/(DF−3) where K is a constant of order
unity.1 For the 4% case this yieldsξ ≈ 15. We have,
in some cases, repeated the simulations with smaller
values of the system sizes. No systematic deviation is
found for L = 24 and small differences appear only
for the lower branch of the phase diagram (see Fig. 5)
for L = 16.

It is interesting to note that in the simulations where
the gel is present, we have found some steps in the
lower curve of the hysteresis loop, as we can see for in-
stance in Fig. 2, which could be interpreted as signaling
a second transition. We have plotted in the phase dia-
gram additional points corresponding to the steps in the
hysteresis loops. The location of those points depends
strongly on the particular realization of the DLCA pro-
cess to generate the fractal gel structure. This shows up
in the large error bars for these points in the Fig. 5.

The phase diagram obtained in this paper is qualita-
tively similar to that observed experimentally [2]: the
coexistence region in presence of gel is narrowed and
shifted with respect to the non-gel situation. There are
marks of a second transition which also show up in the
mean field studies of Ref. [1] and also in other simu-
lations of the Lennard-Jones fluid [16], although it has
not been reported in experimental studies.
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